Российское диализное общество

Просмотр статьи

<< Вернуться к списку статей журнала

Том 20 №2 2018 год - Нефрология и диализ

Роль почек в поддержании кальциевого и магниевого гомеостаза и при его нарушениях (Часть II)


Зверев Я.Ф. Брюханов В.М. Рыкунова А.Я.

DOI: 10.28996/2618-9801-2018-2-170-188

Аннотация: В обзоре освещаются вопросы изменений гомеостаза кальция и магния, выражающиеся в развитии гипер- и гипокальциемии, а также гипомагниемии. Обсуждаются особенности первичного гиперпаратиреоза, злокачественной гиперкальциемии, интоксикации витамином D. Особое внимание с позиций современной молекулярной биологии уделяется этиологии и патогенезу синдромных и несиндромных форм наследственной гиперкальциемии, таких как множественная эндокринная неоплазия, семейная гипокальциурическая гиперкальциемия, неонатальный тяжелый первичный гиперпаратиреоз; проявления гипокальциемии в виде аутосомной доминантной гипокальциемии и синдрома Барттера V типа; а также такие наследственные проявления гипомагниемии как гипомагниемия со вторичной гипокальциурией, семейная гипомагниемия с гиперкальциурией и нефрокальцинозом, изолированная доминантная гипомагниемия с гипокальцийурией, синдром Гительмана. Обсуждаются современные принципы и методы коррекции гиперкальциемии и гипомагниемии.

Весь текст

Ключевые слова: нарушения метаболизма кальция и магния, гиперкальциемия, гипокальцие-мия, гипомагниемия, этиология, патогенез, лечение, metabolic disorders of calcium and magnesium, hypercalcemia, hypocalcemia, hypomagnesemia, etiology, pathogenesis, treatment

Список литературы:
  1. Lietman S.A, Germain-Lee E.L, Levine M.A. Hypercalcemia in children and adolescents. Curr Opin Pediatr. 2010; 22 (4): 508-515.
  2. Bushinsky D.A, Monk R.D. Electrolyte quinet: calcium. Lancet. 1998; 352: 306-311.
  3. Carroll M.F, Schade D.S. A practical approach to hypercalcemia. Am. Fam. Physician. 2003; 67 (9): 1959-1966.
  4. Portale A.A. Blood calcium, phosphorus, and magnesium. In: Favus MJ, ed. Primer on the metabolic bone diseases and disorders of mineral metabolism, 4th. Lippincott, Williams & Wilkins, Philadelphia, 1999; 116-119.
  5. Strewler G.J. The physiology of parathyroid hormone-related protein. N. Engl. J. Med. 2000; 342: 177-185.
  6. Shane E. Hypercalcemia: pathogenesis, clinical manifestations, differential diagnosis, and management. In: Favus MJ, ed. Primer on the metabolic bone diseases and disorders of mineral metabolism, 4th. Lippincott, Williams & Wilkins, Philadelphia, 1999; 83-187.
  7. Nishiyama S. Hypercalcemia in children: an overview. Acta Paediatr. Jpn. 1997; 39 (4): 479-484.
  8. Rodd C., Goodyer P. Hypercalcemia of the newborn: etiology, evaluation, and management. Pediatr. Nephrol. 1999; 13 (6): 542-547.
  9. Solomon B.L., Schaaf M, Smallridge R.C. Psychologic symptoms before and after parathyroid surgery. Am. J. Med. 1994; 96: 101-106.
  10. Iacobone M., Carnaille B., Palazzo F.F., Vriens M. Hereditary hyperparathyroidism - a consensus report of the European Society of Endocrine Surgeons (ESES). Langenbeck Arch. Surg. 2015; 400: 867-886.
  11. Marini F., Cianferotti L., Giusti F., Brandi M.L. Molecular genetics in primary hyperparathyroidism: The role of genetic tests in differential diagnosis, disease prevention strategy, and therapeutic planning. A 2017 update. Clin. Cases Mineral Bone Metabol. 2017; 14 (1): 60-70.
  12. Walker M.D., Silverberg S.J. Primary hyperparathyroidism. Endocrinology. 2017; Published online 8 Sep. 2017. doi: 10.1038/nrendo.2017.104.
  13. Mizamtsidi M., Nastas C., Mastorakos G. et al. Diagnosis, management, histology and genetics of sporadic primary hyperparathyroidism: Old knowledge with new tricks. Endocrinol. Connect. 2018; 7 (2): R56-R68.
  14. Loughead J.L., Mudhal Z., Mimouni F. et al. Spectrum and natural history of congenital hyperparathyroidism secondary to maternal hypocalcemia. Am. J. Perinatol. 1990; 7 (4): 350-355.
  15. Kollars J., Zarroug A.E,. van Heerden J. et al. Primary hyperparathyroidism in pediatric patients. Pediartics 2005; 115 (4): 974-980.
  16. Yeh M.W., Ituarte P.H., Zhou H.C. et al. Incidence and prevalence of primary hyperparathyroidism in a racially mixed population. J. Clin. Endocrinol. Metab. 2013; 98 (3): 1122-1129.
  17. NH conference: diagnosis and management of asymptomatic primary hyperparathyroidism: consensus development conference statement. Ann. Intern. Med. 1991; 114: 593-597.
  18. Ralston S.H., Gallacher S.J., Patel U. et al. Cancerassociated hypercalcemia: morbility and mortality. Clinical experience in 126 treated patients. Ann. Intern. Med. 1990; 112: 499-504.
