Российское диализное общество

Просмотр статьи

<< Вернуться к списку статей журнала

Том 23 №3 2021 год - Нефрология и диализ

Рецептор витамина D: новая терапевтическая мишень при заболевании почек


Волгина Г.В. Михайлова Н.А. Котенко О.Н.

DOI: 10.28996/2618-9801-2021-3-330-351

Аннотация: Витамин D - стероидный гормон (D-гормон) давно известен своей важной ролью в регуляции минерального обмена, минерализации костей и функционировании паращитовидных желез (ПЩЖ). Установлено, что дефицит витамина D (25(OH)D) является одним из факторов риска развития различных заболеваний, таких как сердечно-сосудистая патология, сахарный диабет, ожирение, злокачественные новообразования в общей популяции, но его связь с заболеваемостью и смертностью пациентов с хронической болезнью почек (ХБП) недостаточно изучена. Интерес нефрологов к активному метаболиту витамина D (VD) и его влиянию за пределами классических эффектов возрос за последние несколько лет, что обусловлено фактом обнаружения специфических рецепторов VD (VDR), локализованных в ядрах клеток многих органов и тканей, не связанных с минеральным обменом. Это резко изменило понимание роли, которую играют VDR, и последствия их активации. В ряде исследований были проанализированы отличия различных активаторов (агонистов) VDR и предложена новая концепция селективной активации VDR. Спектр опосредованных D-гормоном эффектов был расширен до плейотропных экстраскелетных действий. В настоящем обзоре мы подробно освещаем физиологию витамин D и влияние на неё многочисленных эндогенных и экзогенных факторов. Отдельно обсуждаются нарушения обмена витамина D при различных стадиях ХБП, тесная взаимосвязь активации VDR, секреции FGF23 и уровня α-Клото. В разделе, посвященном роли активаторов VDR в лечении вторичного гиперпаратиреоза, рассмотрены возможности всего спектра существующих метаболитов витамина D в подавлении секреции паратгормона и влиянии на уровни кальция и фосфора. Приведены результаты недавних метаанализов, сравнивающих эффективность и безопасность селективных и неселективных активаторов VDR (aVDR). Наконец, мы представили достижения в новых областях терапевтического применения селективного активатора VDR парикальцитола как рено- и кардиопротектора, а также привели доводы о потенциальной роли в профилактике различных хронических неинфекционных заболеваний у пациентов с ХБП.

Для цитирования: Волгина Г.В., Михайлова Н.А., Котенко О.Н. Рецептор витамина D: новая терапевтическая мишень при заболевании почек. Нефрология и диализ. 2021. 23(3):255-436. doi: 10.28996/2618-9801-2021-3-330-351


Весь текст

Ключевые слова: хроническая болезнь почек, минерально-костные нарушения, вторичный гиперпаратиреоз, D-гормон, активаторы рецепторов витамина D, парикальцитол, плейотропные эффекты, chronic kidney disease, mineral bone disorders, secondary hyperparathyroidism, D-hormone, vitamin D receptor activators, paricalcitol, pleiotropic effects

Список литературы:
  1. Hilger J., Friedel A., Herr R. et al. A systematic review of vitamin D status in populations worldwide. Br J Nutr. 2014; 111(1):23-45. doi: 10.1017/S0007114513001840.
  2. Malczewska-Lenczowska J., Sitkowski D., Surala O. et al. The Association between Iron and Vitamin D Status in Female Elite Athletes. Nutrients. 2018; 10:167. doi:10.3390/nu10020167
  3. Erem S., Atfi A., Razzaque M. S. Anabolic effects of vitamin D and magnesium in aging bone. Journal of steroid biochemistry and molecular biology. 2019; 193:105400.doi:10.1016/j.jsbmb.2019.105400
  4. Chen TC, Chimeh F, Lu Z, Mathieu J, Person KS, Zhang A, et al. Factors that infl uence the cutaneous synthesis and dietary sources of vitamin D. Arch Biochem Biophys. 2007;460(2):213-7. 39.
  5. Kroll M.H., Bi C., Garber C.C. et al. Temporal relationship between vitamin D status and parathyroid hormone in the United States. PLoS One. 2015;10(3):e0118108. doi: 10.1371/journal.pone.0118108.
  6. Holick M.F., Matsuoka L.Y., Wortsman J. Regular use of sunscreen on vitamin D levels. Arch Dermatol. 1995;131(11):1337-9.
  7. Wortsman J., Matsuoka L.Y., Chen T.C., Lu Z., Holick M.F. Decreased bioavailability of vitamin D in obesity. Am J Clin Nutr. 2000; 72(3):690-3.
  8. Wang T.J., Zhang F., Richards J.B. et al. Common genetic determinants of vitamin D insufficiency: a genome-wide association study. Lancet. 2010; 376(9736):180-8. doi: 10.1016/S0140-6736(10)60588-0.
  9. Ahn J., Yu K., Stolzenberg-Solomon R. et al. Genome wide association study of circulating vitamin D levels. Hum Mol Genet. 2010; 19(13):2739-45. doi: 10.1093/hmg/ddq155.
  10. Levin G.P., Robinson-Cohen C., de Boer I.H. et al. Genetic variants and associations of 25-hydroxyvitamin D concentrations with major clinical outcomes. JAMA. 2012; 308(18):1898-905. doi: 10.1001/jama.2012.17304.
  11. Santoro D., Caccamo D., Gagliostro G. et al. Vitamin D metabolism and activity as well as genetic variants of the Vitamin D Receptor (VDR) in chronic kidney disease patients. J. Nephrol., 2013, 26(4), 636-644. doi: 10.5301/jn.5000203.
  12. Grandi N.C,, Breitling L.P., Brenner H. Vitamin D and cardiovascular disease: systematic review and meta-analysis of prospective studies. Prev Med. 2010; 51:228-33.
  13. De Boer I.H., Levin G., Robinson-Cohen C. et al. Serum 25-hydroxyvitamin D concentration and risk for major clinical disease events in a community-based population of older adults: a cohort study. Ann Intern Med. 2012; 156(9):627-34. doi: 10.7326/0003-4819-156-9-201205010-00004.
  14. Pludowski P., Holick M.F., Pilz S. et al. Vitamin D effects on musculoskeletal health, immunity, autoimmunity, cardiovascular disease, cancer, fertility, pregnancy, dementia and mortality-a review of recent evidence. Autoimmun Rev. 2013; 12(10):976-89. doi: 10.1016/j.autrev.2013.02.004.
