Российское диализное общество

Просмотр статьи

<< Вернуться к списку статей журнала

Том 24 №2 2022 год - Нефрология и диализ

Дефицит глюкозо-6-фосфатдегидрогеназной активности при развитии контраст-индуцированного острого повреждения почек


Жерегеля С.Н. Глушков С.И. Карпищенко А.И.

DOI: 10.28996/2618-9801-2022-2-339-348

Аннотация: Глюкозо-6-фосфатдегидрогеназа является ключевым ферментом пентозофосфатного пути и основным источником восстановленной формы никотинамид-аденин-динуклеотид-фосфата (НАДФН). НАДФН - ведущий клеточный восстановитель, играющий центральную роль в выживании клеток. В проведенном исследовании на 200 белых беспородных крысах-самцах определяли динамику изменений концентрации восстановленного глутатиона, малонового диальдегида, а также активности ферментов антиоксидантной защиты (глюкозо-6-фосфатдегидрогеназы, глутатионпероксидазы, глутатионредуктазы и каталазы) в тканях почек и в эритроцитах лабораторных животных в условиях интоксикации рентгеноконтрастным препаратом. Установлено, что применение неионного рентгеноконтрастного препарата «омнипак-350» (йогексол) в средне-смертельной дозе ведет к дефициту активности глюкозо-6-фосфатдегидрогеназы, снижению уровня НАДФН и повреждению ткани почек и эндотелиальных клеток. Дефицит НАДФН в свою очередь может отразиться на глутатионредуктазной активности, так как этот фермент использует НАДФН для преобразования окисленного глутатиона в восстановленный. Относительная недостаточность восстановленного глутатиона, который является основным низкомолекулярным поглотителем свободных радикалов и субстратом глутатион-пероксидазной реакции, ведет к дисбалансу в сторону прооксидантных процессов. В эритроцитах и тканях почек крыс на фоне введения рентгеноконтрастного препарата отмечалась активация окислительного стресса в виде снижения концентрации восстановленного глутатиона и активности ферментов антирадикальной защиты, а также в виде увеличения содержания продуктов перекисного окисления липидов. Данные сдвиги активности ферментов антиоксидантной защиты (каталазы, глутатионпероксидазы и глутатионредуктазы) в тканях почек животных на фоне применения рентгеноконтрастного препарата следует рассматривать как характерные признаки истощения адаптационных резервов клетки. Тенденция к увеличению содержания креатинина и мочевины в плазме крови отравленных животных, свидетельствующая о снижении функциональной активности нефронов, и морфологическое исследование тканей почек, позволившее выявить признаки активации апоптоза в почечной ткани, послужили подтверждением адекватности выбранной экспериментальной модели на животных для изучения механизмов развития контраст-индуцированного острого повреждения почек. Полученные результаты позволяют сделать вывод о том, что снижение активности Г-6-ФДГ может служить пусковым фактором активации свободнорадикальных процессов, играющих важную роль в развитии контраст-индуцированного острого повреждения почек.

Для цитирования: Жерегеля С.Н., Глушков С.И., Карпищенко А.И. Дефицит глюкозо-6-фосфатдегидрогеназной активности при развитии контраст-индуцированного острого повреждения почек. Нефрология и диализ. 2022. 24(2):339-348. doi: 10.28996/2618-9801-2022-2-339-348


Весь текст

Ключевые слова: глюкозо-6-фосфатдегидрогеназа, пентозофосфатный путь, контраст-индуцированное острое повреждение почек, почка, белые беспородные крысы, glucose-6-phosphate dehydrogenase, pentose phosphate pathway, contrast-induced acute kidney injury, kidney, white mongrel rats