  19. Mundy G.R., Guise T.A. Hypercalcemia of malignancy. Am. J. Med. 1997; 103: 134-145.
  20. Roodman G.D. Mechanisms of bone metastasis. N. Engl. J. Med. 2004; 350: 1655-1664.
  21. Stewart A.F. Clinical practice. Hypercalcemia associated with cancer. N. Engl. J. Med. 2005; 352: 373-379.
  22. Horwitz M.J., Stewart A.F. Hypercalcemia associated with malignancy. In: Favus MJ, ed. Primer on the metabolic bone diseases and disorders of mineral metabolism. American Society for Bone and Mineral Research, U S A, 2006; 195-199.
  23. Stokes V.J., Nielsen M.F., Hannan F.M., Thakker R.V. Hypercalcemic disorders in children. JBMR. 2017; 32 (11): 2157-2170.
  24. Hoekman K., Tjandra Y.I., Papapoulos S.E. The role of 1,25-dihydroxyvitamin D in the maintenance of hypercalcemia in a patient with an ovarian carcinoma producing parathyroid hormonerelated protein. Cancer. 1991; 68: 642-647.
  25. Srirajaskanthan R., McStay M., Toumpanakis C. et al. Parathyroid hormone-related peptidesecreting pancreatic neuroendocrine tumours: Case series and literature review. Neuroendocrinology. 2008; 89: 48-55.
  26. Mudde A.H., van den Berg H., Boshuis P.G. et al. Ectopic production of 1,25-hydroxyvitamin D by B-cell lymphoma as a cause of hypercalcemia. Cancer. 1987; 59: 1543-1546.
  27. Seymour J.F., Gagel R.F., Hagemeister F.B. et al. Calcitriol production in hypercalcemic and normocalcemic patients with non-Hodgkin lymphoma. Ann. Intern. Med. 1994; 121: 633-640.
  28. Evans K.N., Taylor H., Zehnder D. et al. Increased expression of 25-hydroxyvitamin D-1 alpha-hydroxylase in disgerminomas: a novel form of humoral hypercalcemia of malignancy. Am. J. Pathol. 2004; 165: 807-813.
  29. Makras P., Papapoulos S.E. Medical treatment of hypercalcemia. Hormones. 2009; 8 (2): 83-95.
  30. Mahoney E.J., Monchik J.M., Donatini G., DeLellis R. Life-threatening hypercalcemia from a hepatocellular carcinoma secreting intact parathyroid hormone: localization by sestamibi single-photon emission computed tomographic imaging. Endocr. Pract. 2006; 12 (3): 302-306.
  31. DeLellis R.A., Mangray S. Heritable forms of primary hyperparathyroidism: A current perspective. Histopathology. 2018; 72: 117-132.
  32. Hendy G.N., D’Souza-Li L., Yang B. et al. Mutations of the calcium-sensing receptor (CASR) in familial hypocalciuric hypercalcemia, neonatal severe hyperparathyroidism, and autosomal dominant hypocalcemia. Hum. Mutat. 2000; 16: 281-296.
  33. Foley T.P. Jr, Harrison H.C., Arnaud C.D., Harrison H.E. Familial benign hypercalcemia. J. Pediatr. 1972; 81 (6): 1060-1067.
  34. Hannan F.M., Thakker R.V. Calcium-sensing receptor (CaSR) mutations and disorders of calcium, electrolyte and water metabolism. Best Pract. Res. Clin. Endocrinol. Metab. 2013; 27: 359-371.
  35. Nesbit M.A., Hannan F.M., Howles S.A. et al. Mutations affecting G-protein subunit alpha 11 in hypercalcemia and hypocalcemia. N. Engl. J. Med. 2013; 368: 2476-2486.
  36. Nesbit M.A., Hannan F.M., Howles S.A. et al. Mutations in AP2S1 cause familial hypocalciuric hypercalcemia type 3. Nat. Genet. 2013; 45: 93-97.
  37. Hannan F.M., Babinsky V.N., Thakker R.V. Disorders of the calcium-sensing receptor and partner proteins: Insights into the molecular basis of calcium homeostasis. J. Mol. Endocrinol. 2016; 57 (3): R127-R142.
  38. Harris S.S., D’Ercole A.J. Neonatal hyperparathyroidism: The natural course in the absence of surgical intervention. Pediatrics. 1989; 83 (1): 53-56.
  39. Pollak M.R., Chou Y.H., Marx S.J. et al. Familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism. Effects of mutant gene dosage on phenotype. J. Clin. Invest. 1994; 93: 1108-1112.
  40. Damiani D., Aguiar C.H., Bueno V.S. et al. Primary hyperparathyroidism in children: patient report and review of the literature. J. Pediatr. Endocrinol. Metab. 1998; 11 (1): 83-86.
  41. Hauache O.M. Extracellular calcium-sensing receptor: structural and functional features and association with diseases. Braz. J. Med. Biol. Res. 2001; 34: 577-584.
  42. Murphy H., Patrick J., Baez-Irizarry E. et al. Neonatal severe hyperparathyroidism caused by homozygous mutation in CASR: A rare cause of life-threatening hypercalcemia. Eur. J. Med. Gen. 2016; 59: 227-231.
  43. Kobayashi M., Tanaka H., Tsuzuki K. et al. Two novel missense mutations in calcium-sensing receptor gene associated with neonatal severe hyperparathyroidism. J. Clin. Endocrinol. Metab. 1997; 82: 2716-2719.
  44. Pollak M.R., Brown E.M., Estep H.L. et al. Autosomal dominant hypocalcaemia causwd by a Ca2+-sensing receptor gene mutation. Nat. Genet. 1994; 8: 303-307.
