Российское диализное общество

Просмотр статьи

<< Вернуться к списку статей журнала

Том 21 №4 2019 год - Нефрология и диализ

Тромботическая микроангиопатия после трансплантации почки: что скрывается за морфологической картиной? Обзор литературы


Прокопенко Е.И.

DOI: 10.28996/2618-9801-2019-4-404-418

Аннотация: Тромботическая микроангиопатия (ТМА) ренального трансплантата - это клинико-морфологический феномен, характеризующийся специфическим повреждением гломерулярных капилляров и артерий среднего и малого калибра в виде отека эндотелиальных клеток, расширения субэндотелиального пространства с резким сужением просвета сосудов, в ряде случаев - с наличием тромбов. При хроническом течении ТМА формируется морфологическая картина "луковичной шелухи". ТМА трансплантированной почки развивается de novo или как возвратная патология, может быть системной или локализованной в трансплантате, но во всех случаях оказывает неблагоприятное влияние на выживаемость реципиентов и трансплантатов. Для подтверждения ТМА ренального трансплантата необходимо морфологическое исследование, однако нефробиопсия не всегда помогает установить этиологию ТМА. Наиболее частыми причинами de novo ТМА являются токсичность ингибиторов кальцинейрина и антитело-опосредованное отторжение трансплантата, а возвратной ТМА - рецидив атипичного гемолитико-уремического синдрома (аГУС). Мутации генов, ответственных за синтез белков-регуляторов комплемента, играют важную роль не только при рецидиве аГУС после трансплантации почки (ТП), но и в немалой части случаев de novo ТМА. Для лечения de novo ТМА применяется устранение причины ее развития, а также проведение плазмообмена с введением внутривенного иммуноглобулина. В отдельных случаях de novo ТМА с чрезмерной активацией системы комплемента, резистентных к стандартной терапии, целесообразно применение комплемент-блокирующей терапии. При возвратном аГУС после ТП у всех больных препаратом первой линии является экулизумаб. Если у пациента установлен диагноз аГУС и выявлен с помощью генетического тестирования и оценки особенностей течения заболевания высокий риск рецидива после ТП, необходима профилактика возврата заболевания - использование "режима защиты эндотелия" и экулизумаба. В целом проблема ТМА после ТП требует дальнейшего изучения с разработкой надежных предикторов ее развития в трансплантате и новых подходов к профилактике и лечению.

Весь текст

Ключевые слова: трансплантация почки, тромботическая микроангиопатия, токсичность ингибиторов кальцинейрина, антитело-опосредованное отторжение, активация комплемента, атипичный гемолитико-уремический синдром, плазмообмен, экулизумаб, kidney transplantation, thrombotic microangiopathy, CNI-toxicity, antibody-mediated rejection, complement activation, atypical HUS, plasma exchange, eculizumab

Список литературы:
  1. Abbas F., Kossi M.E., Kim J.J. et al. Thrombotic microangiopathy after renal transplantation: Current insights in de novo and recurrent disease. World J. Transplant. 2018; 8(5): 122-141. DOI: 10.5500/wjt.v8.i5.122
  2. Garg N., Rennke H.G., Pavlakis M., Zandi-Nejad K. De novo thrombotic microangiopathy after kidney transplantation. Transplant. Rev. (Orlando) 2018; 32: 58-68. DOI: 10.1016/j.trre.2017.10.001
  3. Reynolds J.C., Agodoa L.Y., Yuan C.M., Abbott K.C. Thrombotic microangiopathy after renal transplantation in the United States. Am. J. Kidney Dis. 2003; 42: 1058-1068. DOI: 10.1016/j.ajkd.2003.07.008
  4. Caires R.A., Marques I.D.B., Repizo L.P. et al. De novo thrombotic microangiopathy after kidney transplantation: clinical features, treatment, and long-term patient and graft survival. Transplant. Proc. 2012; 44: 2388-2390. DOI: 10.1016/j.transproceed.2012.07.039
  5. Nadasdy T. Thrombotic microangiopathy in renal allografts: the diagnostic challenge. Curr. Opin. Organ Transplant. 2014; 19: 283-292. DOI: 10.1097/MOT.0000000000000074
  6. Broecker V., Bardsley V., Torpey N. et al. Clinical-pathological correlations in post-transplant thrombotic microangiopathy. Histopathology. 2019 Mar 9. DOI: 10.1111/his.13855
  7. Devresse A., de Meyer M., Aydin S. et al. De novo atypical haemolytic uremic syndrome after kidney transplantation. Case Rep. Nephrol. 2018; 2018:1727986. DOI: 10.1155/2018/1727986