  15. Bjelakovic G., Gluud L.L., Nikolova D. et al. Vitamin D supplementation for prevention of mortality in adults. Cochrane Database Syst Rev. 2014; 1:CD007470. doi: 10.1002/14651858.CD007470.pub3.
  16. Autier P., Boniol M., Pizot C., Mullie P. Vitamin D and ill health: a systematic review. Lancet Diabetes Endocrinol. 2014; 2(1):76-89. doi: 10.1016/S2213-8587(13)70165-7.
  17. Chowdhury R., Kunutsor S., Vitezova A. et al. Vitamin D and risk of cause specific death: systematic review and meta-analysis of observational cohort and randomised intervention studies. BMJ. 2014; 348:g1903. doi: 10.1136/bmj.g1903.
  18. Dusso A.S. Kidney disease and vitamin D levels: 25-hydroxyvitamin D, 1,25-dihydroxyvitamin D, and VDR activation. Kidney Int Suppl. 2011;1(4):136-41. doi: 10.1038/kisup.2011.30.
  19. Nigwekar S.U., Bhan I., Thadhani R. Ergocalciferol and cholecalciferol in CKD. Am J Kidney Dis. 2012; 60:139-156. Doi:10.1053/j.ajkd.2011.12.035
  20. Bover J., Cozzolino M. Mineral and bone disorders in chronic kidney disease and end-stage renal disease patients: new insights into vitamin D receptor activation. Kidney Int Suppl. 2011; 1:122-9. doi: 10.1038/kisup.2011.28.
  21. Rojas-Rivera J., de la Piedra C., Ramos A., Ortiz A., Egido J. The expanding spectrum of biological actions of vitamin D. Nephrol Dial Transplant 2010; 25(9):2850-65. doi: 10.1093/ndt/gfq313.
  22. Egidoa J., Martínez-Castelao A., Bover J. et al. The pleiotropic effects of paricalcitol: Beyond bone-mineral metabolism. Nefrologia. 2016; 36(1):10-18. doi: 10.1016/j.nefro.2015.11.003.
  23. Lunyera J., Scialla J.J. Update on Chronic Kidney Disease Mineral and Bone Disorder in Cardiovascular Disease. Semin Nephrol. 2018; 38(6):542-558. doi:10.1016/j.semnephrol.2018.08.001.
  24. Kopic S., Geibel J.P. Gastric Acid, Calcium Absorption, and Their Impact on Bone Health. Physiol. Rev. 2013; 93 (1): 189-268. doi: 10.1152/physrev.00015.2012.
  25. Lagunova Z., Porojnicu A., Lindberg F. et al. The dependency of vitamin D status on body mass index, gender, age and season Anticancer. Res. 2009; 29(9):3713-20.
  26. Pike J.W., Christakos S. Biology and Mechanisms of Action of the Vitamin D Hormone. Endocrinol Metab Clin North Am. 2017; 46(4):815-43. doi: 10.1016/j.ecl.2017.07.001.
  27. Zittermann A., Ernst J.B., Birschmann I., Dittrich M. Effect of Vitamin D or Activated Vitamin D on Circulating 1,25-Dihydroxyvitamin D Concentrations: A Systematic Review and Meta-analysis of Randomized Controlled Trials. Clin Chem. 2015; 61(12):1484-94. doi: 10.1373/clinchem.2015.244913.
  28. Haussler M.R., Whitfield G.K., Kaneko I. et al. Molecular mechanisms of vitamin D action. Calcif Tissue Int. 2013; 92(2):77-98. doi: 10.1007/s00223-012-9619-0.
  29. Christakos S., Dhawan P., Verstuyf A. et al. Vitamin D: metabolism, molecular mechanism of action, and pleiotropic effects. Physiol. Rev. 2016; 96(1):365-408. doi: 10.1152/physrev.00014.2015.
  30. Bikle D.D. Extraskeletal actions of vitamin D. Ann N Y Acad Sci. 2016; 1376(1):29-52. doi: 10.1111/nyas.13219.
  31. Kidd P.M. Vitamins D and K as pleiotropic nutrients: clinical importance to the skeletal and cardiovascular systems and preliminary evidence for synergy. Altern Med Rev. 2010; 15(3):199-222.
  32. Grandi N.C., Breitling L.P., Brenner H. Vitamin D and cardiovascular disease: systematic review and meta-analysis of prospective studies. Prev Med. 2010; 51(3-4):228-233. doi: 10.1016/j.ypmed.2010.06.013.
  33. Dusso A., Gonzalez E.A., Martin K.J. Vitamin D in chronic kidney disease. Best Pract Res Clin Endocrinol Metab. 2011; 25(4):647-655. doi: 10.1016/j.beem.2011.05.005
  34. Lieben L., Carmeliet G. The Involvement of TRP Channels in Bone Homeostasis. Front. Endocrinol (Lausanne). Novel Extracellular Signalling Mechanisms in Bone. 2012; 3:99. doi: 10.3389/fendo.2012.00099.
  35. De Luca H.F. Overview of general physiologic features and functions of vitamin D. Am. J. Clin. Nutr. 2004; 80:1689-1696.
  36. Courbebaisse M., Lanske B. Biology of Fibroblast Growth Factor 23: From Physiology to Pathology. Cold Spring Harb. Perspect. Med. 2018; 8(5):a031260. doi: 10.1101/cshperspect.a031260.
  37. Nigwekar S.U., Tamez H., Thadhani R.I. Vitamin D and chronic kidney disease-mineral bone disease (CKD-MBD). Bonekey Rep. 2014; 3:498. doi: 10.1038/bonekey.2013.232.
  38. Rhee C.M., Ahmadi S-F., Kovesdy C.P., Kalantar-Zadeh K. Low-protein diet for conservative management of chronic kidney disease: a systematic review and meta-analysis of controlled trials. J Cachexia Sarcopenia Muscle. 2018; 9:235-245. https://doi.org/10. 1002/jcsm.12264
  39. Christakos S., Ajibade D.V., Dhawan P. et al. Vitamin D: metabolism. Endocrinol Metab Clin N Am. 2010; 39:243-53. https:// doi.org/10.1016/j.ecl.2010.02.002
  40. Michaud J., Naud J., Ouimet D. et al. Reduced hepatic synthesis of calcidiol in uremia. J Am Soc Nephrol. 2010; 21:1488-1497. https://doi.org/10.1681/ASN.2009080815
  41. Levin A., Bakris G.L., Molitch M. et al. Prevalence of abnormal serum vitamin D, PTH, calcium, and phosphorus in patients with chronic kidney disease: results of the study to evaluate early kidney disease. Kidney Int. 2007; 71(1):31-8.
