Российское диализное общество

Просмотр статьи

<< Вернуться к списку статей журнала

Том 15 №3 2013 год - Нефрология и диализ

Биомаркеры острого почечного повреждения: клинические аспекты (Обзор литературы)


Колесников С.В. Борисов А.С.

Аннотация: Острое почечное повреждение (ОПП) является распространенным, тяжелым, дорогостоящим в лечении и опасным для жизни состоянием, поражающим критически больных пациентов. В последние десятилетия внимание исследователей приковано к поиску биомаркеров ОПП, способных к раннему и адекватному мониторингу нарушенной функции почек, что необходимо для своевременного начала заместительной почечной терапии и улучшения прогноза. В литературном обзоре изложены результаты применения современных биомаркеров ОПП в клинической практике у различных категорий пациентов с ОПП. Авторами обобщены результаты доказательного использования биомаркеров ОПП на основе современных статистических методов оценки их информативности, представлены данные метаанализа, проанализированы проблемы клинической пригодности маркеров ОПП и перспективы их дальнейшего применения.

Весь текст



Ключевые слова: acute kidney injury, biomarkers, outcomes, острое почечное повреждение, биомаркеры, исходы

Список литературы:
  1. Зырянова А., Ярохно Н., Николаев К. Эффективность иммунохроматографического метода определения сердечного белка, связывающего жирные кислоты при ранней дифференциальной диагностике острого коронарного синдрома // Патология кровообращения и кардиохирургия. 2010. № 4. С. 46–50.
  2. Копылова Ю., Поз Я., Ухренков С. и др. Острое повреждение почек при трансплантации сердца: факторы риска и показания к заместительной почечной терапии // Нефрология и диализ. 2011. Т. 13. № 4. С. 419–425.
  3. Томилина Н., Подкорытова О. Острая почечная недостаточность // Нефрология и диализ. 2009. Т. 11. № 1. С. 4–20.
  4. Akcan-Arikan A., Zappitelli M., Loftis L. et al. Modified RIFLE criteria in critically ill children with acute kidney injury // Kidney Int. 2007. Vol. 71. № 10. P. 1028–1035.
  5. Bellomo R., Kellum J., Ronco C. Defining acute renal failure: physiological principles // Intensive Care Med. 2004. Vol. 30. P. 33–37.
  6. Bellomo R., Ronco C., Kellum J. et al. Acute Dialysis Quality Initiative workgroup. Acute renal failure – definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group // Crit. Care. 2004. Vol. 8.P. 204–212.
  7. Bernard A., Vyskocil A., Mahieu P. et al. Assessment of urinary retinol-binding protein as an index of proximal tubular injury // Clin. Chem. 1987. Vol. 33. P. 775–779.
  8. Bonventre J. Kidney injury molecule-1 (KIM-1): a urinary biomarker and much more // Nephrol. Dial. Transplant. 2009. Vol. 24. P. 3265–3268.
  9. Borregaard N., Sehested M., Nielsen B. et al. Biosynthesis of granule proteins in normal human bone marrow cells. Gelatinase is a marker of terminal neutrophil differentiation // Blood. 1995. Vol. 85. P. 812–817.
  10. Brar H., Olivier J., Lebrun C. et al. Predictors of mortality in a cohort of intensive care unit patients with acute renal failure receiving continuous renal replacement therapy // Am. J. Med. Sci. 2008. Vol. 335. P. 342–347.
  11. Coca S., Yalavarthy R., Concato J. et al. Biomarkers for the diagnosis and risk stratification of acute kidney injury: a systematic review // Kidney Int. 2008. Vol. 73. № 9. P. 1008–1016.
  12. Chertow G., Goldstein-Fuchs D., Lazarus J. et al. Prealbumin, mortality, and cause-specific hospitalization in hemodialysis patients // Kidney Int. 2005. Vol. 68. № 6. P. 2794–2800.
  13. Cho E., Yang H., Jo S. et al. The role of urinary liver-type Fatty Acid-binding protein in critically ill patients // J. Korean Med. Sci. 2013. Vol. 28. № 1. P. 100–105.
  14. Chowdhury P., Choudhary R., Maisel A. The appropriate use of biomarkers in heart failure // Med. Clin. North. Am. 2012. Vol. 96. № 5. P. 901–913.
  15. Cruz D., Gaiao S., Maisel A. et al. Neutrophil gelatinase-associated lipocalin as a biomarker of cardiovascular disease: a systematic review // Clin. Chem. Lab. Med. 2012. Vol. 50. № 9. P. 1533–1545.
