Российское диализное общество

Просмотр статьи

<< Вернуться к списку статей журнала

Том 25 №2 2023 год - Нефрология и диализ

Рекомендации международного общества перитонеального диализа по оценке дисфункции перитонеальной мембраны у взрослых: классификация, методы оценки, интерпретация и обоснования для вмешательства


Морель Иоганн Стаховска-Пьетка Джоанна Эберг Карл Гадола Лилиана Ла Милиа Винченцо Ю Занже Лэмби Марк Мехротра Раджниш де Артеага Хавьер Дэвис Саймон

DOI: 10.28996/2618-9801-2023-2-232-266

Аннотация: При перитонеальном диализе (ПД) в качестве диализирующей мембраны используется брюшина. Брюшина - это тонкий слой ткани, выстилающий брюшную полость. Эта оболочка используется в качестве фильтра, помогающего удалять лишнюю жидкость и токсичные продукты обмена из крови. Каждый человек уникален. То, что является нормальным для мембраны одного человека, может сильно отличаться у другого. Диализная команда стремится подобрать каждому пациенту наилучший для него режим диализа, и для этого необходимо оценивать состояние брюшины. Иногда само лечение диализом может привести к изменению мембраны через несколько лет. И это означает, что потребуются дополнительные обследования, чтобы определить, изменилась ли брюшина. Изменения мембраны могут потребовать изменений режима диализа. Это необходимо для достижения наилучших результатов. Ключевым инструментом для этих оценок является тест перитонеального равновесия - ПЭТ (peritoneal equilibration test - PET1). Это простой, стандартизированный и воспроизводимый инструмент. Он используется для измерения функции брюшины вскоре после начала диализа. Цель состоит в том, чтобы понять, насколько хорошо работает перитонеальная мембрана в начале диализа. На более поздних этапах лечения ПЭТ помогает отслеживать изменения в функции брюшины. Если в период между оценками возникают проблемы, вызванные изменениями функции брюшины, данные ПЭТ могут объяснить причину дисфункции. Эти данные можно использовать для изменения режима диализа в целях достижения наилучших результатов. Наиболее распространенная проблема с перитонеальной мембраной возникает, когда жидкость удаляется не так хорошо, как следовало бы. Это происходит, когда растворенные вещества из крови проникают через мембрану быстрее, чем должно. Это состояние обозначается как высокая скорость перитонеального переноса растворенных веществ (СППВ) {fast peritoneal solute transfer rate - высокая СППВ}. Поскольку более эффективное удаление жидкости связано с лучшими результатами лечения, назначение персонального режима ПД, основанного на СППВ пациента, является критически важным. Менее распространенная проблема возникает, когда мембрана не работает должным образом (состояние также обозначается как дисфункция мембраны), из-за того, что она менее эффективна в удалении растворенных веществ либо на старте лечения, либо по прошествии нескольких лет. Если дисфункция мембраны со временем усиливается, это связано с прогрессирующим повреждением, фиброзом и утолщением мембраны. Эту проблему можно выявить по изменению еще одного показателя ПЭТ. Он обозначается как «степень снижения концентрации натрия в диализате» в (dipNa).2 Мембранная дисфункция этого типа труднее поддается лечению и имеет значимые последствия для пациента. Если повреждения мембраны серьезны, пациенту, возможно, потребуется прекратить ПД. Потребуется начало лечения гемодиализом. Это очень важное и эмоционально значимое решение для пациентов с почечной недостаточностью. Любое решение, которое включает прекращение ПД или переход на терапию гемодиализом, следует принимать совместно клинической командой, пациентом на диализе и при необходимости лицом, помогающим проводить лечение ПД. Хотя нет убедительных данных о том, как часто следует проводить тесты для определения функции брюшины, представляется разумным повторять их всякий раз, когда возникают трудности с удалением такого количества жидкости, которое необходимо для поддержания хорошего состояния и самочувствия пациента. Не изучалось, связана ли регулярная оценка функции мембраны с лучшими результатами лечения. Необходимы дальнейшие исследования, чтобы ответить на этот важный вопрос, поскольку национальная политика во многих частях мира и COVID-19 сместили акценты и дополнительно стимулировали более широкое внедрение методов лечения диализом на дому, особенно - ПД. Перевод краткого изложения на китайский и испанский языки см. в Приложении 1.