  42. Chesney R.W. Interactions of vitamin D and the proximal tubule. Pediatr Nephrol. 2016; 31(1):7-14. doi: 10.1007/s00467-015-3050-5.
  43. Friedll C., Zitt E. Vitamin D prohormone in the treatment of secondary hyperparathyroidism in patients with chronic kidney disease. Int J Nephrol Renovasc Dis. 2017; 11(10):109-122. doi: 10.2147/IJNRD.S97637.
  44. Hasegawa H., Nagano N., Urakawa I. et al. Direct evidence for a causative role of FGF23 in the abnormal renal phosphate handling and vitamin D metabolism in rats with early-stage chronic kidney disease. Kidney Int. 2010; 78(10):975-980. doi: 10.1038/ki.2010.313.
  45. Taal M.W., Thurston V., McIntyre N.J., Fluck R.J., McIntyre C.W. The impact of vitamin D status on the relative increase in fibroblast growth factor 23 and parathyroid hormone in chronic kidney disease. Kidney Int. 2014; 86(2):407-413. doi: 10.1038/ki.2013.537.
  46. Isakova T., Wahl P., Vargas G.S. et al. Fibroblast growth factor 23 is elevated before parathyroid hormone and phosphate in chronic kidney disease. Kidney Int 2011; 79:1370-1378. https://doi.org/ 10.1038/KI.2011.47
  47. Nitta K., Nagano N., Tsuchiya K. Fibroblast growth factor 23/klotho axis in chronic kidney disease. Nephron Clin Pract. 2014; 128(1-2):1. doi: 10.1159/000365787.
  48. Pavik I., Jaeger P., Ebner L. et al. Secreted Klotho and FGF23 in chronic kidney disease Stage 1 to 5: a sequence suggested from a cross-sectional study. Nephrol Dial Transpl. 2013; 28(2):352-359. doi: 10.1093/ndt/gfs460.
  49. Shimamura Y., Hamada K., Inoue K. et al. Serum levels of soluble secreted alpha-Klotho are decreased in the early stages of chronic kidney disease, making it a probable novel biomarker for early diagnosis. Clin Exp Nephrol. 2012; 16(5):722-729. doi: 10.1007/s10157-012-0621-7.
  50. Hu M.C., Shi M., Zhang J. et al. Klotho deficiency causes vascular calcification in chronic kidney disease. J Am Soc Nephrol. 2011; 22(1):124-136.
  51. Lim K., Lu T.S., Molostvov G. et al. Vascular Klotho deficiency potentiates the development of human artery calcification and mediates resistance to fibroblast growth factor 23. Circulation. 2012; 125(18):2243-2255. doi: 10.1161/CIRCULATIONAHA.111.053405.
  52. Kuro-O M. The Klotho proteins in health and disease. Nat Rev Nephrol. 2019 Jan;15(1):27-44. doi: 10.1038/s41581-018-0078-3.
  53. Lacroix J.S., Urena-Torres P. Potential application of fibroblast growth factor 23-klotho axis in chronic kidney disease. Nephrol Ther. 2020; 16(2):83-92. doi: 10.1016/j.nephro.2019.05.003.
  54. Kuro-O M. Klotho and endocrine fibroblast growth factors: marker of chronic kidney disease progression and cardiovascular complications? Nephrol Dial Transplant. 2019; 34(1):15-21. doi: 10.1093/ndt/gfy126.
  55. Krajisnik T., Björklund P., Marsell R. et al. Fibroblast growth factor-23 regulates parathyroid hormone and 1-alphahydroxylase expression in cultured bovine parathyroid cells. Endocrinology. 2007; 195(1):125-131.
  56. Shimada T., Hasegawa H., Yamazaki Y. et al. FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis. Bone Miner Res. 2004; 19(3):429-435.
  57. Portale A.A., Wolf M., Juppner H. et al. Disordered FGF23 and mineral metabolism in children with CKD. Clin. J. Am. Soc. Nephrol. 2014; 9:344-353. doi: 10.2215/CJN.05840513.
  58. Seiler S, Heine G H, Fliser D. Clinical relevance of FGF-23 in chronic kidney disease Kidney Int. 2009;76:S34-S42. doi: 10.1038/ki.2009.405.
  59. Wolf M. Mineral (Mal) Adaptation to Kidney Disease - Young Investigator Award Address: American Society of Nephrology Kidney Week 2014. Clin J Am Soc Nephrol. 2015; 10(10):1875-85. doi: 10.2215/CJN.04430415.
  60. Bellasi A., Galassi A., Mangano M., Di Lullo L., Cozzolino M. Vitamin D Metabolism and Potential Effects of Vitamin D Receptor Modulation in Chronic Kidney Disease. Curr Drug Metab. 2017;18(7):680-688. doi: 10.2174/1389200218666170427112735. PMID: 28460623.
  61. Negrea L. Active Vitamin D in Chronic Kidney Disease: Getting Right Back Where We Started from? Kidney Dis (Basel). 2019; 5(2):59-68. DOI: 10.1159/000495138
  62. Pasaoglu O.T., Senelmis A., Helvaci O. et al. FGF23, alpha-Klotho and vitamin D mediated calcium-phosphate metabolism in haemodialysis patients. Med Biochem. 2021; 40(2):160-166. doi: 10.5937/jomb0-27408.
  63. Portillo M.R., Rodríguez-Ortiz M.E. Secondary Hyperparthyroidism: Pathogenesis, Diagnosis, Preventive and Therapeutic Strategies. Rev Endocr Metab Disord. 2017; 18(1):79-95. doi: 10.1007/s11154-017-9421-4.
  64. KDIGO 2017 Clinical Practice Guideline Update for the Diagnosis, Evaluation, Prevention, and Treatment of Chronic Kidney Disease-Mineral and Bone Disorder (CKDMBD). Kidney Int Suppl. 2017; 7(1):1-59. DOI: 10.1016/j.kisu.2017.04.001.
  65. Ennis J.L., Worcester E.M., Coe F.L., Sprague S.M. Current recommended 25-hydroxyvitamin D targets for chronic kidney disease management may be too low. J Nephrol. 2016; 29(1):63-70. doi: 10.1007/s40620-015-0186-0.
  66. Kandula P., Dobre M., Schold J.D. et al. Vitamin D supplementation in chronic kidney disease: a systematic review and meta-analysis of observational studies and randomized controlled trials. Clin J Am Soc Nephrol. 2011; 6(1):50-62. doi: 10.2215/CJN.03940510.