Список литературы:
  1. Pattharanitima P., Tasanarong A. Pharmacological Strategies to Prevent Contrast-Induced Acute Kidney Injury. BioMed Research International. 2014; 2014: 1-21. doi: 10.1155/2014/236930.
  2. Work Group Membership. Kidney Int Suppl (2011). 2012; 2(1): 2. doi: 10.1038/kisup.2012.2.
  3. Vandenberghe W., De Corte W., Hoste E. Contrast-associated AKI in the critically ill. Curr Opin Crit Care. 2014; 20(6): 596-605. doi: 10.1097/mcc.0000000000000156.
  4. Munro A., Girvan H., McLean K. Cytochrome P450-redox partner fusion enzymes. Biochimica et Biophysica Acta (BBA) - General Subjects. 2007; 1770(3): 345-359. doi: 10.1016/j.bbagen.2006.08.018.
  5. Kitagawa A., Kizub I., Jacob C. et al. CRISPR-Mediated Single Nucleotide Polymorphism Modeling in Rats Reveals Insight Into Reduced Cardiovascular Risk Associated With Mediterranean G6PD Variant. Hypertension. 2020; 76(2): 523-532. doi: 10.1161/hypertensionaha.120.14772.
  6. Leopold J., Zhang Y., Scribner A. et al. Glucose-6-Phosphate Dehydrogenase Overexpression Decreases Endothelial Cell Oxidant Stress and Increases Bioavailable Nitric Oxide. Arterioscler Thromb Vasc Biol. 2003; 23(3): 411-417. doi: 10.1161/01.atv.0000056744.26901.ba.
  7. Кулинский В.И., Колесниченко Л.С. Структура, свойства, биологическая роль и регуляция глутатионпероксидазы. Успехи совр. биол. 1993. 113(1): 107- 122.
  8. Muller G., Morawietz H. NAD(P)H Oxidase and Endothelial Dysfunction. Hormone and Metabolic Research. 2008; 41(02): 152-158. doi: 10.1055/s-0028-1086023.
  9. Thomas J., Kang S., Wyatt C. et al. Glucose-6-Phosphate Dehydrogenase Deficiency is Associated with Cardiovascular Disease in U.S. Military Centers. Tex Heart Inst J. 2018; 45(3): 144-150. doi: 10.14503/thij-16-6052.
  10. Longo L. Maternally transmitted severe glucose 6-phosphate dehydrogenase deficiency is an embryonic lethal. EMBO J. 2002; 21(16): 4229-v4239. doi: 10.1093/emboj/cdf426.
  11. Nicol C.J., Zielenski J., Tsui L.C., Wells P.G. An embryoprotective role for glucose-6-phosphate dehydrogenase in developmental oxidative stress and chemical teratogenesis. The FASEB Journal. 2000; 14(1): 111-127. doi: 10.1096/fasebj.14.1.111.
  12. Pandolfi P., Sonati F., Rivi R. et al. Targeted disruption of the housekeeping gene encoding glucose 6-phosphate dehydrogenase (G6PD): G6PD is dispensable for pentose synthesis but essential for defense against oxidative stress. EMBO J. 1995; 14(21): 5209-5215. doi: 10.1002/j.1460-2075.1995.tb00205.x.
  13. Pes G., Parodi G., Dore M. Glucose-6-phosphate dehydrogenase deficiency and risk of cardiovascular disease: A propensity score-matched study. Atherosclerosis. 2019; 282: 148-153. doi: 10.1016/j.atherosclerosis.2019.01.027.
  14. Ho H., Cheng M., Lu F. et al. Enhanced oxidative stress and accelerated cellular senescence in glucose-6-phosphate dehydrogenase (G6PD)-deficient human fibroblasts. Free Radical Biology and Medicine. 2000; 29(2): 156-169. doi: 10.1016/s0891-5849(00)00331-2.
  15. Ou Z., Chen Y., Li J. et al. Glucose-6-phosphate dehydrogenase deficiency and stroke outcomes. Neurology. 2020; 95(11): 1471-1478. doi: 10.1212/wnl.0000000000010245.
  16. Stincone A., Prigione A., Cramer T. et al. The return of metabolism: biochemistry and physiology of the pentose phosphate pathway. Biological Reviews. 2014; 90(3): 927-963. doi: 10.1111/brv.12140.
  17. Tian W., Braunstein L., Apse K. et al. Importance of glucose-6-phosphate dehydrogenase activity in cell death. American Journal of Physiology-Cell Physiology. 1999; 276(5): C1121-C1131. doi: 10.1152/ajpcell.1999.276.5.c1121.
  18. Tian W., Braunstein L., Pang J. et al. Importance of Glucose-6-phosphate Dehydrogenase Activity for Cell Growth. Journal of Biological Chemistry. 1998; 273(17): 10609-10617. doi: 10.1074/jbc.273.17.10609.
  19. Lee C., Chasalow F., Lee S. et al. A null mutation of cytoplasmic malic enzyme in mice. Mol Cell Biochem. 1980; 30(3). doi: 10.1007/bf00230167.