Для цитирования: Рекомендации международного общества перитонеального диализа по оценке дисфункции пери­то­неальной мембраны у взрослых: классификация, методы оценки, интерпретация и обоснования для вмеша­тельства. Перевод на русский язык: А.М. Андрусев, Р.П. Герасимчук, А.Ю. Земченков, К.А. Салихова под общей редакцией А.М. Андрусева. ­Нефрология и диализ. 2023. 25(2):-266. doi: 10.28996/2618-9801-2023-232-266


Весь текст



Список литературы:
  1. Mujais S, Nolph K, Gokal R, et al. Evaluation and management of ultrafiltration problems in peritoneal dialysis. Perit Dial Int 2000; 20: 5-21.
  2. Van Biesen W, Heimburger O, Krediet R, et al. Evaluation of peritoneal membrane characteristics: clinical advice for prescription management by the ERBP working group. Nephrol Dial Transplant 2010; 25: 2052-2062.
  3. Clinical Practice Guidelines for Peritoneal Adequacy. Update 2006. Am J Kidney Dis 2006: 48.
  4. Lo WK, Bargman JM, Burkart J, et al. Guideline on targets for solute and fluid removal in adult patients on chronic peritoneal dialysis. Perit Dial Int 2006; 26: 520-522.
  5. Wang AYM, Brimble KS, Brunier G, et al. ISPD cardiovascular and metabolic guidelines in adult peritoneal dialysis patients part I - assessment and management of various cardiovascular risk factors. Perit Dial Int 2015; 35: 379-387.
  6. Wang AYM, Dong J, Xu X, et al. Volume management as a key dimension of a high-quality PD prescription. Perit Dial Int 2020; 40(3): 282-292.
  7. Brown EA, Blake PG, Boudville N, et al. International society for peritoneal dialysis practice recommendations: prescribing high-quality goal-directed peritoneal dialysis. Perit Dial Int 2020; 40(3): 244-253.
  8. Zoccali C, Moissl U, Chazot C, et al. Chronic fluid overload and mortality in ESRD. J Am Soc Nephrol 2017; 28: 2491-2497.
  9. Tabinor M, Elphick E, Dudson M, et al. Bioimpedance-defined overhydration predicts survival in end stage kidney failure (ESKF): systematic review and subgroup meta-analysis. Sci Rep 2018; 8: 4441.
  10. Ronco C, Verger C, Crepaldi C, et al. Baseline hydration status in incident peritoneal dialysis patients: the initiative of patient outcomes in dialysis (IPOD-PD study). Nephrol Dial Transplant 2015; 30: 849-858.
  11. Van Biesen W, Verger C, Heaf J, et al. Evolution over time of volume status and PD-related practice patterns in an incident peritoneal dialysis cohort. Clin J Am Soc Nephrol 2019; 14: 882-893.
  12. Brown EA, Davies SJ, Rutherford P, et al. Survival of functionally anuric patients on automated peritoneal dialysis: the European APD Outcome Study. J Am Soc Nephrol 2003; 14: 2948-2957.
  13. Jansen MAM, Termorshuizen F, Korevaar JC, et al. Predictors of survival in anuric peritoneal dialysis patients. Kidney Int 2005; 68: 1199-1205.
  14. Lin X, Lin A, Ni Z, et al. Daily peritoneal ultrafiltration predicts patient and technique survival in anuric peritoneal dialysis patients. Nephrol Dial Transplant 2010; 25: 2322-2327.
  15. Manera K, Tong A, Craig J, et al. Developing consensus-based outcome domains for trials in peritoneal dialysis: an international Delphi survey. Kidney Int. 2019.
  16. Manera KE, Tong A, Craig JC, et al. Standardized outcomes in nephrology-peritoneal dialysis (SONG-PD): study protocol for establishing a core outcome set in PD. Perit Dial Int 2017; 37: 639-647.
  17. Guyatt G, Oxman AD, Akl EA, et al. GRADE guidelines: 1. Introduction-GRADE evidence profiles and summary of findings tables. J Clin Epidemiol 2011; 64: 383-394.
  18. Neumann I, Santesso N, Akl EA, et al. A guide for health professionals to interpret and use recommendations in guidelines developed with the GRADE approach. J Clin Epidemiol 2016; 72: 45-55.
  19. Rippe B. A three-pore model of peritoneal transport. Perit Dial Int 1993; 13: 35-38.
  20. Öberg CM, Rippe B. Optimizing automated peritoneal dialysis using an extended 3-pore model. Kidney Int Rep 2017; 2: 943-951.
  21. Rippe B, Venturoli D. Simulations of osmotic ultrafiltration failure in CAPD using a serial three-pore membrane/fiber matrix model. Am J Physiol Renal Physiol 2007; 292: F1035-F1043.
  22. Flessner MF, Dedrick RL, Schultz JS. A distributed model of peritoneal-plasma transport: theoretical considerations. Am J Physiol 1984; 246: R597-R607.