  67. Christodoulou M., Aspray T.J., Schoenmakers I. Vitamin D Supplementation for Patients with Chronic Kidney Disease: A Systematic Review and Meta analyses of Trials Investigating the Response to Supplementation and an Overview of Guidelines. Calcif Tissue Int. 2021; Apr 25. https://doi.org/10.1007/s00223-021-00844-1
  68. Bover J., Egido J., Fernández-Giráldez E. et al. Vitamin D, vitamin D receptor and the importance of its activation in patients with chronic kidney disease. Nefrologia. 2015; 35(1):28-41. doi: 10.3265/Nefrologia.pre2014.Sep.11796.
  69. Zand L., Kumar R. The Use of Vitamin D Metabolites and Analogues in the Treatment of Chronic Kidney Disease. Endocrinol Metab Clin North Am. 2017; 46(4):983-1007. doi: 10.1016/j.ecl.2017.07.008.
  70. Wu-Wong J.R., Nakane M., Ma J. et al. Effects of vitamin D analogs on gene expression profiling in human coronary artery smooth muscle cells. Atherosclerosis 2006; 186:20-840.
  71. Nakane M., Ma J., Rose A.E. et al. Differential effects of vitamin D analogs on calcium transport. J Steroid Biochem Mol Biol. 2007; 103: 84-9.
  72. Martin K.J., Gonzalez E.A., Gellens M.E. Therapy of secondary hyperparathyroidism with 19-nor-1alpha,25-dihydroxyvitamin D2. Am J Kidney Dis. (suppl 2). 1998; 32:S61-S66.
  73. Lund R., Tian J., Melnick J. et al. Differential effects of calcitol and calcitriol on intestinal calcium absorption in hemodialysis patients [abstract no. SP-607]. XLIII European Renal Association-European Dialysis and Transplant Association (ERA-EDTA) Congress; 2006 Jul 15-18; Glasgow.
  74. Coyne D.W., Grieff M., Ahya S.N. et al. Differential effects of acute administration of 19-nor-1,25-dihydroxyvitamin D2 and 1,25-dihydroxy-vitamin D3 on serum calcium and phosphorus in hemodialysis patients.Am J Kidney Dis. 2002; 40:1283-1288.
  75. Olazola I., Caorsi H., Fajardo L. et al. Effectiveness and safety of a 6-month treatment with paricalcitol in patients on hemodialysis with secondary hyperparathyroidism. J Bras Nefrol. 2016; 38(3):302-312. doi: 10.5935/0101-2800.20160047.
  76. Večerić-Haler Ž., Romozi R., Antonič M. et al. Comparison of the pharmacological effects of paricalcitol versus calcitriol on secondary hyperparathyroidism in the dialysis population. Therapeutic Apheresis and Dialysis 2016; 20(3):261-266. doi: 10.1111/1744-9987.12434.
  77. Coyne D., Acharya M., Qiu P. et al. Paricalcitol capsule for the treatment of secondary hyperparathyroidism in stages 3 and 4 CKD. AJKD. 2006; 47(2):263-276.
  78. Bover J., DaSilva I., Furlano M. et al. Clinical Uses of 1,25-dihydroxy-19-nor-vitamin D2 (Paricalcitol). Current Vascular Pharmacology. 2014, 12:313-323. doi: 10.2174/15701611113119990028.
  79. Sprague S.M., Llach F., Amdahl M. et al.Paricalcitol versus calcitriol in the treatment of secondary hyperparathyroidism. Kidney Int. 2003; 63:1483-1490.
  80. Cozzolino M., Covic A., Martinez-Placencia B., Xynos K. Treatment failure of active vitamin D therapy in chronic kidney disease: predictive factors. Am J Nephrol. 2015; 42(3):228-236. doi: 10.1159/000441095.
  81. Llach F, Yudd M. Paricalcitol in dialysis patientswith calcitriol-resistant secondary hyperparathyroidism. AJKD 2001; 38(5), Suppl 5:S45-S50.
  82. Capuano A. Serio V., Pota A. et al. Beneficial effects of better control of secondary hyperparathyroidism with paricalcitol in chronic dialysis patients. J Nephrol.2009; 22: 59-68.
  83. Sterz R., Frye С., Khan S. et al. Paricalcitol treatment in CKD patients with secondary hyperparathyroidism associated with better health outcomes when compared with no vitamin D receptor (VDR) activator treatment. Abstract#Poster No. 257, National Kidney Foundation, Spring Clinical Meeting Orlando, Florida, April 14-16, 2010.
  84. Obermüller N., Rosenkranz A. R., Muller H-W. et al. Long-term therapy outcomes when treating chronic kidney disease patients with paricalcitol in German and Austrian clinical practice (TOP study). Int J Mol Sci. 2017; 18(10):2057. doi: 10.3390/ijms18102057.
  85. Zhang T., Ju H., Chen H., Wen W. Comparison of paricalcitol and calcitriol in dialysis patients with secondary hyperparathyroidism: a meta-analysis of randomized controlled studies. Therapeutic Apheresis and Dialysis. 2019; 23(1):73-79. doi: 10.1111/1744-9987.12760.
  86. Xu W., Gong L., Lu J., Tang W. Paricalcitol vs. cinacalcet for secondary hyperparathyroidism in chronic kidney disease: A meta-analysis. Experimental and Therapeutic Medicine. 2020; 20(4):3237-3243. doi: 10.3892/etm.2020.9044.
  87. Liu Y., Liu L-Y., Jia Y. et al. Efficacy and safety of paricalcitol in patients undergoing hemodialysis: a meta-analysis. Drug Des Devel Ther. 2019; 13:999-1009. doi: 10.2147/DDDT.S176257.
  88. Behets G. J., Spasovski G., Sterling L. R. et al. Bone histomorphometry before and after long-term treatment with cinacalcet in dialysis patients with secondary hyperparathyroidism. Kidney Int. 2015; 87(4):846-856. doi: 10.1038/ki.2014.349.
  89. Hruska K.A., Teitelbaum S. New features of renal osteodystrophy. N Engl J Med. 1995; 333:166-174.
  90. Lacey D.M., Timms E., Tan H.E. et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation fnd activation. Cell. 1998; 93:165-176.
  91. Wang Y., Borchert M.L., Deluca H.F. Identification of the vitamin D receptor in various cells of the mouse kidney. Kidney Int. 2012; 81(10): 993-1001. doi: 10.1038/ki.2011.463.
  92. Zhang X., Wu X., Xiong, L. et al. Role of vitamin D3 in regulation of T helper cell 17 and regulatory T-cell balance in rats with immunoglobulin a nephropathy. Iran. J. Kidney. Dis. 2014; 8(5), 363-370.