  8. Asif A., Nayer A., Haas C.S. Atypical hemolytic uremic syndrome in the setting of complement-amplifying conditions: case reports and a review of the evidence for treatment with eculizumab. J. Nephrol. 2017; 30: 347-362. DOI: 10.1007/s40620-016-0357-7
  9. Krid S., Roumenina L.T., Beury D. et al. Renal transplantation under prophylactic eculizumab in atypical hemolytic uremic syndrome with CFH/CFHR1 hybrid protein. Am. J. Transplant. 2012; 12(7): 1938-1944. DOI: 10.1111/j.1600-6143.2012.04051.x
  10. Menne J., Delmas Y., Fakhouri F. et al. Outcomes in patients with atypical hemolytic uremic syndrome treated with eculizumab in a long-term observational study. BMC Nephrol. 2019; 20(1):125. DOI: 10.1186/s12882-019-1314-1
  11. Riddell A., Goodship T., Bingham C. Prevention of recurrence of atypical hemolytic uremic syndrome post renal transplant with the use of higher-dose eculizumab. Clin. Nephrol. 2016; 86(10): 200-202. DOI: 10.5414/CN108808
  12. Hasegawa D., Saito A., Nino N. et al. Successful treatment of transplantation-associated atypical hemolytic uremic syndrome with eculizumab. J. Pediatr. Hematol. Oncol. 2018; 40(1): e41-e44. DOI: 10.1097/MPH.0000000000000862
  13. Campistol J.M., Arias M., Ariceta G. et al. An update for atypical haemolytic uraemic syndrome: diagnosis and treatment. A consensus document. Nefrologia. 2015; 35(5): 421-47. DOI: 10.1016/j.nefro.2015.07.005
  14. De Keyzer K., Van Laecke S., Peeters P., Vanholder R. De novo thrombotic microangiopathy induced by cytomegalovirus infection leading to renal allograft loss. Am. J. Nephrol. 2010; 32(5): 491-496. DOI: 10.1159/000321328
  15. Langer R.M., Van Buren C.T., Katz S.M., Kahan B.D. De novo hemolytic uremic syndrome after kidney transplantation in patients treated with cyclosporine-sirolimus combination. Transplantation. 2002; 73: 756-760. DOI: 10.1097/00007890-200203150-000
  16. Schwimmer J., Nadasdy T.A., Spitalnik P.F. et al. De novo thrombotic microangiopathy in renal transplant recipients: a comparison of hemolytic uremic syndrome with localized renal thrombotic microangiopathy. Am. J. Kidney Dis. 2003; 41: 471-479. DOI: 10.1053/ajkd.2003.50058
  17. Zarifian A., Meleg-Smith S., O’donovan R. et al. Cyclosporine-associated thrombotic microangiopathy in renal allografts. Kidney Int. 1999; 55: 2457-2466. DOI: 10.1046/j.1523-1755.1999.00492.x
  18. Satoskar A.A., Pelletier R., Adams P. et al. De novo thrombotic microangiopathy in renal allograft biopsies-role of antibody-mediated rejection. Am. J. Transplant. 2010; 10: 1804-1811. DOI: 10.1111/j.1600-6143.2010.03178.x
  19. Karthikeyan V., Parasuraman R., Shah V. Outcome of plasma exchange therapy in thrombotic microangiopathy after renal transplantation. Am. J. Transplant. 2003; 3: 1289-1294. DOI: 10.1046/j.1600-6143.2003.00222.x
  20. Zuber J., Le Quintrec M., Morris H. et al. Targeted strategies in the prevention and management of atypical HUS recurrence after kidney transplantation. Transplant. Rev. (Orlando). 2013; 27(4):117-125. DOI: 10.1016/j.trre.2013.07.003
  21. Blosser C.D., Bloom RD. Recurrent glomerular disease after kidney transplantation. Curr. Opin. Nephrol. Hypertens. 2017; 26(6): 501-508. DOI: 10.1097/MNH.0000000000000358
  22. Tsuchimoto A., Matsukuma Y., Ueki K. et al. Thrombotic microangiopathy associated with anticardiolipin antibody in a kidney transplant recipient with polycythemia. CEN Case Reports. 2019; 8:1-7. DOI: 10.1007/s13730-018-0354-x
  23. Vilayur E., de Malmanche J., Trevillian P., Ferreira D. Metastatic lung adenocarcinoma- associated thrombotic microangiopathy in a renal transplant recipient. BMJ Case Rep. 2018; 11(1): pii: e226707. DOI: 10.1136/bcr-2018-226707
  24. Sahin G., Akay O.M., Bal C. et al. The effect of calcineurin inhibitors on endothelial and platelet function in renal transplant patients. Clin. Nephrol. 2011; 76: 218-225. PMID: 21888859
  25. Tomasiak M., Rusak T., Gacko M., Stelmach H. Cyclosporine enhances platelet procoagulant activity. Nephrol. Dial. Transplant. 2007; 22: 1750-1756. DOI: 10.1093/ndt/gfl836
  26. Renner B., Klawitter J., Goldberg R. et al. Cyclosporine induces endothelial cell release of complement-activating microparticles. J. Am. Soc. Nephrol. 2013; 24: 1849-1862. DOI: 10.1681/ASN.2012111064