  23. Stachowska-Pietka J, Waniewski J, Flessner MF, et al. Concomitant bidirectional transport during peritoneal dialysis can be explained by a structured interstitium. Am J Physiol Heart Circ Physiol 2016; 310: H1501-H1511.
  24. Stachowska-Pietka J, Waniewski J, Flessner MF, et al. Computer simulations of osmotic ultrafiltration and small-solute transport in peritoneal dialysis: a spatially distributed approach. Am J Physiol Ren Physiol 2012; 302: 1331-1341.
  25. Dedrick RL, Flessner MF, Collins JM, et al. Is the peritoneum a membrane? ASAIO J 1982; 5: 1-3.
  26. Waniewski J, Heimbürger O, Werynski A, et al. Diffusive and convective solute transport in peritoneal dialysis with glucose as an osmotic agent. Artif Organs 1995; 19: 295-306.
  27. Imholz AL, Koomen GC, Struijk DG, et al. Fluid and solute transport in CAPD patients using ultralow sodium dialysate. Kidney Int 1994; 46: 333-340.
  28. Simonsen O, Sterner G, Carlsson O, et al. Improvement of peritoneal ultrafiltration with peritoneal dialysis solution buffered with bicarbonate/lactate mixture. Perit Dial Int 2006; 26: 353-359.
  29. Haraldsson B. Assessing the peritoneal dialysis capacities of individual patients. Kidney Int 1995; 47: 1187-1198.
  30. Keshaviah P, Emerson PF, Vonesh EF, et al. Relationship between body size, fill volume, and mass transfer area coefficient in peritoneal dialysis. J Am Soc Nephrol 1994; 4: 1820-1826.
  31. Chagnac A, Herskovitz P, Ori Y, et al. Effect of increased dialysate volume on peritoneal surface area among peritoneal dialysis patients. J Am Soc Nephrol 2002; 13: 2554-2559.
  32. Stachowska-Pietka J, Poleszczuk J, Flessner MF, et al. Alterations of peritoneal transport characteristics in dialysis patients with ultrafiltration failure: tissue and capillary components. Nephrol Dial Transplant 2019; 34: 864-870.
  33. Öberg CM, Martuseviciene G. Computer simulations of continuous flow peritoneal dialysis using the 3-pore model-A first experience. Perit Dial Int J Int Soc Perit Dial 2019; 39: 236-242.
  34. Rippe B, Stelin G, Haraldsson B. Computer simulations of peritoneal fluid transport in CAPD. Kidney Int 1991; 40: 315-325.
  35. Agre P. Aquaporin water channels (Nobel Lecture). Angew Chem Int Ed Engl 2004; 43: 4278-4290.
  36. Devuyst O, Rippe B. Water transport across the peritoneal membrane. Kidney Int 2014; 85: 750-758.
  37. Ni J, Verbavatz JM, Rippe A, et al. Aquaporin-1 plays an essential role in water permeability and ultrafiltration during peritoneal dialysis. Kidney Int 2006; 69: 1518-1525.
  38. Morelle J, Sow A, Vertommen D, et al. Quantification of osmotic water transport in vivo using fluorescent albumin. Am J Physiol Renal Physiol 2014; 307: F981-F989.
  39. Zhang W, Freichel M, Van Der Hoeven F, et al. Novel endothelial cell-specific AQP1 knockout mice confirm the crucial role of endothelial AQP1 in ultrafiltration during peritoneal dialysis. PLoS One 2016; 11: 1-15.
  40. Morelle J, Sow A, Fustin C-A, et al. Mechanisms of crystalloid versus colloid osmosis across the peritoneal membrane. J Am Soc Nephrol 2018; 29: 1875-1886.
  41. Rippe B, Levin L. Computer simulations of ultrafiltration profiles for an icodextrin-based peritoneal fluid in CAPD. Kidney Int 2000; 57: 2546-2556.
  42. Lambie M, Chess J, Donovan KL, et al. Independent effects of systemic and peritoneal inflammation on peritoneal dialysis survival. J Am Soc Nephrol 2013; 24: 2071-2080.
  43. La Milia V, Limardo M, Virga G, et al. Simultaneous measurement of peritoneal glucose and free water osmotic conductances. Kidney Int 2007; 72: 643-650.
  44. Waniewski J, Paniagua R, Stachowska-Pietka J, et al. Threefold peritoneal test of osmotic conductance, ultrafiltration efficiency, and fluid absorption. Perit Dial Int 2013; 33: 419-425.
  45. Mehrotra R, Ravel V, Streja E, et al. Peritoneal equilibration test and patient outcomes. Clin J Am Soc Nephrol 2015; 10: 1990-2001.