  93. Li X-H., Huang X-P., Pan L. et al. Vitamin D deficiency may predict a poorer outcome of IgA nephropathy. BMC Nephrol., 2016; 17(1):164. doi: 10.1186/s12882-016-0378-4.
  94. Liu L.J., Lv J.C., Shi S.F. et al. Oral calcitriol for reduction of proteinuria in patients with IgA nephropathy: A randomized controlled trial. Am. J. Kidney Dis. 2012; 59(1):67-74. doi: 10.1053/j.ajkd.2011.09.014.
  95. Deng J., Zheng X., Xie H., Chen L. Calcitriol in the treatment of IgA nephropathy with non-nephrotic range proteinuria: a meta-analysis of randomized controlled trials. Clin. Nephrol. 2017; 87(1):21-27. doi: 10.5414/CN108915.
  96. Yuan D., Fang Z., Sun F. et al. Effect of vitamin D and tacrolimus combination therapy on IgA nephropathy. Med. Sci. Monit. 2017; 23:3170-3177. doi: 10.12659/msm.905073.
  97. Banerjee S., Basu S., Sengupta J. Vitamin D in nephrotic syndrome remission: A case-control study. Pediatr. Nephrol. 2013; 28(10):1983-1989. doi: 10.1007/s00467-013-2511-y.
  98. Al-Eisa A.A., Haider M.Z. Vitamin D receptor gene TaqI and Apal polymorphisms and steroid responsiveness in childhood idiopathic nephrotic syndrome. Int. J. Nephrol. Renovasc. Dis. 2016; 9:187-192. doi: 10.2147/IJNRD.S111538.
  99. Gembillo G., Siligato R., Amatruda M., Conti G., Santoro D. Vitamin D and Glomerulonephritis. Medicina. 2021; 57(2):186-190. doi: 10.3390/medicina57020186.
  100. De Zeeuw D., Agarwal R., Amdahl M. et al. Selective vitamin D receptor activation with paricalcitol for reduction of albuminuria in patients with type 2 diabetes (VITAL study): a randomised controlled trial. Lancet. 2010; 376(9752):1543-51. doi: 10.1016/S0140-6736(10)61032-X.
  101. Agarwal R., Acharya M., Tian J. et al. Antiproteinuric effect of oral paricalcitol in chronic kidney disease. Kidney Int, 2005; 68(6):2823-8. doi: 10.1111/j.1523-1755.2005.00755.x.
  102. Blanco-García R., Bravo-López J. J., Moreiras-Plaza M. et al. Microalbuminuria, another use for paricalcitol? Our experience in advanced chronic kidney disease. Nefrologia. 2012; 32(3):401-2. doi: 10.3265/Nefrologia.pre2012.Feb.11378.
  103. De Lorenzo A., Salanova L., Bomback A. S. et al. Oral paricalcitol as antiproteinuric agent in chronic kidney disease. Nefrologia. 2013; 33(5):709-15. doi: 10.3265/Nefrologia.pre2013.Jun.11928.
  104. Ekart R., Bevc S., Hojs R., Hojs N. Proteinuria and albuminuria during and after paricalcitol treatment in chronic kidney disease patients. J Clin Pharmacol. 2016; 56(6):761-768. doi: 10.1002/jcph.660.
  105. Coronel F., Cigarran S., Gomis A. et al. Changes in peritoneal membrane permeability and proteinuria in patients on peritoneal dialysis after treatment with paricalcitol - a preliminary study. Clin Nephrol. 2012; 78(2):93-99. doi: 10.5414/CN107570.
  106. De Nicola L., Conte G., Russo D. et al. Antiproteinuric effect of add-on paricalcitol in CKD patients under maximal tolerated inhibition of renin-angiotensin system: a prospective observational study. BMC Nephrology. 2012; 13:150. doi: 10.1186/1471-2369-13-150.
  107. Li X-H., Feng L, Yang Z-H., Liao Y-H. Effect of active vitamin D on cardiovascular outcomes in predialysis chronic kidney diseases: A systematic review and meta-analysis. Nephrology. 2015; 20(10):706-714. doi: 10.1111/nep.12505.
  108. Lucisano S., Arena A., Stassi G. et al. Role of paricalcitol in modulating the immune response in patients with renal disease. Int J Endocrin. 2015; 2015:765364. doi:10.1155/2015/765364
  109. Laurent G., Kishore B.K., Tulkens P.M. Aminoglycoside-induced renal phospholipidosis and nephrotoxicity. Biochem Pharmacol. 1990; 40(11):2383-2392. doi: 10.1016/0006-2952(90)90078-y.
  110. Bulut G., Basbugan Y., Ari E. et al. Paricalcitol may improve oxidative DNA damage on experimental amikacin-induced nephrotoxicity model. Ren. Fail. 2016; 38(5):751-758. doi: 10.3109/0886022X.2016.1158071.
  111. Martínez-Arias L., Panizo S., Alonso-Montes C. et al. Effects of calcitriol and paricalcitol on renal fibrosis in CKD. Nephrol Dial Transplant. 2021; 36(5):793-803. doi: 10.1093/ndt/gfaa373.
  112. Rubel D., Stock J., Ciner A. et al. Antifibrotic, nephroprotective effects of paricalcitol versus calcitriol on top of ACE-inhibitor therapy in the COL4A3 knockout mouse model for progressive renal fibrosis. Nephrol Dial Transplant. 2014; 29(5):1012-1019. doi: 10.1093/ndt/gft434.
  113. Scialla J.J., Wolf M. Roles of phosphate and fibroblast growth factor 23 in cardiovascular disease. Nat Rev Nephrol. 2014;10(5):268-278. doi: 10.1038/nrneph.2014.49.
  114. Theodoratou E., Tzoulaki I., Zgaga L., Ioannidis J.P. Vitamin D and multiple health outcomes: umbrella review of systematic reviews and meta-analyses of observational studies and randomised trials. BMJ. 2014; 348:g2035. doi: 10.1136/bmj.g2035.
  115. Yamamoto K., Robinson-Cohen C., de Oliveira M. et al. Dietary phosphorus is associated with greater left ventricular mass. Kidney Int. 2013; 83(4):707-714. doi: 10.1038/ki.2012.303.
  116. Foley R.N. Clinical epidemiology of cardiovascular disease in chronic kidney disease. J Ren Care. 2010; 36(Suppl 1):4e8. doi:10.1111/j.1755- 6686.2010.00171.x
  117. Zoccali C., Curatola G., Panuccio V. et al. Paricalcitol and endothelial function in chronic kidney disease trial. Hypertension. 2014; 64(5):1005-11. doi:10.1161/HYPERTENSIONAHA.114.03748.