  20. Медицинские лабораторные технологии: Руководство по клинической лабораторной диагностике: в 2-х т. Под ред. А.И. Карпищенко. - 3-е изд., перераб. и доп. - М. ГЭОТАР-Медиа, 2012. 1. 792 с.
  21. Kornberg A., Horecker B.L., Smyrniot P.Z. Glucose-6-phosphate dehydrogenase - 6-phosphogluconic dehydrogenase. Meth. Enzymol. 1955; 1: 323-327.
  22. Глушков С.И. Нарушения системы глутатиона и их роль в патогенезе острых интоксикаций ксенобиотиками с различными механизмами токсического действия: Дис. на соискание уч. степени д-ра. мед. наук. 2006. Воен.-мед. акад. СПб. 451 с.
  23. Медицинские лабораторные технологии: руководство по клинической лабораторной диагностике: в 2-х т. Под ред. А.И. Карпищенко. - 3-е изд., перераб. и доп. - М. ГЭОТАР-Медиа, 2013. 2. 472 с.
  24. Peterson G. A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal Biochem. 1977; 83(2): 346-356. doi:10.1016/0003-2697(77)90043-4.
  25. WHO Handbook for reporting results of cancer treatment // WHO Offset Publication NO. Geneva, 1985. 48 р.
  26. Тиунов Л.А. Механизмы естественной детоксикации и антиоксидантной защиты. Вестник РАМН. 1995; 3: 9-13.
  27. Тиунов Л.А., Иванова В.А. Роль глутатиона в процессах детоксикации. Вест. АМН СССР. 1988; 1: 62-69.
  28. Corbucci G.G. The role of reduced glutathione during the course of acute haemolysis in glucose-6-phosphate dehydrogenase deficient patients: clinical and pharmacodynamic aspects. Int. J. Clin. Pharmacol. Res. 1990; 10(5): 305-310.
  29. Fico A., Paglialunga F., Cigliano L. et al. Glucose-6-phosphate dehydrogenase plays a crucial role in protection from redox-stress-induced apoptosis. Cell Death & Differentiation. 2004; 11(8): 823-831. doi:10.1038/sj.cdd.4401420.
  30. Жерегеля С.Н. Обмен глутатиона в патогенезе развития рентгеноконтрастных нефропатий. Дис. на соискание уч. степени. канд. мед. наук. Воен.-мед. акад. СПб, 2010. 197 с.
  31. Rahangdale S. Therapeutic interventions and oxidative stress in diabetes. Frontiers in Bioscience. 2009; 14:192. doi: 10.2741/3240.
  32. Touyz R. Reactive Oxygen Species, Vascular Oxidative Stress, and Redox Signaling in Hypertension. Hypertension. 2004; 44(3): 248-252. doi: 10.1161/01.hyp.0000138070.47616.9d.
  33. Zhao J., Zhang X., Guan T. et al. The association between glucose-6-phosphate dehydrogenase deficiency and abnormal blood pressure among prepregnant reproductive-age Chinese females. Hypertension Research. 2018; 42(1): 75-84. doi: 10.1038/s41440-018-0118-1.
  34. Horton J. Sterol regulatory element-binding proteins: transcriptional activators of lipid synthesis. Biochem Soc Trans. 2002; 30(6): 1091-1095. doi: 10.1042/bst0301091.
  35. Rosenstraus M., Chasin L. Isolation of mammalian cell mutants deficient in glucose-6-phosphate dehydrogenase activity: linkage to hypoxanthine phosphoribosyl transferase. Proceedings of the National Academy of Sciences. 1975; 72(2): 493-497. doi: 10.1073/pnas.72.2.493.
  36. Nóbrega-Pereira S., Fernandez-Marcos P., Brioche T. et al. G6PD protects from oxidative damage and improves healthspan in mice. Nat Commun. 2016; 7(1): doi: 10.1038/ncomms10894.
  37. Cachofeiro V., Goicochea M., de Vinuesa S. et al. Oxidative stress and inflammation, a link between chronic kidney disease and cardiovascular disease. Kidney Int. 2008; 74: 4-9. doi: 10.1038/ki.2008.516.
  38. Еропкин М.Ю., Еропкина Е.М. Культуры клеток как модельная система исследования токсичности и скрининга цитопротекторных препаратов. СПб. МОРСАР АВ, 2003. 239 с.
  39. Kehrer J., Lund L. Cellular reducing equivalents and oxidative stress. Free Radical Biology and Medicine. 1994; 17(1): 65-75. doi: 10.1016/0891-5849(94)90008-6.
  40. Majumder P., Blacker T., Nolan L. et al. Multiphoton NAD(P)H FLIM reveals metabolic changes in individual cell types of the intact cochlea upon sensorineural hearing loss. Sci Rep. 2019; 9(1). doi:10.1038/s41598-019-55329-x.

Другие статьи по теме


Навигация по статьям
Разделы журнала
Наиболее читаемые статьи
Журнал "Нефрология и диализ"