  46. Twardowski ZJ, Nolph KD, Khanna R, et al. Peritoneal equilibration test. Perit Dial Int 1987; 7: 138-147.
  47. Davies SJ. Longitudinal relationship between solute transport and ultrafiltration capacity in peritoneal dialysis patients. Kidney Int 2004; 66: 2437-2445.
  48. Cueto-Manzano AM, Díaz-Alvarenga A, Correa-Rotter R. Analysis of the peritoneal equilibration test in Mexico and factors influencing the peritoneal transport rate. Perit Dial Int J Int Soc Perit Dial 1999; 19: 45-50.
  49. Mujais S, Vonesh E. Profiling of peritoneal ultrafiltration. Kidney Int Suppl 2002; S17-S22.
  50. Rumpsfeld M, McDonald SP, Johnson DW. Higher peritoneal transport status is associated with higher mortality and technique failure in the Australian and New Zealand peritoneal dialysis patient populations. J Am Soc Nephrol 2006; 17: 271-278.
  51. Smit W, van Dijk P, Langedijk MJ, et al. Peritoneal function and assessment of reference values using a 3.86% glucose solution. Perit Dial Int 2003; 23: 440-449.
  52. Shi Y, Yan H, Yuan J, et al. Different patterns of inflammatory and angiogenic factors are associated with peritoneal small solute transport and peritoneal protein clearance in peritoneal dialysis patients. BMC Nephrol 2018; 19: 119.
  53. La Milia V, Cabiddu G, Virga G, et al. Peritoneal equilibration test reference values using a 3.86% glucose solution during the first year of peritoneal dialysis: results of a multicenter study of a large patient population. Perit Dial Int 2017; 37: 633-638.
  54. Davies SJ, Brown EA, Frandsen NE, et al. Longitudinal membrane function in functionally anuric patients treated with APD: data from EAPOS on the effects of glucose and icodextrin prescription. Kidney Int 2005; 67: 1609-1615.
  55. Sampimon DE, Coester AM, Struijk DG, et al. The time course of peritoneal transport parameters in peritoneal dialysis patients who develop encapsulating peritoneal sclerosis. Nephrol Dial Transplant 2011; 26: 291-298.
  56. Morelle J, Sow A, Hautem N, et al. Interstitial fibrosis restricts osmotic water transport in encapsulating peritoneal sclerosis. J Am Soc Nephrol 2015; 26: 2521-2533.
  57. Sampimon DE, Korte MR, Barreto DL, et al. Early diagnostic markers for encapsulating peritoneal sclerosis: a case-control study. Perit Dial Int 2010; 30: 163-169.
  58. Parikova A, Smit W, Struijk DG, et al. The contribution of free water transport and small pore transport to the total fluid removal in peritoneal dialysis. Kidney Int 2005; 68: 1849-1856.
  59. Cho Y, Johnson DW, Vesey DA, et al. Dialysate interleukin-6 predicts increasing peritoneal solute transport rate in incident peritoneal dialysis patients. BMC Nephrol 2014; 15: 8.
  60. Blake PG, Abraham G, Sombolos K, et al. Changes in peritoneal membrane transport rates in patients on long term CAPD. Adv Perit Dial 1989; 5: 3-7.
  61. Davies SJ, Bryan J, Phillips L, et al. Longitudinal changes in peritoneal kinetics: the effects of peritoneal dialysis and peritonitis. Nephrol Dial Transplant 1996; 11: 498-506.
  62. Davies SJ, Phillips L, Naish PF, et al. Peritoneal glucose exposure and changes in membrane solute transport with time on peritoneal dialysis. J Am Soc Nephrol 2001; 12: 1046-1051.
  63. Lambie ML, John B, Mushahar L, et al. The peritoneal osmotic conductance is low well before the diagnosis of encapsulating peritoneal sclerosis is made. Kidney Int 2010; 78: 611-618.
  64. Johnson DW, Brown FG, Clarke M, et al. Effects of biocompatible versus standard fluid on peritoneal dialysis outcomes. J Am Soc Nephrol 2012; 23: 1097-1107.
  65. Van Esch S, Struijk DG, Krediet RT. The natural time course of membrane alterations during peritoneal dialysis is partly altered by peritonitis. Perit Dial Int J Int Soc Perit Dial 2016; 36: 448-456.
  66. Pecoits-Filho R, Araújo MRT, Lindholm B, et al. Plasma and dialysate IL-6 and VEGF concentrations are associated with high peritoneal solute transport rate. Nephrol Dial Transplant Off Publ Eur Dial Transpl Assoc Eur Ren Assoc 2002; 17: 1480-1486.