  27. Hošková L., Málek I., Kopkan L., Kautzner J. Pathophysiological mechanisms of calcineurin inhibitor-induced nephrotoxicity and arterial hypertension. Physio.l Res. 2017; 66(2):167-180. PMID: 27982677
  28. Mulgaonkar S., Kaufman D.B. Conversion from calcineurin inhibitorbased immunosuppression to mammalian target of rapamycin inhibitors or belatacept in renal transplant recipients. Clin. Transplant. 2014; 28: 1209-1224.DOI: 10.1111/ctr.12453
  29. Le Quintrec M., Zuber J., Moulin B. et al. Complement genes strongly predict recurrence and graft outcome in adult renal transplant recipients with atypical hemolytic and uremic syndrome. Am. J. Transplant. 2013; 13: 663-675. DOI: 10.1111/ajt.12077
  30. Cortina G., Trojer R., Waldegger S. et al. De novo tacrolimus-induced thrombotic microangiopathy in the early stage after renal transplantation successfully treated with conversion to everolimus. Pediatr. Nephrol. 2015; 30: 693-697. DOI: 10.1007/s00467-014-3036-8
  31. Keller K., Daniel C., Schöcklmann H. et al. Everolimus inhibits glomerular endothelial cell proliferation and VEGF, but not long-term recovery in experimental thrombotic microangiopathy. Nephrol. Dial. Transplant. 2006; 21: 2724-2735. DOI: 10.1093/ndt/gfl340
  32. Nava F., Cappelli G., Mori G. et al. Everolimus, cyclosporine, and thrombotic microangiopathy: clinical role and preventive tools in renal transplantation. Transplant. Proc. 2014; 46: 2263-2268. DOI: 10.1016/j.transproceed.2014.07.062
  33. Baas M.C., Gerdes V.E., Ten Berge I.J. et al. Treatment with everolimus is associated with a procoagulant state. Thromb. Res. 2013; 132: 307-311. DOI: 10.1016/j.thromres.2013.07.004
  34. Sartelet H., Toupance O., Lorenzato M. et al. Sirolimus-induced thrombotic microangiopathy is associated with decreased expression of vascular endothelial growth factor in kidneys. Am. J. Transplant. 2005; 5(10): 2441-2447. DOI: 10.1111/j.1600-6143.2005.01047.x
  35. Miriuka S.G., Rao V., Peterson M. et al. mTOR inhibition induces endothelial progenitorcell death. Am. J. Transplant. 2006; 6(9):2069-2079. DOI: 10.1111/j.1600-6143.2006.01433.x
  36. Keir L.S., Firth R., Aponik L. et al. VEGF regulates local inhibitory complement proteins in the eye and kidney. J. Clin. Invest. 2017; 127(1):199-214. DOI: 10.1172/JCI86418
  37. Pascual J., Diekmann F., Fernández-Rivera C. et al. Recommendations for the use of everolimus in de novo kidney transplantation: False beliefs, myths and realities. Nefrologia. 2017; 37(3): 253-266. DOI: 10.1016/j.nefro.2016.11.007
  38. Meehan S.M., Kremer J., Ali F.N. et al. Thrombotic microangiopathy and peritubular capillary C4d expression in renal allograft biopsies. Clin. J. Am. Soc. Nephrol. 2011; 6: 395-403. DOI: 10.2215/CJN.05870710
  39. Baid-Agrawal S., Farris A.B. 3rd, Pascual M. et al. Overlapping pathways to transplant glomerulopathy: chronic humoral rejection, hepatitis C infection, and thrombotic microangiopathy. Kidney Int. 2011; 80: 879-885. DOI: 10.1038/ki.2011.194
  40. Waldman M., Kopp J.B. Parvovirus-B19-associated complications in renal transplant recipients. Nat. Clin. Pract. Nephrol. 2007; 3: 540-550. DOI: 10.1038/ncpneph0609
  41. Petrogiannis-Haliotis T., Sakoulas G., Kirby J. et al. BK-related polyomavirus vasculopathy in a renal-transplant recipient. N. Engl. J. Med. 2001; 345: 1250-1255. DOI: 10.1056/NEJMoa010319
  42. Ardalan M.R., Shoja M.M., Tubbs R.S., Jayne D. Parvovirus B19 microepidemic in renal transplant recipients with thromboticmicroangiopathy and allograft vasculitis. Exp. Clin. Transplant. 2008; 6:137-143. PMID: 18816241
  43. Esmaili H., Mostafidi E., Ardalan M. et al. BK virus nephropathy is not always alone. J. Renal. Inj. Prev. 2015; 5(1):12-16. DOI: 10.15171/jrip.2016.03
  44. Večerić-Haler Ž., Bizjak B., Romozi K., Arnol M. Expanded valganciclovir prophylaxis in kidney transplant recipients is associated with lower incidence of cytomegalovirus infection. Clin. Nephrol. 2017 Suppl. 1; 88(13):126-130. DOI: 10.5414/CNP88FX27
  45. Kotton C.N., Kumar D., Caliendo A.M. et al.; The Transplantation Society International CMV Consensus Group. The Third International Consensus Guidelines on the Management of Cytomegalovirus in Solid-organ Transplantation. Transplantation. 2018; 102(6): 900-931. DOI: 10.1097/TP.0000000000002191.