  16. Devarajan P. NGAL in acute kidney injury: from serendipity to utility // Am. J. Kidney. Dis. 2008. Vol. 52. P. 395–399.
  17. Devarajan P. The future of pediatric acute kidney injury management-biomarkers // Semin. Nephrol. 2008. Vol. 28. № 5. P. 493–498.
  18. Devarajan P., Parikh C., Barasch J. Case 31-2007: a man with abdominal pain and elevated creatinine // N. Engl. J. Med. 2008. Vol. 358. № 3. P. 312.
  19. Dieterle F., Sistare F., Goodsaid F. et al. Renal biomarker qualification submission: a dialog between the FDA-EMEA and Predictive Safety Testing Consortium // Nat. Biotechnol. 2010. Vol. 28. P. 455–462.
  20. Dharnidharka V., Kwon C., Stevens G. Serum cystatin C is superior to serum creatinine as a marker of kidney function: a meta-analysis // Am. J. Kidney Dis. 2002. Vol. 40. P. 221–226.
  21. Endre Z., Pickering J., Walker R. et al. Improved performance of urinary biomarkers of acute kidney injury in the critically ill by stratification for injury duration and baseline renal function // Kidney Int. 2011. Vol. 79. № 10. P. 1119–1130.
  22. Flower D., North A., Sansom C. The lipocalin protein family: structural and sequence overview // Biochim. Biophys. Acta. 2000. Vol. 1482. P. 9–24.
  23. Gauer S., Sichler O., Obermuller N. et al. IL-18 is expressed in the intercalated cell of human kidney // Kidney Int. 2007. Vol. 72. P. 1081–1087.
  24. Gassenmaier T., Buchner S., Birner C. et al. High-sensitive Troponin I in acute cardiac conditions: implications of baseline and sequential measurements for diagnosis of myocardial infarction // Atherosclerosis. 2012. Vol. 222. № 1. P. 116–122.
  25. Genc G., Avci B., Aygun C. et al. Urinary Neutrophil Gelatinase-Associated Lipocalin in Septic Preterm Babies: A Preliminary Study // Am. J. Perinatol. 2012. PMID: 23277385.
  26. Goetz D., Holmes M., Borregaard N. et al. The neutrophil lipocalin NGAL is a bacteriostatic agent that interferes with siderophore-mediated iron acquisition // Mol. Cell. 2002. Vol. 10. P. 1033–1043.
  27. Goldstein S., Devarajan P. Pediatrics: Acute kidney injury leads to pediatric patient mortality // Nat. Rev. Nephrol. 2010. Vol. 6. № 7. P. 393–394.
  28. Han W., Bailly V., Abichandani R. et al. Kidney injury molecule-1 (KIM-1): a novel biomarker for human renal proximal tubule injury // Kidney Int. 2002. Vol. 62. P. 237–244.
  29. Haase M., Bellomo R., Devarajan P. et al. Accuracy of neutrophil gelatinase-associated lipocalin (NGAL) in diagnosis and prognosis in acute kidney injury: a systematic review and meta-analysis // Am. J. Kidney Dis. 2009. Vol. 54. P. 1012–1024.
  30. Herget-Rosenthal S., Marggraf G., Husing J. et al. Early detection of acute renal failure by serum cystatin C // Kidney Int. 2004. Vol. 66. P. 1115–1122.
  31. Homsi E., Janino P., Biswas S. et al. Attenuation of glycerol-induced acute kidney injury by previous partial hepatectomy: role of hepatocyte growth factor/c-met axis in tubular protection // Nephron. Exp. Nephrol. 2007. Vol. 107. № 3. P. 95–106.
  32. Huang Y., Don-Wauchope A. The clinical utility of kidney injury molecule 1 in the prediction, diagnosis and prognosis of acute kidney injury: a systematic review // Inflamm. Allergy. Drug Targets. 2011. Vol. 10. № 4. P. 260–271.
  33. Ichimura T., Bonventre J., Bailly V. et al. Kidney injury molecule-1 (KIM-1), a putative epithelial cell adhesion molecule containing a novel immunoglobulin domain, is up-regulated in renal cells after injury // J. Biol. Chem. 1998. Vol. 273. P. 4135–4142.
  34. Kamijo A., Sugaya T., Hikawa A. et al. Urinary excretion of fatty acid-binding protein reflects stress overload on the proximal tubules // Am. J. Pathol. 2004. Vol. 165. № 4. P. 1243–1255.
  35. Kamijo-Ikemori A., Sugaya T., Kimura K. et al. Urinary fatty acid binding protein in renal disease // Clin. Chim. Acta. 2006. Vol. 374. № 1–2. P. 1–7.
  36. Koyner J., Vaidya V., Bennett M. et al. Urinary biomarkers in the clinical prognosis and early detection of acute kidney injury // Clin. J. Am. Soc. Nephrol. 2010. Vol. 12. P. 2154–2165.