  67. Pecoits-Filho R, Carvalho MJ, Stenvinkel P, et al. Systemic and intraperitoneal interleukin-6 system during the first year of peritoneal dialysis. Perit Dial Int J Int Soc Perit Dial 2006; 26: 53-63.
  68. Yang X, Zhang H, Hang Y, et al. Intraperitoneal interleukin-6 levels predict peritoneal solute transport rate: a prospective cohort study. Am J Nephrol 2014; 39: 459-465.
  69. Gillerot G, Goffin E, Michel C, et al. Genetic and clinical factors influence the baseline permeability of the peritoneal membrane. Kidney Int 2005; 67: 2477-2487.
  70. Hwang YH, Son MJ, Yang J, et al. Effects of interleukin-6 T15A single nucleotide polymorphism on baseline peritoneal solute transport rate in incident peritoneal dialysis patients. Perit Dial Int 2009; 29: 81-88.
  71. Krediet RT, Zuyderhoudt FM, Boeschoten EW, et al. Alterations in the peritoneal transport of water and solutes during peritonitis in continuous ambulatory peritoneal dialysis patients. Eur J Clin Invest 1987; 17: 43-52.
  72. Clause A-L, Keddar M, Crott R, et al. A large intraperitoneal residual volume hampers adequate volumetric assessment of osmotic conductance to glucose. Perit Dial Int 2018; 38(5): 356-362.
  73. La Milia V, Pozzoni P, Virga G, et al. Peritoneal transport assessment by peritoneal equilibration test with 3.86% glucose: a long-term prospective evaluation. Kidney Int 2006; 69: 927-933.
  74. Kawaguchi Y, Saito A, Kawanishi H, et al. Recommendations on the management of encapsulating peritoneal. Perit Dial Int 2005; 25: 83-95.
  75. Brown EA, Bargman J, van Biesen W, et al. Length of time on peritoneal dialysis and encapsulating peritoneal sclerosis - position paper for ISPD: 2017 Update. Perit Dial Int 2017; 37: 362-374.
  76. La Milia V, Longhi S, Sironi E, et al. The peritoneal sieving of sodium: a simple and powerful test to rule out the onset of encapsulating peritoneal sclerosis in patients undergoing peritoneal dialysis. J Nephrol 2018; 31: 137-145.
  77. Williams JD, Craig KJ, Topley N, et al. Peritoneal biopsy study group: morphologic changes in the peritoneal membrane of patients with renal disease. J Am Soc Nephrol 2002; 13: 470-479.
  78. Honda K, Hamada C, Nakayama M, et al. Impact of uremia, diabetes, and peritoneal dialysis itself on the pathogenesis of peritoneal sclerosis: a quantitative study of peritoneal membrane morphology. Clin J Am Soc Nephrol 2008; 3: 720-728.
  79. Devuyst O, Margetts PJ, Topley N. The pathophysiology of the peritoneal membrane. J Am Soc Nephrol 2010; 21: 1077-1085.
  80. Fielding CA, Jones GW, McLoughlin RM, et al. Interleukin-6 signaling drives fibrosis in unresolved inflammation. Immunity 2014; 40: 40-50.
  81. Hautem N, Morelle J, Sow A, et al. The NLRP3 inflammasome has a critical role in peritoneal dialysis-related peritonitis. J Am Soc Nephrol 2017; 28: 2038-2052.
  82. Fischbach M, Zaloszyc A, Schaefer B, et al. Should sodium removal in peritoneal dialysis be estimated from the ultrafiltration volume? Pediatr Nephrol 2017; 32: 419-424.
  83. Reimold FR, Braun N, Zsengellér ZK, et al. Transcriptional patterns in peritoneal tissue of encapsulating peritoneal sclerosis, a complication of chronic peritoneal dialysis. PLoS One 2013; 8: e56389.
  84. Augustine T, Brown PW, Davies SD, et al. Encapsulating peritoneal sclerosis: clinical significance and implications. Nephron Clin Pract 2009; 111: c149-c154.
  85. Yáñez-Mó M, Lara-Pezzi E, Selgas R, et al. Peritoneal dialysis and epithelial-to-mesenchymal transition of mesothelial cells. N Engl J Med 2003; 348: 403-413.
  86. Chen Y-T, Chang Y-T, Pan S-Y, et al. Lineage tracing reveals distinctive fates for mesothelial cells and submesothelial fibroblasts during peritoneal injury. J Am Soc Nephrol 2014; 25: 2847-2858.
  87. Rodrigues-Díez R, Aroeira LS, Orejudo M, et al. IL-17A is a novel player in dialysis-induced peritoneal damage. Kidney Int 2014; 86: 303-315.