  46. Прокопенко Е.И., Щербакова Е.О., Ватазин А.В. и др. Результаты профилактики цитомегаловирусной инфекции валганцикловиром у пациентов с трансплантированной почкой. Клиническая нефрология. 2013; 5: 37-41.
  47. Waiser J., Budde K., Rudolph B. et al. De novo hemolytic uremic syndrome postrenal transplant after cytomegalovirus infection. Am. J. Kidney Dis. 1999; 34: 556-560. DOI: 10.1053/AJKD03400556
  48. Olie K.H., Goodship T.H. Verlaak R. et al. Posttransplantation cytomegalovirus induced recurrence of atypical hemolytic syndrome associated with a factor H mutation: successful treatment with intensive plasma exchanges and ganciclovir. Am. J. Kidney Dis. 2005; 45:e12-e15. PMID: 15696434
  49. Jeejeebhoy F.M., Zaltzman J.S. Thrombotic microangiopathy in association with cytomegalovirus infection in a renal transplant patient: a new treatment strategy. Transplantation. 1998; 65(12):1645-1648. DOI: 10.1097/00007890-199806270-00018
  50. Java A., Edwards A., Rossi A. et al. Cytomegalovirus-induced thrombotic microangiopathy after renal transplant successfully treated with eculizumab: case report and review of the literature. Transpl. Int. 2015; 28(9):1121-1125. DOI: 10.1111/tri.12582
  51. de Vries D.K., van der Pol P., van Anken G.E. et al. Acute but transient release of terminal complement complex after reperfusion in clinical kidney transplantation. Transplantation. 2013; 95: 816-820. DOI: 10.1097/TP.0b013e31827e31c9
  52. Ulinski T., Charpentier A., Colombat M. et al. From humoral rejection to generalized thrombotic microangiopathy--role of acquired ADAMTS13 deficiency in a renal allograft recipient. Am. J. Transplant. 2006; 6: 3030-3036. DOI: 10.1111/j.1600-6143.2006.01574.x
  53. Lorcy N., Rioux-Leclercq N., Lombard M.L. et al. Three kidneys, two diseases, one antibody? Nephrol. Dial. Transplant. 2011; 26: 3811-3813. DOI: 10.1093/ndt/gfr436
  54. González-Moreno J., Callejas-Rubio J.L., Ríos-Fernández R., Ortego-Centeno N. Antiphospholipid syndrome, antiphospholipid antibodies and solid organ transplantation. Lupus. 2015; 24(13):1356-1363. DOI: 10.1177/0961203315595129
  55. Barbour T.D., Crosthwaite A., Chow K., Finlay M.J. Antiphospholipid syndrome in renal transplantation. Nephrology (Carlton). 2014; 19(4):177-185. DOI: 10.1111/nep.12217
  56. Geethakumari P.R., Mille P., Gulati R., Nagalla S. Complement inhibition with eculizumab for thrombotic microangiopathy rescues a living-donor kidney transplant in a patient with antiphospholipid antibody syndrome. Transfus. Apher. Sci. 2017; 56(3): 400-403. DOI: 10.1016/j.transci.2017.02.007
  57. Chew C.G., Bannister K.M., Mathew T.H. et al. Thrombotic microangiopathy related to anticardiolipin antibody in a renal allograft. Nephrol. Dial. Transplant. 1999; 14: 436-438.
  58. Ruffatti A., Marson P., Valente M. et al. Plasma exchange in a patient with primary antiphospholipid syndrome undergoing kidney transplantation. Transpl. Int. 2007; 20: 475-477.