  45. Pearce S.H., Bai M., Quinn S.J. et al. Functional characterization of c.alcium-sensing receptor mutations expressed in human embryonic kidney cells. J. Clin. Invest. 1996; 98 (8): 1860-1866.
  46. Bai M., Pearce S.H., Kifor O. et al. In vivo and in vitro characterization of neonatal hyperparathyroidism resulting from a de novo, heterozygous mutation in the Ca2+-sensing receptor gene: Normal maternal calcium homeostasis as a cause of secondary hyperparathyroidism in familial benign hypocalciuric hypercalcemia. J. Clin. Invest. 1997; 99 (1): 88-96.
  47. Pearce S.H., Trump D., Wooding C. et al. Calcium-sensing receptor mutations in familial benign hypercalcemia and neonatal hyperparathyroidism. J. Clin. Invest. 1995; 96: 2683-2692.
  48. Ho C., Conner D.A., Pollak M.R. et al. A mouse model of human familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism. Nat. Genet. 1995; 11: 389-394.
  49. Wilhelm-Bals A., Parvex P., Magdelaine C., Girardin E. Successful use of bisphosphonate and calcimimetic in neonatal severe primary hyperparathyroidism. Pediatrics. 2012; 129: e812-e816.
  50. Glass E.J., Barr D.G. Transient neonatal hyperparathyroidism secondary to maternal pseudohypoparathyroidism. Arch. Dis. Child. 1981; 56 (7): 565-568.
  51. Kelly A., Levine M.A. Disorders of calcium, phosphate, parathyroid hormone and vitamin D. In: Kappy M.S., Allen D.B., Geffner M.E., eds. Pediatric practice: endocrinology. Charles C Thomas Publisher, LTD, Springfield, 2009; 191-256.
  52. Finne P.H., Sanderud J., Aksnes L. et al. Hypercalcemia with increased and upregulated 1,25-dihydroxyvitamin D production in a neonate with subcutaneous fat necrosis. J. Pediatr. 1988; 112 (5): 792-794.
  53. Hicks M.J., Levy M.L., Alexander J., Flaitz C.M. Subcutaneous fat necrosis of the newborn and hypercalcemia: case report and review of the literature. Pediatr. Dermatol. 1993; 10 (3): 271-276.
  54. Burden A.D., Ktafchik B.R. Subcutaneous fat necrosis of the newborn: A review of 11 cases. Pediatr. Dermatol. 1999; 16 (5): 384-387.
  55. Kifor O., Moore F.D. Jr, Delaney M. et al. A syndrome of hypocalciuric hypercalcemia caused by autoantibodies directed at the calcium-sensing receptor. J. Clin. Endocrinol. Metab. 2003; 88: 60-72.
  56. Pallais J.C., Kifor O., Chen Y.B. et al. Acquired hypocalciuric hypercalcemia due to autoantibodies against the calcium-sensing receptor. N. Engl. J. Med. 2004; 351: 362-369.
  57. Makita N., Sato J., Manaka K. et al. An acquired hypocalciuric hypercalcemia autoantibody induces allosteric transition among active human Ca-sensing receptor conformations. Proc. Natl. Acad. Sci. U S A. 2007; 104: 5443-5448.
  58. Riccardi D., Brown E.M. Physiology and pathophysiology of the calcium-sensing receptor in the kidney. Am. J. Physiol. Renal Physiol. 2010; 298 (3): F485-F499.
  59. Bosch X. Hypercalcemia due to endogenous overproduction of active vitamin D in identical twins with cat-scratch disease. JAMA. 1998; 279 (7): 532-534.
  60. Monkawa T., Yoshida T., Hayashi M., Saruta T. Identification of 25-hydroxyvitamin D3 1alpha-hydroxylase gene expression in macrophages. Kidney Int. 2000; 58 (2): 559-568.
  61. Stewart A.F., Adler M., Beyers C.M. et al. Calcium homeostasis in immobilization: an example of resorptive hypercalciuria. N. Engl. J. Med. 1982; 306 (19): 1136-1140.
  62. Orwoll E.S. The milk-alkali syndrome: current concepts. Ann. Intern. Med. 1982; 97: 242-248.
  63. Mallette L.E., Eichhorn E. Effects of lithium carbonate on human calcium metabolism. Arch. Intern. Med. 1986; 146: 770-776.
  64. Bilezikian J.P., Potts J.T. Jr, Fulelhan G. et al. Summary statement from a workshop on asymptomatic primary hyperparathyroidism: a perspective for the 21st century. J. Clin. Endocrinol. Metab. 2002; 87: 5353-5362.
  65. Bilezikian J.P., Khan A.A., Potts J.T. Jr. Third international workshop on the management of asymptomatic primary hyperparathyroidism. Guidelines for management of asymptomatic primary hyperparathyroidism: summary statement from the third international workshop. J. Clin. Endocrinol. Metab. 2009; 94: 335-339.
  66. Bilezikian J.P., Silverberg S.J. Primary hyperparathyroidism. In: Favus M.J, ed. Primer on the metabolic bone diseases and disorders of mineral metabolism. American Society for Bone and Mineral Research, U S A, 2006; 181-185.
  67. Farford B., Presutti R.J., Moraghan T.J. Nonsurgical management of primary hyperparathyroidism. Mayo Clin. Proc. 2007; 82: 351-355.
  68. Hamdy N.A., Gray R.E., McCloskey E. et al. Clodronate in the medical management of hyperparathyroidism. Bone. 1987; 8 (Suppl 1): S69-S77.