  88. Lambie MR, Chess J, Summers AM, et al. Peritoneal inflammation precedes encapsulating peritoneal sclerosis: results from the GLOBAL Fluid Study. Nephrol Dial Transplant 2016; 31: 480-486.
  89. Davies SJ. Unraveling the mechanisms of progressive peritoneal membrane fibrosis. Kidney Int [Internet] 2016; 89: 1185-1187.
  90. Liappas G, González-Mateo GT, Sánchez-Díaz R, et al. Immune-regulatory molecule CD69 controls peritoneal fibrosis. J Am Soc Nephrol 2016; 27: 3561-3576.
  91. Li L, Shen N, Wang N, et al. Inhibiting core fucosylation attenuates glucose-induced peritoneal fibrosis in rats. Kidney Int 2018; 93: 1384-1396.
  92. Davies SJ, Brown B, Bryan J, et al. Clinical evaluation of the peritoneal equilibration test: a population-based study. Nephrol Dial Transplant 1993; 8: 64-70.
  93. Pannekeet MM, Imholz AL, Struijk DG, et al. The standard peritoneal permeability analysis: a tool for the assessment of peritoneal permeability characteristics in CAPD patients. Kidney Int 1995; 48: 866-875.
  94. Van Biesen W, Van der Tol A, Veys N, et al. The personal dialysis capacity test is superior to the peritoneal equilibration test to discriminate inflammation as the cause of fast transport status in peritoneal dialysis patients. Clin J Am Soc Nephrol 2006; 1: 269-274.
  95. Galach M, Antosiewicz S, Baczynski D, et al. Sequential peritoneal equilibration test: a new method for assessment and modelling of peritoneal transport. Nephrol Dial Transplant 2013; 28: 447-454.
  96. Waniewski J, Antosiewicz S, Baczynski D, et al. Peritoneal fluid transport rather than peritoneal solute transport associates with dialysis vintage and age of peritoneal dialysis patients. Comput Math Methods Med 2016: 8204294.
  97. Ho-dac-Pannekeet MM, Atasever B, Struijk DG, et al. Analysis of ultrafiltration failure in peritoneal dialysis patients by means of standard peritoneal permeability analysis. Perit Dial Int 1997; 17: 144-150.
  98. Virga G, Amici G, da Rin G, et al. Comparison of fast peritoneal equilibration tests with 1.36 and 3.86% dialysis solutions. Blood Purif 1994; 12: 113-120.
  99. Smit W, Langedijk MJ, Schouten N, et al. A comparison between 1.36% and 3.86% glucose dialysis solution for the assessment of peritoneal membrane function. Perit Dial Int 2000; 20: 734-741
  100. Pride ET, Gustafson J, Graham A, et al. Comparison of a 2.5% and a 4.25% dextrose peritoneal equilibration test. Perit Dial Int J Int Soc Perit Dial 2002; 22: 365-370.
  101. Stachowska-Pietka J, Poleszczuk J, Teixido-Planas J, et al. Fluid tonicity affects peritoneal characteristics derived by 3-pore model. Perit Dial Int J Int Soc Perit Dial 2019; 39: 243-251.
  102. Wiggins KJ, Blizzard S, Arndt M, et al. Increases in peritoneal small solute transport in the first month of peritoneal dialysis predict technique survival. Nephrology (Carlton) 2004; 9: 341-347.
  103. Brimble KS, Walker M, Margetts PJ, et al. Meta-analysis: peritoneal membrane transport, mortality, and technique failure in peritoneal dialysis. J Am Soc Nephrol 2006; 17: 2591-2598.
  104. Davies SJ, Phillips L, Russell GI. Peritoneal solute transport predicts survival on CAPD independently of residual renal function. Nephrol Dial Transplant 1998; 13: 962-968.
  105. Churchill DN, Thorpe KE, Nolph KD, et al. Increased peritoneal membrane transport is associated with decreased patient and technique survival for continuous peritoneal dialysis patients. The Canada-USA (CANUSA) Peritoneal Dialysis Study Group. J Am Soc Nephrol 1998; 9: 1285-1292.
  106. Tabinor M, Lambie MR, Davies SJ. Salt and water balance. In: Johnson DW, Craig J, Malony DA, Strippoli GFM (eds) Evidence Based Nephrology. 2nd ed. New Jersey, USA: Wiley, 2021.
  107. Wang T, Waniewski J, Heimbürger O, et al. A quantitative analysis of sodium transport and removal during peritoneal dialysis. Kidney Int 1997; 52: 1609-1616.