  59. Chandran S., Baxter-Lowe L., Olson J.L. et al. Eculizumab for the treatment of de novo thrombotic microangiopathy post simultaneous pancreas-kidney transplantation--a case report. Transplant. Proc. 2011; 43(5): 2097-2101. DOI: 10.1016/j.transproceed.2011.02.064
  60. Shochet L., Kanellis J., Simpson I. et al. De novo thrombotic microangiopathy following simultaneous pancreas and kidney transplantation managed with eculizumab. Nephrology (Carlton). 2017; 22 Suppl 1: 23-27. DOI: 10.1111/nep.12936
  61. Le Quintrec M., Lionet A., Kamar N. et al. Complement mutation-associated de novo thrombotic microangiopathy following kidney transplantation. Am. J. Transplant. 2008; 8: 1694-1701. DOI: 10.1111/j.1600-6143.2008.02297.x
  62. Rolla D., Fontana I., Ravetti J.L. et al. De novo post-transplant thrombotic microangiopathy localized only to the graft in autosomal dominant polycystic kidney disease with thrombophilia. J. Renal. Inj. Prev. 2015; 4(4):135-138. DOI: 10.12861/jrip.2015.28
  63. Noris M., Remuzzi G. Thrombotic microangiopathy after kidney transplantation. Am. J. Transplant. 2010; 10: 1517-1523. DOI: 10.1111/j.1600-6143.2010.03156.x
  64. Salameh H., Abu Omar M., Alhariri A. et al. Adult post-kidney transplant familial atypical hemolytic uremic syndrome successfully treated with eculizumab: a case report and literature review. Am. J. Ther. 2016; 23(4): e1110-115. DOI: 10.1097/MJT.0000000000000133
  65. Goodship T.H., Cook H.T., Fakhouri F. et al. Atypical hemolytic uremic syndrome and C3 glomerulopathy: conclusions from a "Kidney Disease: Improving Global Outcomes" (KDIGO) Controversies Conference. Kidney Int. 2017; 91(3): 539-551. DOI: 10.1016/j.kint.2016.10.005
  66. Goicoechea de Jorge E., Tortajada A., García S.P. et al. Factor H competitor generated by gene conversion events associates with atypical hemolytic uremic syndrome. J. Am. Soc. Nephrol. 2018; 29(1): 240-249. DOI: 10.1681/ASN.2017050518
  67. Noris M., Remuzzi G. Atypical hemolytic-uremic syndrome. N. Engl. J. Med. 2009; 361: 1676-1687. DOI: 10.1056/NEJMra0902814
  68. Bresin E., Rurali E., Caprioli J. et al. Combined complement gene mutations in atypical hemolytic uremic syndrome influence clinical phenotype. J. Am. Soc. Nephrol. 2013; 24(3): 475-486. DOI: 10.1681/ASN.2012090884
  69. Bresin E., Daina E., Noris M. et al. Outcome of renal transplantation in patients with non-Shiga toxin-associated hemolytic uremic syndrome: prognostic significance of genetic background. Clin. J. Am. Soc. Nephrol. 2006; 1(1): 88-99. DOI: 10.2215/CJN.00050505
  70. Saland J.M., Ruggenenti P., Remuzzi G.; Consensus Study Group. Liver-kidney transplantation to cure atypical hemolytic uremic syndrome. J. Am. Soc. Nephrol. 2009; 20(5): 940-949. DOI: 10.1681/ASN.2008080906
  71. Koskinen A.R., Tukiainen E., Arola J. et al. Complement activation during liver transplantation-special emphasis on patients with atypical hemolytic uremic syndrome. Am. J. Transplant. 2011; 11(9): 1885-1895. DOI: 10.1111/j.1600-6143.2011.03612
  72. Loirat C., Saland J., Bitzan M. Management of hemolytic uremic syndrome. Presse Med. 2012; 41(3 Pt 2): e115-135. DOI: 10.1016/j.lpm.2011.11.013
  73. Tran H., Chaudhuri A., Concepcion W. et al. Use of eculizumab and plasma exchange in successful combined liver-kidney transplantation in a case of atypical HUS associated with complement factor H mutation. Pediatr. Nephrol. 2014; 29(3): 477-480. DOI: 10.1007/s00467-013-2630-5
  74. Gonzales E., Ulinski T., Habes D. et al. Long-term successful liver-kidney transplantation in a child with atypical hemolytic uremic syndrome caused by homozygous factor H deficiency. Pediatr. Nephrol. 2016; 31(12): 2375-2378. DOI: 10.1007/s00467-016-3511-5
  75. Szymczak M., Kaliciński P., Kowalewski G. et al. Combined liver-kidney transplantation in children: single-center experiences and long-term results. Transplant. Proc. 2018; 50(7): 2140-2144. DOI: 10.1016/j.transproceed.2018.04.061