  69. Rossini M., Gatti D., Isaia G. et al. Effects of oral alendronate in elderly patients with osteoporosis and mild primary hyperparathyroidism. J. Bone Miner. Res. 2001; 16: 113-119.
  70. Parker C.R., Blackwell P.J., Fairbairn K.J., Hosking D.J. Alendronate in the treatment of primary hyperparathyroid-related osteoporosis: a 2-year study. J. Clin. Endocrinol. Metab. 2002; 87: 4482-4489.
  71. Chow C.C., Chen W.B., Li J.K. et al. Oral alendronate increases bone mineral density in post-menopausal women with primary hyperparathyroidism. J. Clin. Endocrinol. Metab. 2003; 88: 581-587.
  72. Khan A.A., Bilezikian J.P., Kung A.W. et al. Alendronate in primary hyperparathyroidism: A double-blind, randomized, placebo-controlled trial. J. Clin. Endocrinol. Metab. 2004; 89: 3319-332.
  73. Orr-Walker B.J., Evans M.C., Clearwater J.M. et al. Effects of hormone replacement therapy on bone mineral density in postmenopausal women with primary hyperparathyroidism: Four-year follow-up and comparison with healthy postmenopausal women. Arch. Intern. Med. 2000; 160: 2161-2166.
  74. Rubin M.R., Lee K.H., McMahon D.J., Silverberg S.J. Raloxifene lowers serum calcium and markers of bone turnover in postmenopausal women with primary hyperparathyroidism. J. Clin. Endocrinol. Metab. 2003; 88: 1174-1178.
  75. Nemeth E.F., Goodman W.G. Calcimimetic and calcilitic drugs: Feats, flops, and futures. Calcif. Tissue Int. 2016; 98: 341-358.
  76. Marx S.J. Calcimimetic use in familial hypocalciuric hypercalcemia - A perspective in endocrinology. J. Clin. Endocrinol. Metab. 2017; Copyright 2017, 5 pages. Doi: 10.1210/jc.2017-01606.
  77. Nagano N., Nemeth E.F. Functional proteins involved in regulation of intracellular Ca(2+) for drug development: The extracellular calcium receptor and an innovative medical approach to control secondary hyperparathyroidism by calcimimetics. J. Pharmacol. Sci. 2005; 97 (3): 355-360.
  78. Волгина Г.В., Балкарова О.В., Штандель В.С., Ловчинский Е.В. Кальцимиметики - новый этап в лечении гиперпаратиреоза. Лечащий врач. 2011; 3: 79-82.
  79. Block G.A., Martin K.J., de Francisco A.L. et al. Cinacalcet for secondary hyperparathyroidism in patients receiving hemodialysis. N. Engl. J. Med. 2004; 350 (15): 1516-1525.
  80. Platt C., Inward C., McGraw M. et al. Middle-term use of Cinacalcet in paediatric dialysis pa-tients. Pediatr. Nephrol. 2010; 25 (1): 143-148.
  81. Стецюк Е.А., Синюхин В.Н. Новая парадигма в лечении вторичного гиперпаратиреоидизма. Гемодиализ для специалистов (Электронный журнал). URL: www.hd13.ru/article/1280 (дата публикации 21.01.2009).
  82. Peacock M., Bilezikian J.P., Klassen P.S. et al. Cinacalcet hydrochloride maintains long-term normocalcemia in patients with primary hyperparathyroidism. J. Clin. Endocrinol. Metab. 2005; 90: 135-141.
  83. Shoback D.M., Bilezikian J.P., Turner S.A. et al. The calcimimetic cinacalcet normalizes serum calcium in subjects with primary hyperparathyroidism. J. Clin. Endocrinol. Metab. 2003; 88: 5644-5649.
  84. Nemeth E.F., Heaton W.H., Miller M. et al. Pharmacodynamics of the type II calcimimetic compound cinacalcet HCl. J. Pharmacol. Exp. Ther. 2004; 308: 627-635.
  85. Peacock M., Scumpia S., Bolognese M.A. et al. Long-term control of primary hyperparathyroidism with cinacalcet HL (AMG 073). J. Bone Miner. Res. 2003; 18 (Suppl): 17.
  86. Kruse A.E., Eisenberger U., Frey F.J., Mohaupt M.G. The calcimimetic cinacalcet normalizes serum calcium in renal transplant patients with persistent hyperparathyroidism. Nephrol. Dial. Transplant. 2005; 20: 1311-1314.
  87. Sloand J.A., Shelly M.A. Normalization of lithium-induced hypercalcemia and hyperparathyroidism with cinacalcet hydrochloride. Am. J. Kidney Dis. 2006; 48 (5): 832-837.
  88. Vahe C., Benomar K., Espiard S. et al. Diseases associated with calcium-sensing receptor. Orph. J. Rare Dis. 2017; 12: 19. doi: 10.1186/s13023-017-0570-z.
  89. Makras P., Papapoulos S.E. Medical treatment of hypercalcemia. Hormones. 2009; 8 (2): 83-95.
  90. Mayr B., Schnabel D., Dörr H-G., Schöfl C. Gain and loss of function mutations of the calcium-sensing receptor and associated proteins: Current treatment concepts. Eur. J. Endocrinol. 2016; 174 (5): R189-R208.
  91. Howles S.A., Hannan F.M., Babinsky V.N. et al. Cinacalcet for symptomatic hypercalcemia caused by AP2S1 mutations. N. Engl. J. Med. 2016; 374: 1396-1398.
  92. Ziegler R. Hypercalcemic crisis. J. Am. Soc. Nephrol. 2001; 12 (Suppl 17): S3-S9.
  93. Hamdy N.A., Papapoulos S.E. Management of malignancy-associated hypercalcaemia. Clin. Rev. Bone Mineral. Metab. 2002; 1: 65-76.