  108. Asghar RB, Davies SJ. Pathways of fluid transport and reabsorption across the peritoneal membrane. Kidney Int 2008; 73: 1048-1053.
  109. McCafferty K, Fan SLS. Are we underestimating the problem of ultrafiltration in peritoneal dialysis patients? Perit Dial Int 2006; 26: 349-352.
  110. La Milia V, Pozzoni P, Crepaldi M, et al. Overfill of peritoneal dialysis bags as a cause of underestimation of ultrafiltration failure. Perit Dial Int 2006; 26: 503-505.
  111. Johnson DW, Hawley CM, Mcdonald SP, et al. Superior survival of high transporters treated with automated versus continuous ambulatory peritoneal dialysis. Nephrol Dial Transplant 2010; 25: 1973-1979.
  112. Olszowska A, Waniewski J, Stachowska-Pietka J, et al. Long peritoneal dialysis dwells with icodextrin: kinetics of transperitoneal fluid and polyglucose transport. Front Physiol 2019; 10: 1326.
  113. Davies SJ, Woodrow G, Donovan K, et al. Icodextrin improves the fluid status of peritoneal dialysis patients: results of a double-blind randomized controlled trial. J Am Soc Nephrol 2003; 14: 2338-2344.
  114. Konings CJAM, Kooman JP, Schonck M, et al. Effect of icodextrin on volume status, blood pressure and echocardiographic parameters: a randomized study. Kidney Int 2003; 63: 1556-1563.
  115. Htay H, Johnson DW, Wiggins KJ, et al. Biocompatible dialysis fluids for peritoneal dialysis. Cochrane Database Syst Rev 2018; 10: CD007554.
  116. Goossen K, Becker M, Marshall MR, et al. Icodextrin versus glucose solutions for the once-daily long dwell in peritoneal dialysis: an enriched systematic review and meta- analysis of randomised controlled trials. Am J Kidney Dis 2019.
  117. Wiggins KJ, Rumpsfeld M, Blizzard S, et al. Predictors of a favourable response to icodextrin in peritoneal dialysis patients with ultrafiltration failure. Nephrology (Carlton) 2005; 10: 33-36.
  118. La Milia V, Pontoriero G, Virga G, et al. Ionic conductivity of peritoneal dialysate: a new, easy and fast method of assessing peritoneal membrane function in patients undergoing peritoneal dialysis. Nephrol Dial Transplant Off Publ Eur Dial Transpl Assoc Eur Ren Assoc 2015; 30: 1741-1746.
  119. Monquil MC, Imholz AL, Struijk DG, et al. Does impaired transcellular water transport contribute to net ultrafiltration failure during CAPD? Perit Dial Int J Int Soc Perit Dial 1995; 15: 42-48.
  120. Heimbürger O, Waniewski J, Werynski A, et al. Peritoneal transport in CAPD patients with permanent loss of ultrafiltration capacity. Kidney Int 1990; 38: 495-506.
  121. Heimbürger O, Waniewski J, Werynski A, et al. Dialysate to plasma solute concentration (D/P) versus peritoneal transport parameters in CAPD. Nephrol Dial Transplant Off Publ Eur Dial Transpl Assoc Eur Ren Assoc 1994; 9: 47-59.
  122. Lambie M, Teece L, Johnson DW, et al. Estimating risk of encapsulating peritoneal sclerosis accounting for the competing risk of death. Nephrol Dial Transplant 2019; 34: 1585-1591.
  123. Rippe B. Free water transport, small pore transport and the osmotic pressure gradient three-pore model of peritoneal transport. Nephrol Dial Transplant Off Publ Eur Dial Transpl Assoc Eur Ren Assoc 2008; 23: 2147-2153.
  124. Rosengren B-I, Rippe A, Rippe C, et al. Transvascular protein transport in mice lacking endothelial caveolae. AJP Hear Circ Physiol 2006; 291: H1371-H1377.
  125. Yu Z, Lambie M, Chess J, et al. Peritoneal protein clearance is a function of local inflammation and membrane area whereas systemic inflammation and comorbidity predict survival of incident peritoneal dialysis patients. Front Physiol 2019; 10: 1-9.
  126. Sánchez-Villanueva R, Bajo A, Del Peso G, et al. Higher daily peritoneal protein clearance when initiating peritoneal dialysis is independently associated with peripheral arterial disease (PAD): a possible new marker of systemic endothelial dysfunction? Nephrol Dial Transplant Off Publ Eur Dial Transpl Assoc Eur Ren Assoc 2009; 24: 1009-1014.
  127. Yu Z, Tan BK, Dainty S, et al. Hypoalbuminaemia, systemic albumin leak and endothelial dysfunction in peritoneal dialysis patients. Nephrol Dial Transplant 2012; 27: 4437-4445.