  37. Koyner J., Garg A., Shlipak M. et al. Urinary Cystatin C and Acute Kidney Injury After Cardiac Surgery // Am. J. Kidney Dis. 2013. Vol. 61. № 5. P. 730–738.
  38. Kwon O., Ahn K., Zhang B. et al. Simultaneous monitoring of multiple urinary cytokines may predict renal and patient outcome in ischemic AKI // Ren. Fail. 2010. Vol. 32. № 6. P. 699–708.
  39. Lalor S., Dungan L., Sutton C. et al. Caspase-1-processed cytokines IL-1beta and IL-18 promote IL-17 production by gamma, delta and CD4 T cells that mediate autoimmunity // J. Immunol. 2011. Vol. 186. № 10. P. 5738–5748.
  40. Liangos O., Perianayagam M., Vaidya V. et al. Urinary N-acetyl-beta-(d)-glucosaminidase activity and kidney injury molecule-1 level are associated with adverse outcomes in acute renal failure // J. Am. Soc. Nephrol. 2007. Vol. 18. P. 904–912.
  41. Liangos O., Tighiouart H., Perianayagam M. et al. Comparative analysis of urinary biomarkers for early detection of acute kidney injury following cardiopulmonary bypass // Biomarkers. 2009. Vol. 14. № 6. P. 423–431.
  42. Manabe K., Kamihata H., Motohiro M. et al. Urinary liver-type fatty acid-binding protein level as a predictive biomarker of contrast-induced acute kidney injury // Eur. J. Clin. Invest. 2012. Vol. 42. № 5. P. 557–563.
  43. Marchewka Z., Kuzniar J., Dlugosz A. Enzymuria and beta2-microglobulinuria in the assessment of the influence of proteinuria on the progression of glomerulopathies // Int. Urol. Nephrol. 2001. Vol. 33. P. 673–676.
  44. Mehta R., Kellum J., Shah S. et al. Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury // Crit. Care. 2007. Vol. 11. P. 31.
  45. Melnikov V., Ecder T., Fantuzzi G. et al. Impaired IL-18 processing protects caspase-1-deficient mice from ischemic acute renal failure // J. Clin. Invest. 2001. Vol. 107. P. 1145–1152.
  46. Mori K., Nakao K. Neutrophil gelatinase-associated lipocalin as the real-time indicator of active kidney damage // Kidney Int. 2007. Vol. 71. P. 967–970.
  47. Munshi R., Johnson A., Siew E. et al. MCP-1 gene activation marks acute kidney injury // J. Am. Soc. Nephrol. 2011. Vol. 22. № 1. P. 165–175.
  48. Murray P., Devarajan P., Levey A. et al. A framework and key research questions in AKI diagnosis and staging in different environments // Clin. J. Am. Soc. Nephrol. 2008. Vol. 3. P. 864–868.
  49. Nakamura T., Sugaya T., Node K. et al. Urinary excretion of liver-type fatty acid-binding protein in contrast medium-induced nephropathy // Am. J. Kidney Dis. 2006. Vol. 47. № 3. P. 439–444.
  50. Nguyen M., Devarajan P. Biomarkers for the early detection of acute kidney injury // Pediatr. Nephrol. 2008. Vol. 23 (12). P. 2151–2157.
  51. Nickolas T., Barasch J., Devarajan P. Biomarkers in acute and chronic kidney disease // Curr. Opin. Nephrol. Hypertens. 2008. Vol. 17. № 2. P. 127–132.
  52. Palevsky P., Liu K., Brophy P. et al. KDOQI US Commentary on the 2012 KDIGO Clinical Practice Guideline for Acute Kidney Injury // Am. J. Kidney Dis. 2013. Vol. 61. № 5. P. 649–672.
  53. Parikh C., Abraham E., Ancukiewicz M. et al. Urine IL-18 is an early diagnostic marker for acute kidney injury and predicts mortality in the intensive care unit // J. Am. Soc. Nephrol. 2005. Vol. 16. P. 3046–3052.
  54. Parikh C., Devarajan P. New biomarkers of acute kidney injury // Crit. Care Med. 2008. Vol. 36. P. 159–165.
  55. Parikh C., Jani A., Melnikov V. et al. Urinary interleukin-18 is a marker of human acute tubular necrosis // Am. J. Kidney Dis. 2004. Vol. 43. P. 405–414.
  56. Park H., Hwang J., Kang A. Urinary N-acetyl-b-D glucosaminidase as a surrogate marker for renal function in autosomal dominant polycystic kidney disease: 1 year prospective cohort study // BMC Nephrol. 2012. Vol. 13. P. 93.
  57. Price R. The role of NAG (N-acetyl-beta-d-glucosaminidase) in the diagnosis of kidney disease including the monitoring of nephrotoxicity // Clin. Nephrol. 1992. Vol. 38. P. 14–19.