  94. Papapoulos S.E. Bisphosphonates: how do they work? Best Pract. Res. Clin. Endocrinol. Metab. 2008; 22: 831-847.
  95. Very A., D’Andrea M.R., Bonginelli P., Gasparini G. Clinical usefulness of bisphosphonates in oncology: Treatment of bone metastases, antitumoral activity and effect on bone resorption markers. Int. J. Biol. Markers. 2007; 22: 24-33.
  96. Attard T.M., Dhawan A., Kaufman S.S. et al. Use of disodium pamidronate in children with hypercalcemia awaiting liver transplantation. Pediatr. Transplant. 1998; 2 (2): 157-159.
  97. Shoemaker L.R. Expanding role of bisphosphonate therapy in children. J. Pediatr. 1999; 134 (3): 264-267.
  98. Srivastava T., Alon U.S. Bisphosphonares: from grandparents to grandchildren. Clin. Pediatr (Phila). 1999; 38 (12): 687-702.
  99. Vahtsevanos K., Kyrgidis A., Verrou E. et al. Longitudinal cohort study of risk factors in cancer patients of bisphosphonate-related osteonecrosis of the jaw. J. Clin. Oncol. 2009; 27 (32): 5356-5362.
  100. Gannon A.W., Monk H.M., Levine M.A. Cinacalcet monotherapy in neonatal severe hyperparathyroidism: A case study and review. J. Clin. Endocrinol. Metab. 2014; 99 (1): 7-11.
  101. Fitzpatrick L.A., Bilezikian J.P. Acute primary hyperparathyroidism. Am. J. Med. 1987; 82: 275-282.
  102. Roszko K.L., Bi R.D., Mannstadt M. Autosomal dominant hypocalcemia (Hypoparathyroidism) types 1 and 2. Front. Physiol. 2016; 7: 458.
  103. Finegold D.N., Armitage M.M., Galiani M. et al. Preliminary localization of a gene for autosomal dominant hypoparathyroidism to chromosome 3q13. Pediatr. Res. 1994; 36 (3): 414-417.
  104. Egbuna O.I., Brown E.M. Hypercalcemic and hypocalcemic conditions due to calcium-sensing receptor mutations. Best Pract. Res. Clin. Rheumatol. 2008; 22 (1): 129-148.
  105. Hirai H., Nakajima S., Miyauchi A. et al. A novel activating mutation (C129S) in the calcium-sensing receptor gene in a Japanese family with autosomal dominant hypocalcemia. J. Hum. Genet. 2001; 46: 41-44.
  106. Mannstadt M., Harris M., Bravenboer B. et al. Germine mutations affecting Galpha11 in hypoparathyroidism. N. Engl. J. Med. 2013; 368: 2532-2534.
  107. Nesbit M.A., Hannan F.M., Howles S.A. et al. Mutations affecting G-protein subunit alpha 11 in hypercalcemia and hypocalcemia. N. Engl. J. Med. 2013; 368: 2476-2486.
  108. Li D., Opas E.E., Tuluc F. et al. Autosomal dominant hypoparathyroidism caused by germline mutation in GNA11: Phenotypic and molecular characterization. J. Clin. Endocrinol. Metab. 2014; 99: E1774-E1783.
  109. Piret S.E., Gorvin C.M., Pagnamenta A.T. et al. Identification of a G-protein subunit-α11 gain-of-function mutation, Val340Met, in a family with autosomal dominant hypocalcemia type 2 (ADH2). J. Bone Miner. Res. 2016; 31: 1207-1214.
  110. Tenhola S., Voutilainen R., Reyes M. et al. Impaired growth and intracranial calcification in autosomal dominant hypocalcemia caused by a GNA11 mutation. Eur. J. Endocrinol. 2016; 175: 211-218.
  111. Sato K., Hasegawa Y., Nakae J. et al. Hydrochlorothiazide effectively reduces urinary calcium excretion in two Japanese patients with gain-of-function mutations of the calcium-sensing recep-tor gene. J. Clin. Endocrinol. Metab. 2002; 87 (7): 3068-3073.
  112. Mayr B., Glaudo M., Schöfl C. Activating calcium-sensing receptor mutations: Prospects for future treatment with calcilytics. TEM. 2016; 1154: Pages 10. doi: 10.1016/j.tem.2016.05.005.
  113. Mittelman S.D., Hendy G.N., Fefferman R.A. et al. A hypocalcemic child with a novel activating mutation of the calcium-sensing receptor gene: Successful treatment with recombinant human parathyroid hormone. J. Clin. Endocrinol. Metab. 2006; 91 (7): 2474-2479.
  114. Зверев Я.Ф., Брюханов В.М., Лампатов В.В. Заболевания и синдромы, обусловленные генетическими нарушениями почечного транспорта электролитов. Нефрология. 2004; 8 (4): 11-24.
  115. Кисина А.А., Рысс Е.С., Яковенко А.А. и др. Синдромы Барттера и Гительмана в практике "взрослого" нефролога. Нефрология. 2006. 10 (1): 93-98.
  116. Каюков И.Г., Смирнов А.В., Шабунин М.А. и др. Редкие заболевания в практике "взрослого" нефролога: состояния, ассоциированные с гипокалиемией. Сообщение III. Синдромы Барттера и Гительмана. Нефрология. 2009; 13 (4): 86-102.
  117. Левиашвили Ж.Г., Савенкова Н.Д. Барттер синдром у детей. Нефрология. 2012; 16 (3): 25-33.