  76. Coppo R., Bonaudo R., Peruzzi R.L. et al. Liver transplantation for aHUS: still needed in the eculizumab era? Pediatr. Nephrol. 2016; 31(5): 759-768. DOI: 10.1007/s00467-015-3278-0
  77. Salvadori M., Bertoni E. Complement related kidney diseases: recurrence after transplantation. World.J. Transplant. 2016; 6: 632-645. DOI: 10.5500/wjt.v6.i4.632
  78. Epand R.M., So V., Jennings W. et al. Diacylglycerol kinase-ε: properties and biological roles. Front. Cell Dev. Biol. 2016; 4: 112. DOI: 10.3389/fcell.2016.00112
  79. Azukaitis K., Simkova E., Majid M.A. et al. The phenotypic spectrum of nephropathies associated with mutations in diacylglycerol kinase ε. J. Am. Soc. Nephrol. 2017; 28: 3066-3075. DOI: 10.1681/ASN.2017010031
  80. Jokiranta T.S. HUS and atypical HUS. Blood. 2017; 129(21): 2847-2856. DOI: 10.1182/blood-2016-11-709865
  81. Ruggenenti P. Post-transplant hemolytic-uremic syndrome. Kidney Int. 2002; 62: 1093-1104. DOI: 10.1046/j.1523-1755.2002.00543.x
  82. Garlo K., Dressel D., Savic M. et al. Successful eculizumab treatment of recurrent postpartum atypical hemolytic uremic syndrome after kidney transplantation. Clin. Nephrol. Case Stud. 2015; 3: 8-13. DOI: 10.5414/CNCS108491
  83. Duval A., Olagne J., Cognard N. et al. Pregnancy in a kidney transplant woman under treatment with eculizumab for atypical hemolytic uremic syndrome: is it safe? Kidney Int. Rep. 2019; 4: 733-739. DOI: 10.1016/j.ekir.2018.12.014
  84. Noris M., Caprioli J., Bresin E. et al. Relative role of genetic complement abnormalities in sporadic and familial aHUS and their impact on clinical phenotype. Clin. J. Am. Soc. Nephrol. 2010; 5(10):1844-1859. DOI: 10.2215/CJN.02210310
  85. Fremeaux-Bacchi V., Fakhouri F., Garnier A. et al. Genetics and outcome of atypical hemolytic uremic syndrome: a nationwide French series comparing children and adults. Clin. J. Am. Soc. Nephrol. 2013; 8: 554-562. DOI: 10.2215/CJN.04760512
  86. Lemaire M., Frémeaux-Bacchi V., Schaefer F. et al. Recessive mutations in DGKE cause atypical hemolytic-uremic syndrome. Nat. Genet. 2013; 45: 531-536. DOI: 10.1038/ng.2590
  87. Bresin E. Genetics of aHUS and transplant recurrence. G. Ital. Nefrol. 2015; 32 Suppl. 64. pii: gin/32.S64.3. PMID: 26479051
  88. Venables J.P., Strain L., Routledge D. et al. Atypical haemolytic uraemic syndrome associated with a hybrid complement gene. PLoS Med. 2006; 3: e431. DOI: 10.1371/journal.pmed.0030431]
  89. Valoti E., Alberti M., Tortajada A. et al. A novel atypical hemolytic uremic syndrome-associated hybrid CFHR1/CFH gene encoding a fusion protein that antagonizes factor H-dependent complement regulation. J. Am. Soc. Nephrol. 2015; 26: 209-219. DOI: 10.1681/ASN.2013121339
  90. Challis R.C., Araujo G.S., Wong E.K. et al. A de novo deletion in the regulators of complement activation cluster producing a hybrid complement factor H/complement factor H-related 3 gene in atypical hemolytic uremic syndrome. J. Am. Soc. Nephrol. 2016; 27: 1617-1624. DOI: 10.1681/ASN.2015010100
  91. Lam K., Martlew V., Walkinshaw S. et al. Successful management of recurrent pregnancy-related thrombotic thrombocytopaenia purpura in a renal transplant recipient. Nephrol. Dial.Transplant. 2010; 25(7): 2378-2380. DOI: 10.1093/ndt/gfq228
  92. Mise K., Ubara Y., Matsumoto M. et al. Long term follow up of congenital thrombotic thrombocytopenic purpura (Upshaw-Schulman syndrome) on hemodialysis for 19 years: a case report. BMC Nephrol. 2013; 14: 156. DOI: 10.1186/1471-2369-14-156
  93. Song D., Wu L.H., Wang F.M. et al. The spectrum of renal thrombotic microangiopathy in lupus nephritis. Arthritis Res. Ther. 2013; 15(1): R12. DOI: 10.1186/ar4142
  94. Kais H., Nourredine C., Raoudha B. Treatment of tacrolimus-associated thrombotic microangiopathy in renal transplant recipient with fresh frozen plasma: A case report. Saudi J. Kidney Dis. Transpl. 2006; 17:58-61. PMID: 17297539