  118. Hu X., Shang J., Yuan W. et al. Effects of paricalcitol on cardiovascular outcomes and renal function in patients with chronic kidney disease: A metaanalysis. Herz. 2018;43(6):518-528. doi: 10.1007/s00059-017-4605-y.
  119. Six I., Okazaki H., Gross P. et al. Direct, acute effects of Klotho and FGF23 on vascular smooth muscle and endothelium. PLoS One. 2014; 9(4):e93423. doi: 10.1371/journal.pone.0093423.
  120. Maltese G., Psefteli P.M., Rizzo B. et al. The anti-ageing hormone klotho induces Nrf2-mediated antioxidant defences in human aortic smooth muscle cells. J Cell Mol Med. 2017;21(3):621-627. doi: 10.1111/jcmm.12996.
  121. Lundwall K, Jörneskog G, Jacobson SH, Spaak J. Paricalcitol, Microvascular and Endothelial Function in Non-Diabetic Chronic Kidney Disease: A Randomized Trial. Am J Nephrol 2015;42(4):265-273.
  122. Chitalia N., Ismail T., Tooth L. et al. Impact of vitamin D supplementation on arterial vasomotion, stiffness and endothelial biomarkers in chronic kidney disease patients. PLoS One. 2014; 9(3):e91363. doi: 10.1371/journal.pone.0091363.
  123. Levin A., Tang M., Perry T. et al. Randomized Controlled Trial for the Effect of Vitamin D Supplementation on Vascular Stiffness in CKD. Clin J Am Soc Nephrol. 2017; 12(9):1447-1460. doi: 10.2215/CJN.10791016.
  124. Kumar V., Yadav A.K., Lal A. et al. Randomized Trial of Vitamin D Supplementation on Vascular Function in CKD. J Am Soc Nephrol. 2017; 28(10):3100-3108. doi: 10.1681/ASN.2017010003.
  125. Cooke J.P. Asymmetrical dimethylarginine: the Über marker? Circulation. 2004; 109(15):1813-1818. doi: 10.1161/01.CIR.0000126823.07732.D5.
  126. Oliva-Damaso E., Oliva-Damaso N., Rodriguez-Esparragon F. et al. Asymmetric Dimethylarginine (ADMA) Levels Are Lower in Hemodialysis Patients Treated With Paricalcitol. Kidney Int Rep. 2016; 2(2):165-171. doi: 10.1016/j.ekir.2016.10.002.
  127. Lundwall K., Jacobson S.H., Jörneskog G., Spaak J. Treating endothelial dysfunction with vitamin D in chronic kidney disease: a meta-analysis. BMC Nephrol. 2018; 19(1): 247. doi: 10.1186/s12882-018-1042-y.
  128. Zoccali C., Torino C., Curatola G. et al. Serum phosphate modifies the vascular response to vitamin D receptor activation in chronic kidney disease (CKD) patients. Nutr Metab Cardiovasc Dis. 2016; 26(7):581-589. doi: 10.1016/j.numecd.2016.03.008.
  129. Kalampogias A., Siasos G., Oikonomou E. et al. Basic Mechanisms in Atherosclerosis: The Role of Calcium. Med Chem. 2016; 12(2):103-113. doi: 10.2174/1573406411666150928111446.
  130. Tousoulis D. Vitamin D deficiency and cardiovascular disease: Fact or fiction? Hellenic J Cardiol. 2018; 59:69e71. https://doi.org/10.1016/j.hjc.2018.06.014
  131. Cherney D.Z.I., Lytvyn Y., McCullough P.A. Cardiovascular Risk Reduction in Patients with Chronic Kidney Disease: Potential for Targeting Inflammation with Canakinumab. J Am Coll Cardiol. 2018; 71:2415e2418. doi: 10.1016/j.jacc.2018.04.008.
  132. Siasos G., Tousoulis D., Oikonomou E. et al. Vitamin D3, D2 and arterial wall properties in coronary artery disease. Curr Pharm Des. 2014; 20(37):5914-18. doi: 10.2174/1381612820666140619122937.
  133. Siasos G, Tousoulis D, Oikonomou E, et al. Vitamin D serum levels are associated with cardiovascular outcome in coronary artery disease. Int J Cardiol. 2013; 168:4445e4447. https://doi.org/10.1016/j.ijcard.2013.06.151. [10].
  134. Tousoulis D., Siasos G., Maniatis K. et al. Serum osteoprotegerin and osteopontin levels are associated with arterial stiffness and the presence and severity of coronary artery disease. Int J Cardiol. 2013; 167:1924-1928. Doi:10.1016/j.ijcard.2012.05.001.
  135. Li Y.C., Kong J., Wei M. et al. 1,25-Dihydroxyvitamin D(3) is a negative endocrine regulator of the renin-angiotensin system. J. Clin. Invest., 2002; 110(2):229-238.
  136. Zhang Y., Kong J., Deb D.K. et al. Vitamin D receptor attenuates renal fibrosis by suppressing the renin-angiotensin system. J. Am. Soc. Nephrol. 2010; 21(6):966-973. doi: 10.1681/ASN.2009080872.
  137. Zhang W., Chen L., Zhang, L. et al. Administration of exogenous 1,25(OH)2D3 normalizes overactivation of the central renin-angiotensin system in 1alpha(OH)ase knockout mice. Neurosci. Lett., 2015; 588:184-189. doi: 10.1016/j.neulet.2015.01.013.
  138. Canale D., de Braganca A.C., Goncalves J.G. et al. Vitamin D deficiency aggravates nephrotoxicity, hypertension and dyslipidemia caused by tenofovir: Role of oxidative stress and renin-angiotensin system. PLoS One. 2014; 9(7):e103055. doi: 10.1371/journal.pone.0103055.
  139. Chandel N., Ayasolla K., Wen H. et al. Vitamin D receptor deficit induces activation of renin angiotensin system via SIRT1 modulation in podocytes. Exp. Mol. Pathol. 2017; 102(1):97-105. doi: 10.1016/j.yexmp.2017.01.001.
  140. Deng X., Cheng J., Shen M. Vitamin D improves diabetic nephropathy in rats by inhibiting renin and relieving oxidative stress. J. Endocrinol. Invest., 2016; 39(6):657- 666. doi: 10.1007/s40618-015-0414-4.
  141. Zhang Z., Sun L., Wang Y. et al. Renoprotective role of the vitamin D receptor in diabetic nephropathy. Kidney Int. 2008; 73(2):163-171.