  118. Laghmani K., Beck B.B., Yang S.S. et al. Polyhydramnios, transient Bartter’s syndrome, and MAGED2 mutations. N. Engl. J. Med. 2016; 374: 1853-1863.
  119. Vargas-Poussou R., Huang C., Hulin P. et al. Functional characterization of a calcium-sensing receptor mutation in severe autosomal dominant hypocalcemia with a Bartter-like syndrome. J. Am. Soc. Nephrol. 2002; 13 (9): 2259-2266.
  120. Watanabe S , Fukumoto S., Chang H et al. Association between activating mutations of calcium-sensing receptor and Bartter’s syndrome. Lancet. 2002; 360 (9334): 692-694.
  121. Zhao X M , Hauache O , Goldsmith P K et al. A missense mutation in the seventh transmembrane domain constitutively activates the human Ca2+ receptor. FEBS Lett. 1999; 448 (1): 180-184.
  122. Koulouridis E., Koulouridis I. Molecular pathophysiology of Bartter’s and Gitelman’s syndromes. World J. Pediatr. 2015; 11 (2): 113-125.
  123. Ahonen P., Myllarniemi S., Sipila I., Perheentupa J. Clinical variation of autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) in a series of 68 patients. N. Engl. J. Med. 1990; 322 (26): 1829-1836.
  124. Agus Z.S. Mechanisms and causes of hypomagnesemia. Curr. Opin. Nephrol. Hypertens. 2016; 25 (4): 301-307.
  125. Brasier A.R., Nussbaum S.R. Hungry bone syndrome: clinical and biochemical predictors of its occurrence after parathyroid surgery. Am. J. Med. 1988; 84: 654-660.
  126. Shah G.M., Kirschenbaum M.A. Renal magnesium wasting associated with therapeutic agents. Miner. Electrolyte Metab. 1991; 17: 58-64.
  127. Konrad M., Weber S. Recent advances in molecular genetics of hereditary magnesium-losing disorders. J. Am. Soc. Nephrol. 2003; 14 (1): 249-260.
  128. Konrad M., Schlingmann K.P., Gudermann T. Insights into molecular nature of magnesium homeostasis. Am. J. Physiol. Renal Physiol. 2004; 286: F599-F605.
  129. Foster J.E., Harpur E.S., Garland H.O. An investigation of the acute effect of gentamicin on the renal handling of electrolytes in the rat. J. Pharmacol. Exp. Ther 1992; 261: 38-43.
  130. Ettinger L.J., Gaynon P.S., Kralio M.D. et al. A phase II study of carboplatin in children with recurrent or progressive solid tumors. Cancer. 1994; 73: 1297-1301.
  131. Nijenhuis T., Hoenderop J.G., Bindels R.J. Down regulation of Ca(2+) and Mg(2+) transport proteins in the kidney explains tacrolimus (FK506)-induced hypercalciuria and hypomagnesemia. J Am Soc Nephrol. 2004; 15: 549-557.
  132. Epstein M , McGrath S , Low F. Proton-pump inhibitors and hypomagnesemic hypoparathyroidism. N. Engl. J. Med. 2006; 355: 1834-1836.
  133. de Baaij J.H., Hoenderop J.G., Bindels R.J. Magnesium in man: Implications for health and dis-ease. Physiol. Rev. 2015; 95: 1-46.
  134. Assadi F. Hypomagnesemia. An evidence-based approach to clinical cases. IJKD. 2010; 4: 13-19.
  135. Спасов А А. Магний в медицинской практике. Отрок, Волгоград, 2000; 272 c.
  136. Vallee B., Wacker W.E., Ulmer D.D. The magnesium deficiency tetany syndrome in man. N. Engl. J. Med. 1960; 262: 155-161.
  137. Dyckner T. Serum magnesium in acute myocardial infarction. Relation to arrhythmias. Acta Med Scand 1980; 207: 59-66.
  138. Augus Z.S. Hypomagnesemia. J. Am. Soc. Nephrol. 1999; 10: 1616-1622.
  139. Paunier L., Radde I.C., Kooh S.W. et al. Primary hypomagnesemia with secondary hypocalcemia in an infant. Pediatrics. 1968; 41: 385-402.
  140. Schlingmann K.P., Weber S., Peters M. et al. Hypomagnesemia with secondary hypocalcemia is caused by mutations in TRPM6, a new member of the TRPM gene family. Nat. Genet. 2002; 31 (2): 166-170.
  141. Walder R.Y., Landau D., Meyer P. et al. Mutation of TRPM6 causes familial hypomagnesemia with secondary hypocalcemia. Nat. Genet. 2002; 31 (2): 171-174.
  142. Anast C.S., Mohs J.M., Kaplan S.L., Burns T.W. Evidence for parathyroid failure in magnesium deficiency. Science. 1972; 177: 606-608.
  143. Milla P.J., Aggett P.J., Wolff O.H., Harries J.T. Studies in primary hypomagnesemia: Evidence for defective carrier-mediated small intestinal transport of magnesium. Gut. 1979; 20: 1028-1033.
  144. Walder R.Y., Shalev H., Brennan T.M. et al. Familial hypomagnesemia maps to chromosome 9q, not to the X chromosome: Genetic linkage mapping and analysis of a balanced translocation breakpoint. Hum. Mol. Genet. 1997; 6: 1491-1497.
  145. Walder R Y , Borochowitz Z , Shalev H et al. Hypomagnesemia with secondary hypocalcemia (HSH): Narrowing the disease region on chromosome 9. Am. J. Hum. Genet [Abstract]. 1999; 65: A451.