  95. Franco A., Hernandez D., Capdevilla L. et al. De novo hemolytic-uremic syndrome/thrombotic microangiopathy in renal transplant patients receiving calcineurin inhibitors: role of sirolimus. Transplant. Proc. 2003; 35: 1764-1766. DOI: 10.1016/S0041-1345(03)00614-6
  96. Epperla N., Hemauer K., Hamadani M. et al. Impact of treatment and outcomes for patients with posttransplant drug-associated thrombotic microangiopathy. Transfusion. 2017; 57: 2775-2781. DOI: 10.1111/trf.14263
  97. Ashman N., Chapagain A., Dobbie H. et al. Belatacept as maintenance immunosuppression for postrenal transplant de novo drug-induced thrombotic microangiopathy. Am. J. Transplant. 2009; 9: 424-427. DOI: 10.1111/j.1600-6143.2008.02482.x
  98. Koppula S., Yost S.E., Sussman A. et al. Successful conversion to belatacept after thrombotic microangiopathy in kidney transplant patients. Clin. Transplant. 2013; 27: 591-597. DOI: 10.1111/ctr.12170
  99. Merola J., Yoo PS., Schaub J. et al. Belatacept and eculizumab for treatment of calcineurin inhibitor-induced thrombotic microangiopathy after kidney transplantation: case report. Transplant. Proc. 2016; 48(9): 3106-3108. DOI: 10.1016/j.transproceed.2016.04.005
  100. Bell W.R., Braine H.G., Ness P.M., Kickler T.S. Improved survival in thrombotic thrombocytopenic purpura-hemolytic uremic syndrome. Clinical experience in 108 patients. N. Engl. J. Med. 1991; 325: 398-403. DOI: 10.1056/NEJM199108083250605
  101. Scully M., Goodship T. How I treat thrombotic thrombocytopenic purpura and atypical haemolytic uraemic syndrome. Br. J. Haematol. 2014; 164(6): 759-766. DOI: 10.1111/bjh.12718
  102. Burton S.A., Amir N., Asbury A. et al. Treatment of antibody-mediated rejection in renal transplant patients: a clinical practice survey. Clin. Transplant. 2015; 29(2):118-123. DOI: 10.1111/ctr.12491
  103. Choi J.Y., Jung J.H., Shin S. et al. Living donor renal transplantation in patients with antiphospholipid syndrome: A case report. Medicine (Baltimore). 2016;95(46): e5419. DOI: 10.1097/MD.0000000000005419
  104. Wilson C.H., Brown A.L., White S.A. et al. Successful treatment of de novo posttransplant thrombotic microangiopathy with eculizumab. Transplantation. 2011; 92: e42-e43. DOI: 10.1097/TP.0b013e318230c0bd
  105. Stegall M.D., Diwan T., Raghavaiah S. et al. Terminal complement inhibition decreases antibody-mediated rejection in sensitized renal transplant recipients. Am. J. Transplant. 2011; 11: 2405-2413. DOI: 10.1111/j.1600-6143.2011.03757.x
  106. Safa K., Logan M.S., Batal I. et al. Eculizumab for drug-induced de novo posttransplantation thrombotic microangiopathy: A case report. Clin. Nephrol. 2015; 83: 125-129. DOI: 10.5414/CN108163
  107. Ikeda T., Okumi M., Unagami K. et al. Two cases of kidney transplantation associated thrombotic microangiopathy successfully treated with eculizumab. Nephrology (Carlton) 2016; 21 Suppl. 1: 35-40. DOI: 10.1111/nep.12768
  108. Dedhia P., Govil A., Mogilishetty G. et al. Eculizumab and belatacept for de novo atypical hemolytic uremic syndrome associated with CFHR3-CFHR1 deletion in a kidney transplant recipient: a case report. Transplant. Proc. 2017; 49: 188-192. DOI: 10.1016/j.transproce ed.2016.11.008
  109. González-Roncero F., Suñer M., Bernal G. et al. Eculizumab treatment of acute antibody-mediated rejection in renal transplantation: case reports. Transplant. Proc. 2012; 44: 2690-2694. DOI: 10.1016/j.transproceed.2012.09.038
  110. Chehade H., Rotman S., Matter M. et al. Eculizumab to treat antibody-mediated rejection in a 7-year-old kidney transplant recipient. Pediatrics. 2015; 135: e551-e555. DOI: 10.1542/peds.2014-2275
  111. Claes K.J., Massart A., Collard L. et al. Belgian consensus statement on the diagnosis and management of patients with atypical hemolytic uremic syndrome. Acta Clin. Belg. 2018; 73(1): 80-89. DOI: 10.1080/17843286.2017.1345185