  58. Ramesh G., Krawczeski C., Woo J. et al. Urinary netrin-1 is an early predictive biomarker of acute kidney injury after cardiac surgery // Clin. J. Am. Soc. Nephrol. 2010. Vol. 3. P. 395–401.
  59. Rajasundari A., Pays L., Mehlen P. et al. Netrin-1 overexpression in kidney proximal tubular epithelium ameliorates cysplatin nephrotoxicity // Lab. Invest. 2011. Vol. 91. № 12. P. 1717–1726.
  60. Royakkers A., Korevaar J., van Suijlen J. et al. Serum and urine cystatin C are poor biomarkers for acute kidney injury and renal replacement therapy // Intensive Care Med. 2011. Vol. 37. № 3. P. 493–501.
  61. Rice J., Spence J., Yetman D. et al. Monocyte chemoattractant protein-1 expression correlates with monocyte infiltration in the post-ischemic kidney // Ren. Fail. 2002. Vol. 24. P. 703–723.
  62. Sargentini V., Mariani P., D' Alessandro M. et al. Assessment of NGAL as an early biomarker of acute kidney injury in adult cardiac surgery patients // J. Biol. Regul. Homeost. Agents. 2012. Vol. 26. № 3. P. 485–493.
  63. Schiffl H., Lang S. Update on biomarkers of acute kidney injury: moving closer to clinical impact? // Mol. Diagn. Ther. 2012. Vol. 16. № 4. P. 199–207.
  64. Schneider J., Khemani R., Grushkin C. et al. Serum creatinine as stratified in the RIFLE score for acute kidney injury is associated with mortality and length of stay for children in the pediatric intensive care unit // Crit. Care Med. 2010. Vol. 38. № 3. P. 933–939.
  65. Seabra V., Perianayagam M., Tighiouart H. et al. Urinary a-GST and p-GST for prediction of dialysis requirement or in-hospital death in established acute kidney injury // Biomarkers. 2011. Vol. 16. № 8. P. 709–717.
  66. Sirota J., Walcher A., Faubel S. et al. Urine IL-18, NGAL, IL-8 and serum IL-8 are biomarkers of acute kidney injury following liver transplantation // BMC Nephrol. 2013. PMID:23327592.
  67. Susantitaphong P., Siribamrungwong M., Doi K. et al. Performance of urinary liver-type fatty acid-binding protein in acute kidney injury: a meta-analysis // Am. J. Kidney Dis. 2013. Vol. 61. № 3. P. 430–439.
  68. Ympa Y., Sakr Y., Reinhart K. et al. Has mortality from acute renal failure decreased? A systematic review of the literature // Am. J. Med. 2005. Vol. 118. № 8. P. 827–832.
  69. Uchino S., Kellum J., Bellomo R. et al. Beginning and Ending Supportive Therapy for the Kidney (BEST Kidney) Investigators. Acute renal failure in critically ill patients: a multinational, multicenter study // JAMA. 2005. Vol. 294. P. 813–818.
  70. Urbschat A., Obermller N., Haferkamp A. Biomarkers of kidney injury // Biomarkers. 2011. Vol. 16. P. 22–30.
  71. Valette X., Savary B., Nowoczyn M. et al. Accuracy of plasma neutrophil gelatinase-associated lipocalin in the early diagnosis of contrast-induced acute kidney injury in critical illness // Intensive Care Med. 2013. Vol. 39. № 5. P. 857–865.
  72. Walshe C., Odejayi F., Ng S. et al. Urinary glutathione S-transferase as an early marker for renal dysfunction in patients admitted to intensive care with sepsis // Crit. Care. Resusc. 2009. Vol. 11. № 3. P. 204–209.
  73. Westhuyzen J., Endre Z., Reece G. et al. Measurement of tubular enzymuria facilitates early detection of acute renal impairment in the intensive care unit // Nephrol. Dial. Transplant. 2003. Vol. 18. № 3. P. 543–551.
  74. Zager R., Johnson A., Lund S. et al. Uremia impacts renal inflammatory cytokine gene expression in the setting of experimental acute kidney injury // Am. J. Physiol. Renal. Physiol. 2009. Vol. 297. № 4. P. 961–970.
  75. Zang Z., Huang Y., Yang Y. et al. Urinary neutrophil gelatinase-associated lipocalin and urinary interleukin-18 in early diagnosis of acute kidney injury in critically ill patients // Zhonghua Nei. Ke. Za. Zhi. 2010. Vol. 49. № 5. P. 396–399.
  76. Zheng J., Xiao Y., Yao Y. et al. Comparison of urinary biomarkers for early detection of acute kidney injury after cardiopulmonary bypass surgery in infants and young children // Pediatr. Cardiol. 2013. Vol. 34. № 4. P. 880–886.

Другие статьи по теме


Навигация по статьям
Разделы журнала
Наиболее читаемые статьи
Журнал "Нефрология и диализ"