  146. Komiya Y., Runnels L.W. TRPM channels and magnesium in early embryonic development. Int. J. Dev. Biol. 2015; 59 (0): 281-288.
  147. Chubanov V., Gudermann T., Schlingmann K.P. Essential role for TRPM6 in epithelial magnesium transport and body magnesium homeostasis. Pflugers Arch. 2005; 451 (1): 228-234.
  148. Schlingmann K.P., Waldegger S., Konrad M. et al. TRPM6 and TRPM7 - Gatekeepers of hu-man magnesium metabolism. Biochim. Biophys. Acta. 2007; 1772 (8): 813-821.
  149. Shalev H., Phillip M., Galil A. et al. Clinical presentation and outcome in primary familial hypomagnesaemia. Arch. Dis. Child. 1998; 78: 127-130.
  150. Cole D.E., Kooh S.W., Vieth R. Primary infantile hypomagnesemia: Outcome after 21 years and treatment with continuous nocturnal nasogastric magnesium infusion. Eur. J. Pediatr. 2000; 159: 38-43.
  151. Michelis M.F., Drash A.L., Linarelli L.G. et al. Decreased bicarbonate threshold and renal magnesium wasting in a sibship with distal renal tubular acidosis (Evaluation of the pathophysiological role of parathyroid hormone). Metabolism. 1972; 21: 905-920
  152. Nicholson J.C., Jones C.L., Powell H.R. et al. Familial hypomagnesaemia-hypercalciuria leading to end-stage renal failure. Pediatr. Nephrol. 1995; 9: 74-76.
  153. Praga M., Vara J., Gonzalez-Parra E. et al. Familial hypomagnesemia with hypercalciuria and nephrocalcinosis. Kidney Int. 1995; 47: 1419-1425.
  154. Btnigno V., Canonica C.S., Bettinelli A. et al. Hypomagnesemia-hypercalciuria-nephrolithiasis: A report of nine cases and a review. Nephrol Dial Transplant. 2000; 15: 605-610.
  155. Kari J.A., Farouq M., Alshaya H.O. Familial hypomagnesemia with hypercalciuria and nephrocalcinosis. Pediatr. Nephrol. 2003; 18: 506-510.
  156. Weber S., Schneider L., Peters M. et al. Novel paracellin-1 mutations in 25 families with familial hypomagnesemia with hypercalciuria and nephrocalcinosis. J. Am. Soc. Nephrol. 2001; 12: 1872-1881.
  157. Rodriguez-soriano J., Vallo A., Garcia-Fuentes M. Hypomagnesaemia of hereditary renal origin. Pediatr. Nephrol. 1987; 1: 465-472.
  158. Simon D.B., Lu Y., Choate K.A. et al. Paracellin-1, a renal tight junction protein required for paracellular Mg2+ resorption. Science. 1999; 285: 103-106.
  159. Konrad M., Schaller A., Seelow D. et al. Mutations in the tight-junction gene claudin 19 (CLDN 19) are associated with renal magnesium wasting, renal failure, and severe ocular in-volvement. Am. J. Hum. Genet. 2006; 79: 949-957.
  160. Hou J., Renigunta A., Konrad M. et al. Claudin-16 and claudin-19 interact and form a cation-selective tight junction complex. J. Clin. Invest. 2008; 118: 619-628.
  161. Blanchard A., Jeunemaitre X., Coudol P. et al. Paracellin-1 is critical for magnesium and calcium reabsorption in the human thick ascending limb of Henle. Kidney Int. 2001; 59: 2206-2215.
  162. Kuwertz-Broking E., Frund S., Bulla M. et al. Familial hypomagnesemia-hypercalciuria in 2 siblings. Clin. Nephrol. 2001; 56: 155-161.
  163. Geven W.B., Monnens L.A., Willems H.L. et al. Renal magnesium wasting in two families with autosomal dominant inheritance. Kidney Int. 1987; 31: 1140-1144.
  164. Meij I., Illy K.E., Monnens L. Severe hypomagnesemia in a neonate with isolated renal magnesium loss. Nephron. 2000; 84: 198.
  165. Meij I.C., Saar K., van den Heuvel L.P. et al. Hereditary isolated renal magnesium loss maps to chromosome 11q23. Am. J. Hum. Genet. 1999; 64: 180-188.
  166. Meij I.C., Koenderink J.B., van Bokhoven H. et al. Dominant isolated renal magnesium loss is caused by misrouting of the Na(+),K(+)-ATPase gamma-subunit. Nat. Genet. 2000; 26: 265-266.
  167. Meij I.C., Koenderink J.B., De Jong J.C. et al. Dominant isolated renal magnesium loss is caused by misrouting of the Na+,K+-ATPase gamma-subunit. Ann. N. Y. Acad. Sci. 2003; 986: 437-443.
  168. Pu H.X., Scanzano R., Blostein R. Distinct regulatory effects of the Na,K-ATPase gamma subunit. J. Biol. Chem. 2002; 277: 20270-20276.
  169. Glaudemans B., Knoers N.V., Hoenderop J.G., Bindels R.J. New molecular players facilitating Mg(2+) reabsorption in the distal convoluted tubules. Kidney Int. 2010; 77 (1): 17-22.
  170. Gitelman H.J., Graham J.B., Welt L.G. A new familial disorder characterized by hypokalemia and hypomagnesemia. Trans. Assoc. Am. Physicians. 1966; 79: 221-235.
  171. Knoers N.V., Levtchenko E.N. Gitelman syndrome. Orphanet J. Rare Dis. 2008; 3: 22. Pub-lished online 2008 July 30. URL: 10. 1186/1750-1172-3-22.