  142. Klaus G. Renoprotection with vitamin D: specific for diabetic nephropathy? Kidney Int. 2008; 73(2):141-143.
  143. Tomaschitz A., Pilz S., Ritz E. et al. Independent association between 1,25-dihydroxyvitamin D, 25-hydroxyvitamin D and the renin-angiotensin system: The Ludwigshafen Risk and Cardiovascular Health (LURIC) study. Clin Chim Acta. 2010; 411(17-18):1354-1360. doi: 10.1016/j.cca.2010.05.037.
  144. Santoro D., Caccamo D., Lucisano S. et al. Interplay of vitamin D, erythropoiesis, and the renin-angiotensin system. Biomed. Res. Int. 2015; 2015:145828. doi: 10.1155/2015/145828.
  145. Kota S.K., Jammula S., Meher L.K. et al. Renin-angiotensin system activity in vitamin D deficient, obese individuals with hypertension: An urban Indian study. Indian J. Endocrinol. Metab. 2011; 15(Suppl 4): S395-401. doi: 10.4103/2230-8210.86985.
  146. Forman J.P., Williams J.S., Fisher N.D. Plasma 25-hydroxyvitamin D and regulation of the reninangiotensin system in humans. Hypertension. 2010; 55(5):1283-128. doi: 10.1161/HYPERTENSIONAHA.109.148619.
  147. Sluyter J.D., Camargo C.A., Stewart A.W. et al. Effect of Monthly, High-Dose, Long-Term Vitamin D Supplementation on Central Blood Pressure Parameters: A Randomized Controlled Trial Substudy. J Am Heart Assoc. 2017; 6(10):e006802. doi: 10.1161/JAHA.117.006802.
  148. Fyfe-Johnson A.L., Alonso A., Selvin E. et al. Serum fibroblast growth factor-23 and incident hypertension: the Atherosclerosis Risk in Communities (ARIC) Study. J Hyperten. 2016; 34(7):1266-1272. doi: 10.1097/HJH.0000000000000936.
  149. Andrukhova O., Slavic S., Smorodchenko A. et al. FGF23 regulates renal sodium handling and blood pressure. EMBO Mol Med. 2014; 6(6):744-759. doi: 10.1002/emmm.201303716.
  150. Dai B., David V., Martin A. et al. A comparative transcriptome analysis identifying FGF23 regulated genes in the kidney of a mouse CKD model. PLoS One 2012; 7(9):e44161. doi: 10.1371/journal.pone.0044161.
  151. De Borst M.H., Vervloet M.G., ter Wee P.M., Navis G. Cross talk between the renin-angiotensinaldosterone system and vitamin D-FGF-23-klotho in chronic kidney disease. J Am Soc Nephrol. 2011; 22(9):1603-1609. doi: 10.1681/ASN.2010121251.
  152. Singh S., Grabner A., Yanucil C. et al. Fibroblast growth factor 23 directly targets hepatocytes to promote inflammation in chronic kidney disease. Kidney Int. 2016; 90(5):985-996. doi: 10.1016/j.kint.2016.05.019.
  153. Munoz Mendoza J., Isakova T., Ricardo A.C. et al. Chronic Renal Insufficiency C. Fibroblast growth factor 23 and Inflammation in CKD. Clin J Am Soc Nephrol. 2012; 7(7):1155-1162. doi: 10.2215/CJN.13281211.
  154. Testa, A., Mallamaci, F., Benedetto F.A. et al. Vitamin D Receptor (VDR) Gene Polymorphism is Associated with Left Ventricular (LV) Mass and Predicts Left Ventricular Hypertrophy (LVH) progression in End-Stage Renal Disease (ESRD) patients. J Bone Miner Res. 2010; 25(2):313-319. doi: 10.1359/jbmr.090717.
  155. Santoro D., Gagliostro G., Alibrandi A. et al. Vitamin D receptor gene polymorphism and left ventricular hypertrophy in chronic kidney disease. Nutrients. 2014; 6(3):1029-1037. doi: 10.3390/nu6031029.
  156. Inaguma D., Tanaka A., Shinjo H. Kato A., Murata M. Predialysis vitamin D receptor activator treatment and cardiovascular events after dialysis initiation: A multicenter observational study. Nephron. 2016; 133(1):35-43. doi: 10.1159/000445507.
  157. Messa P., Cozzolino M., Brancaccio D. et al. Effect of VDRA on survival in incident hemodialysis patients: Results of the FARO-2 observational study. BMC Nephrol. 2015; 16:11. doi: 10.1186/s12882-015-0006-8.
  158. Negri A.L. Association of oral calcitriol with improved survival in non-dialysed and dialysed patients with CKD. Nephrol. Dial. Transplant. 2009; 24(2):341-344. doi: 10.1093/ndt/gfn624.
  159. Obi Y., Hamano T., Wada A., Tsubakihara Y. Vitamin D receptor activator use and cause-specific death among dialysis patients: A nationwide cohort study using coarsened exact matching. Sci. Rep. 2017; 7:41170. doi: 10.1038/srep41170.
  160. Naves-Diaz M., Alvarez-Hernandez D., Passlick-Deetjen J. et al. Oral active vitamin D is associated with improved survival in hemodialysis patients. Kidney Int. 2008; 74(8): 1070-1078. doi: 10.1038/ki.2008.343.
  161. Thadhani R., Appelbaum E., Pritchett Y. et al. Vitamin D therapy and cardiac structure and function in patients with chronic kidney disease: the PRIMO randomized controlled trial. JAMA. 2012; 307(7):674-684. doi: 10.1001/jama.2012.120.
  162. Tamez H., Zoccali C., Packham D. et al. Vitamin D reduces left atrial volume in patients with left ventricular hypertrophy and chronic kidney disease. Am Heart J. 2012; 164:902-909. doi: 10.1016/j.ahj.2012.09.018.
  163. Moe S.M., Thadhani R. What have we learned about chronic kidney disease-mineral bone disorder from the EVOLVE and PRIMO trials? Curr. Opin. Nephrol. Hypertens. 2013; 22(6):651-655. doi: 10.1097/MNH.0b013e328365b3a3.
  164. Meems L.M.G., Cannon M.V., Mahmud H. et al. The vitamin D receptor activator paricalcitol prevents fibrosis and diastolic dysfunction in a murine model of pressure overload. J Steroid Biochem Mol Biol. 2012; 132(3-5):282-289. doi: 10.1016/j.jsbmb.2012.06.004.