  112. Gonzalez Suarez M.L., Thongprayoon C., Mao M.A. et al. Outcomes of kidney transplant patients with atypical hemolytic uremic syndrome treated with eculizumab: a systematic review and meta-analysis. J. Clin. Med. 2019; 8(7). pii: E919. DOI: 10.3390/jcm8070919
  113. Zuber J., Le Quintrec M., Krid S. et al.; French Study Group for Atypical HUS. Eculizumab for atypical hemolytic uremic syndrome recurrence in renal transplantation. Am. J. Transplant. 2012; 12: 3337-3354. DOI: 10.1111/j.1600-6143.2012.04252.x
  114. Kwon T., Dragon-Durey M.A., Macher M.A. et al. Successful pretransplant management of a patient with anti-factor H autoantibodies-associated haemolytic uraemic syndrome. Nephrol. Dial. Transplant. 2008; 23: 2088-2090. DOI: 10.1093/ndt/gfn063
  115. Waters A.M., Pappworth I., Marchbank K. et al. Successful renal transplantation in factor H autoantibody associated HUS with CFHR1 and 3 deficiency and CFH variant G2850T. Am. J. Transplant. 2010; 10: 168-172. DOI: 10.1111/j.1600-6143.2009.02870.x
  116. Каабак М.М., Молчанова Е.А., Нестеренко И.В. и др. Резолюция междисциплинарного совета экспертов. Трансплантация почки у пациентов с атипичным гемолитико-уремическим синдромом: клинические и организационно-методические аспекты ведения пациентов. Клиническая нефрология. 2018; 3: 8-14.
  117. Gatault P., Brachet G., Ternant D. et al. Therapeutic drug monitoring of eculizumab: rationale for an individualized dosing schedule. MAbs, 2015; 7(6): 1205-1211. DOI: 10.1080/19420862.2015.1086049
  118. Wehling C., Amon O., Bommer M. et al. Monitoring of complement activation biomarkers and eculizumab in complement-mediated renal disorders. Clin. Exp. Immunol. 2016; 187: 304-315. DOI: 10.1111/cei.12890
  119. Macia M., de Alvaro Moreno F., Dutt T. et al. Current evidence on the discontinuation of eculizumab in patients with atypical hemolytic uraemic syndrome. Clin. Kidney J. 2017; 10(3): 310-319. DOI: 10.1093/ckj/sfw115
  120. Ardissino G., Tel F., Sgarbanti M. et al. Complement functional tests for monitoring eculizumab treatment in patients with atypical hemolytic uremic syndrome: an update. Pediatr. Nephrol. 2018; 33(3): 457-461. DOI: 10.1007/s00467-017-3813-2
  121. Wijnsma K.L., Ter Heine R., Moes D.J.A.R. et al. Pharmacology, pharmacokinetics and pharmacodynamics of eculizumab, and possibilities for an individualized approach to eculizumab. Clin. Pharmacokinet. 2019; 8(7): 859-874. DOI: 10.1007/s40262-019-00742-8
  122. Matar D., Naqvi F., Racusen L.C. et al. Atypical hemolytic uremic syndrome recurrence after kidney transplantation. Transplantation. 2014; 98(11):1205-1212. DOI: 10.1097/TP.0000000000000200
  123. Walle J.V., Delmas Y., Ardissino G. et al. Improved renal recovery in patients with atypical hemolytic uremic syndrome following rapid initiation of eculizumab treatment. J. Nephrol. 2017; 30(1):127-134. DOI: 10.1007/s40620-016-0288-3
  124. Zhang Y., Nester C.M., Holanda D.G. et al. Soluble CR1 therapy improves complement regulation in C3 glomerulopathy. J. Am. Soc. Nephrol. 2013; 24: 1820-1829. PMID: 23907509 DOI: 10.1681/ASN.2013010045
  125. Zhang Y., Shao D., Ricklin D. et al. Compstatin analog Cp40 inhibits complement dysregulation in vitro in C3 glomerulopathy. Immunobiology. 2015; 220: 993-998. DOI: 10.1016/j.imbio.2015.04.001
  126. Paixão-Cavalcante D., Torreira E., Lindorfer M.A. et al. A humanized antibody that regulates the alternative pathway convertase: potential for therapy of renal disease associated with nephritic factors. J. Immunol. 2014; 192: 4844-4851. DOI: 10.4049/jimmunol.1303131
  127. Harris C.L. Expanding horizons in complement drug discovery: challenges and emerging strategies. Semin. Immunopathol. 2018; 40(1): 125-140. DOI: 10.1007/s00281-017-0655-8

Другие статьи по теме


Навигация по статьям
Разделы журнала
Наиболее читаемые статьи
Журнал "Нефрология и диализ"