  172. Fogila P.E.G., Bettinelli A., Tosetto C. et al. Cardiac work up in primary hypokalemia-hypomagnesemia (Gitelman syndrome). Nephrol. Dial. Transplant. 2004; 19: 1398-1402.
  173. Riveira-Munoz E., Chang Q., Godefroid N. et al. Transcriptional and functional analyses of SLC12A3 mutations: new clues for the pathogenesis of Gitelman syndrome. J. Am. Soc. Nephrol. 2007; 18 (4): 1271-1283.
  174. Scognamiglio R., Negut C., Calò L.A. Aborted sudden cardiac death in two patients with Bart-ter’s/Gitelman’s syndromes. Clin. Nephrol. 2007; 67: 193-197.
  175. Fava C., Montagnana M., Rosberg L. et al. Subjects heterozygous for genetic loss of function of the thiazide-sensitive cotransporter have reduced blood pressure. Hum. Mol. Genet. 2008; 17: 413-418.
  176. Ji W., Foo J.N., O’Roak B.J. et al. Rare independent mutations in renal salt handling genes contribute to blood pressure variation. Nat. Genet. 2008; 40: 592-599.
  177. Брюханов В.М., Зверев Я.Ф. Побочные эффекты современных диуретиков. Метаболические и токсико-аллергические аспекты. ЦЭРИС, Новосибирск, 2003; 224 c.
  178. Knoers N.V.A.M., Starremans P.G.J.F., Monnens L.A.H. Hypokalemic tubular disorders. In: Davidson AM, Cameron JS, Grunfeld J-P, Ponticelli C, Ritz E, Winearis CG, van Ypersele C, eds. Textbook in Clinical Nephrology. Third. Oxford University Press, Oxford, 2005; 995-1004.
  179. Брюханов В.М., Зверев Я.Ф., Лампатов В.В. Альдостерон. Физиология, патофизиология, клиническое применение антагонистов. Феникс, Ростов-на-Дону, 2007; 396 с.
  180. Graziani G., Fedeli C., Moroni L. et al. Gitelman syndrome: pathophysiological and clinical aspects. QJM. 2010; 103 (10): 741-748.
  181. Nijenhuis T., Vallon V., van der Kemp A.W. et al. Enhanced passive Ca2+ reabsorption and re-duced Mg2+ channel abundance explains thiazide-induced hypocalciuria and hypomagnesemia. J. Clin. Invest. 2005; 115: 1651-1658.
  182. Chhokar V.S., Sun Y., Bhattacharya S.K. et al. Loss of bone minerals and strength in rats with aldosteronism. Am. J. Physiol. Heart Circ. Physiol. 2004; 287: H2023-H2026.
  183. Sontia B., Montezano A.C., Paravicini T. et al. Downregulation of renal TRPM7 and increased inflammation and fibrosis in aldosterone-infused mice: effects of magnesium. Hypertension. 2008; 51: 915-921.
  184. Chhokar V.S., Sun Y., Bhattacharya S.K. et al. Hyperparathyroidism and the calcium paradox of aldosteronism. Circulation. 2005; 111: 871-878.
  185. Horton R., Biglieri E.G. Effect of aldosterone on the metabolism of magnesium. J. Clin. Endocrinol. Metab. 1962; 22: 1187-1192.
  186. Ellison D.H. Divalent cation transport by the distal nephron: insights from Bartter’s and Gitelman’s syndromes. Am. J. Physiol. Renal Physiol. 2000; 279 (4): F616-F625.
  187. Colussi G., Rombola G., De Ferrari M.E. et al. Correction of hypokalemia with antialdosterone therapy in Gitelman’s syndrome. Am. J. Nephrol. 1994; 14: 127-135.
  188. Dimke H., Hoenderpo J.G., Bindels R.J. Hereditary tubular transport disorders: implications for renal handling of Ca2+ and Mg2+. Clin. Sci. 2010; 118: 1-18.
  189. Friedman P.A. Codependence of renal calcium and sodium transport. Annu. Rev. Physiol. 1998; 60: 179-197.
  190. Loffing J., Vallon V., Loffing-Cueni D. et al. Altered renal distal tubule structure and renal Na+ and Ca2+ handling in a mouse model for Gitelman’s syndrome. J. Am. Soc. Nephrol. 2004; 15: 2276-2288.
  191. Loffing J., Loffing-Cueni D., Hegyi I. et al. Thiazide treatment of rats provokes apoptosis in distal tubule cells. Kidney Int. 1996; 50 (4): 1180-1190.
  192. Nijenhuis T., Hoenderop J.G.J., Loffing J. et al. Thiazide-induced hypocalciuria is accompanied by a decreased expression of Ca2+ transport proteins in kidney. Kidney Int. 2003; 64: 555-564.
  193. Seyberth H.W., Weber S., Kömhoff B. Bartter's and Gitelman's syndrome. Curr. Opin. Pediatr. 2017; 29 (2): 179-186.
  194. Augus Z.S. Hypomagnesemia. J. Am. Soc. Nephrol. 1999; 10: 1616-1622.
  195. Shaer A. Inherited primary renal tubular hypokalemic alkalosis: a review of Gitelman and Bart-ter syndrome. Am. J. Med. Sci. 2001; 322: 316-322.
  196. Cruz D.N., Shaer A.J., Bia M.J. et al. Gitelman’s syndrome revisited: An evaluation of symptoms and health-related quality of life. Kidney Int. 2001; 59: 710-717.

Другие статьи по теме


Навигация по статьям
Разделы журнала
Наиболее читаемые статьи
Журнал "Нефрология и диализ"