  165. Goodman W., London G.M., Amann K. et al. Vascular calcification in chronic kidney disease. Am J Kidney Dis. 2004; 43(3):572-579. doi: 10.1053/j.ajkd.2003.12.005.
  166. Gungor O., Kocyigit I., Yilmaz M.I., Sezer S. Role of vascular calcification inhibitors in preventing vascular dysfunction and mortality in hemodialysis patients. Semin Dial. 2017; 31(1):72-81. doi: 10.1111/sdi.12616.
  167. Chen N.X., Moe S.M. Pathophysiology of Vascular Calcification. Curr Osteoporos Rep. 2015; 13(6):372-380. doi: 10.1007/s11914-015-0293-9.
  168. El-Abbadi M., Pai A., Leaf E. et al. Phosphate feeding induces arterial medial calcification in uremic mice: role of serum phosphorus, fibroblast growth factor-23, and osteopontin. Kidney Int. 2009; 75:1297-1307. doi: 10.1038/ki.2009.83.
  169. Kuro-o M., Matsumura Y., Aizawa H. et al. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature. 1997; 390(6655):45-51. doi: 10.1038/36285.
  170. Lau W.L., Leaf E.M., Hu M.C. et al. Vitamin D receptor agonists increase klotho and osteopontin while decreasing aortic calcification in mice with chronic kidney disease fed a high phosphate diet. Kidney Int. 2012; 82(12):1261-1270. doi: 10.1038/ki.2012.322.
  171. Rodriguez M., Martinez-Moreno J.M., Rodríguez-Ortiz M.E. et al. Vitamin D and vascular calcification in chronic kidney disease. Kidney Blood Press Res. 2011; 34(4):261-268. doi: 10.1159/000326903.
  172. Li X., Speer M.Y., Yang H., Bergen J., Giachelli C.M. Vitamin D receptor activators induce an anticalcific paracrine program in macrophages: requirement of osteopontin. Arterioscler Thromb Vasc Biol. 2010; 30:321-326. doi: 10.1161/ATVBAHA.109.196576.
  173. Mizobuchi M., Finch J.L., Martin D.R., Slatopolsky E. Differential effects of vitamin D receptor activators on vascular calcification in uremic rats. Kidney Int. 2007; 72(6): 709-715.
  174. Caglar K., Peng Y., Pupim L.B. et al. Inflammatory signals associated with hemodialysis. Kidney Int. 2002; 62(4):1408-1416.
  175. Kuntsevich V., Thijssen S., Kitzler T. et al. Impact of Paricalcitol Administration on Cytokine Induction During Hemodialysis. Am Soc Nephrol Congress 2009; SA-PO2611
  176. McDonald H.I., Thomas S.L., Nitsch D. Chronic kidney disease as a risk factor for acute community-acquired infections in high-income countries: a systematic review. BMJ Open. 2014; 4(4):e004100. doi: 10.1136/bmjopen-2013-004100.
  177. Rudiger A., Singer M. Mechanisms of sepsis-induced cardiac dysfunction. Crit Care Med. 2007; 35:1599-1608.
  178. Lee A.S., Jung Y.J., Thanh T.N. et al. Paricalcitol attenuates lipopolysaccharide-induced myocardial inflammation by regulating the NF-κB signaling pathway. Int J Molecular Medicine. 2016; 37(4):1023-1029. doi: 10.3892/ijmm.2016.2516.
  179. Kiss Z., Ambrus C., Almasiet C. et al. Serum 25(OH)-cholecalciferol concentration is associated with hemoglobin level and erythropoietin resistance in patients on maintenance hemodialysis Nephron Clin Pract. 2011; 117(4):373-378. doi: 10.1159/000321521.
  180. Arabi SM, Ranjbar G, Bahrami LS, Vafa M, Norouzy A. The effect of vitamin D supplementation on hemoglobin concentration: a systematic review and meta-analysis. Nutr J. 2020;19(1):11. doi: 10.1186/s12937-020-0526-3.
  181. Fusaro M., D’Angelo A., Naso A. et al. Treatment with calcimimetic (cinacalcet) alters epoetin dosage requirements in dialysis patients: preliminary report. Ren Fail. 2011; 33(7):732-735. doi: 10.3109/0886022X.2011.589937.
  182. Afsar B, Agca E, Turket S. Comparison of erythropoietin resistance in hemodialysis patients using calcitriol, cinacalcet, or paricalcitol. J Clin Pharmacol. 2015; 55(11): 1280-1285. doi: 10.1002/jcph.556.
  183. Donate-Correa J., Henríquez-Palop F., Martín-Núñez E. et al. Effect of paricalcitol on FGF-23 and Klotho in kidney transplant recipients. Transplantation. 2016; 100(11):2432-2438. doi: 10.1097/TP.0000000000001339.
  184. Kalantar-Zadeh K., Kuwae N., Regidor D.L. et al. Survival predictability of time-varying indicators of bone disease in maintenance hemodialysis patients. Kidney Int. 2006; 70(4):771-80. doi: 10.1038/sj.ki.5001514.
  185. Lee G.H., Benner D., Regidor D.L., Kalantar-Zadeh K. Impact of kidney bone disease and its management on survival of patients on dialysis. J Ren Nutr. 2007; 17:38-44.
  186. Duranton F., Rodriguez-Ortiz M.E., Duny Y. et al. Vitamin D treatment and mortality in chronic kidney disease: a systematic review and meta-analysis. Am J Nephrol. 2013; 37(3):239-48. doi: 10.1159/000346846.
  187. Cheng J., Zhang W., Zhang X., Li X., Chen J. Efficacy and Safety of Paricalcitol Therapy for Chronic Kidney Disease: A Meta-Analysis. Clin J Am Soc Nephrol. 2012; 7(3):391-400. doi: 10.2215/CJN.03000311
  188. Dobrez D.G., Mathes A., Amdahl M. et al. Paricalcitol-treated patients experience improved hospitalization outcomes compared with calcitriol-treated patients in real-world clinical settings. Nephrol Dial Transplant. 2004; 19(5):1174-81.
  189. Teng M., Wolf M., Ofsthun M.N. et al. Activated injectable vitamin D and hemodialysis survival: a historical cohort study. J Am Soc Nephrol. 2005; 16(4):1115-25.
  190. Teng M., Wolf M., Lowrie E. et al. Survival of patients undergoing hemodialysis with paricalcitol or calcitriol therapy. N Engl J Med. 2003; 349(5):446-56.

Другие статьи по теме


Навигация по статьям
Разделы журнала
Наиболее читаемые статьи
Журнал "Нефрология и диализ"