  128. Krediet RT, Yoowannakul S, Harris LS, et al. Relationships between peritoneal protein clearance and parameters of fluid status agree with clinical observations in other diseases that venous congestion increases microvascular protein escape. Perit Dial Int J Int Soc Perit Dial 2019; 39: 155-162.
  129. Heaf JG, Sarac S, Afzal S. A high peritoneal large pore fluid flux causes hypoalbuminaemia and is a risk factor for death in peritoneal dialysis patients. Nephrol Dial Transplant 2005; 20: 2194-2201.
  130. Perl J, Huckvale K, Chellar M, et al. Peritoneal protein clearance and not peritoneal membrane transport status predicts survival in a contemporary cohort of peritoneal dialysis patients. Clin J Am Soc Nephrol 2009; 4: 1201-1206.
  131. Pérez-Fontán M, Rodríguez-Carmona A, Barreda D, et al. Peritoneal protein transport during the baseline peritoneal equilibration test is an accurate predictor of the outcome of peritoneal dialysis patients. Nephron Clin Pract 2010; 116: c104-c113.
  132. Rajakaruna G, Caplin B, Davenport A. Peritoneal protein clearance rather than faster transport status determines outcomes in peritoneal dialysis patients. Perit Dial Int J Int Soc Perit Dial 2015; 35: 216-221.
  133. Balafa O, Halbesma N, Struijk DG, et al. Peritoneal albumin and protein losses do not predict outcome in peritoneal dialysis patients. Clin J Am Soc Nephrol 2011; 6: 561-566.
  134. Szeto C, Chow K, Lam CW, et al. Peritoneal albumin excretion is a strong predictor of cardiovascular events in peritoneal dialysis patients: a prospective cohort study. Perit Dial Int 2005; 25: 445-452.
  135. Chang TI, Kang EW, Lee YK, et al. Higher peritoneal protein clearance as a risk factor for cardiovascular disease in peritoneal dialysis patient. PLoS One 2013; 8.
  136. Dong J, Chen Y, Luo S, et al. Peritoneal protein leakage, systemic inflammation, and peritonitis risk in patients on peritoneal dialysis. Perit Dial Int J Int Soc Perit Dial 2013; 33:273-279.
  137. Mehrotra R, Duong U, Jiwakanon S, et al. Serum albumin as a predictor of mortality in peritoneal dialysis: comparisons with hemodialysis. Am J Kidney Dis 2011; 58: 418-428.
  138. Durand PY, Chanliau J, Gambéroni J, et al. Intraperitoneal hydrostatic pressure and ultrafiltration volume in CAPD. Adv Perit Dial 1993; 9: 46-48.
  139. Imholz AL, Koomen GC, Voorn WJ, et al. Day-to-day variability of fluid and solute transport in upright and recumbent positions during CAPD. Nephrol Dial Transplant Off Publ Eur Dial Transpl Assoc Eur Ren Assoc 1998; 13: 146-153.
  140. Pérez Díaz V, Sanz Ballesteros S, Hernández García E, et al. Intraperitoneal pressure in peritoneal dialysis. Nefrologia 2017; 37: 579-586.
  141. Twardowski ZJ, Khanna R, Nolph KD, et al. Intraabdominal pressures during natural activities in patients treated with continuous ambulatory peritoneal dialysis. Nephron 1986; 44: 129-135.
  142. Fischbach M, Terzic J, Laugel V, et al. Measurement of hydrostatic intraperitoneal pressure: a useful tool for the improvement of dialysis dose prescription. Pediatr Nephrol 2003; 18: 976-980.
  143. Liew A. Prescribing peritoneal dialysis and achieving good quality dialysis in low and low-middle income countries. Perit Dial Int 2020; 40(3): 341-348.
  144. Rangaswamy D, Guddattu V, Webster AC, et al. Icodextrin use for peritoneal dialysis in Australia: a cohort study using Australia and New Zealand Dialysis and Transplant Registry. Perit Dial Int 2020; 40: 209-219.
  145. Barreto DL, Sampimon DE, Struijk DG, et al. Early detection of imminent encapsulating peritoneal sclerosis: free water transport, selected effluent proteins, or both? Perit Dial Int 2019; 39: 83-89.
  146. Latus J, Habib SM, Kitterer D, et al. Histological and clinical findings in patients with post-transplantation and classical encapsulating peritoneal sclerosis: a European multicenter study. PLoS One 2014; 9: e106511.

Навигация по статьям
Разделы журнала
Наиболее читаемые статьи
Журнал "Нефрология и диализ"