Preview

Nephrology and Dialysis

Advanced search

Nephronophthisis-associated ciliopathy within Sensenbrenner's syndrome: clinical report and literature review

https://doi.org/10.28996/2618-9801-2024-2-216-228

Abstract

Sensenbrenner syndrome, also known as cranio-ectodermal dysplasia, is an ultrarare autosomal recessive ciliopathy caused by pathogenic variants in one of six genes including IFT43, IFT52, IFT122, IFT140, WDR19, and WDR35, all encoding proteins that are part of the intraflagellar transport complex A which is involved in retrograde ciliary transport. Sensenbrenner syndrome is a multiple anomaly syndrome with distinctive craniofacial findings (forehead bossing, dolichocephaly), metaphyseal dysplasia (short limbs, small thorax), ectodermal anomalies (sparse hair, small and missing teeth, short nails), connective tissue abnormalities (loose skin, joint laxity), retinal dystrophy, and chronic kidney and liver disease. In this article, we present a 5-year-old male patient diagnosed with Sensenbrenner syndrome as a typical craniofacial and skeletal anomaly with kidney disease and progressive decline in kidney function. The boy is the second child of healthy non-consanguineous parents. His birth weight was 3390 g (50‰) and the birth length was 51 cm (50‰). Clinical examination performed directly after birth, revealed craniofacial and skeletal abnormalities (dolichocephaly, wide forehead, epicanthic folds, telecanthus, narrow thorax, short limbs, brachydactyly, syndactyly of 2-3 toes of both feet). Postnatal kidney ultrasound (US) showed normal-sized kidneys without parenchymal changes. At the age of 14 months, the boy underwent a surgical correction for scaphocephaly. At the age of 2 years the child presented with failure to thrive, US revealed bilateral solitary parenchymal cysts (<1 cm) in both kidneys. At the first admission at the age of 4 years, the boy had short stature, lumbar scoliosis, metabolic acidosis, proteinuria up to 1.0 g/l with elevated urinary β-2 microglobulin level and microalbuminuria, decreased calcium excretion, increased fractional excretion of potassium, sodium, and magnesium. His eGFR was decreased to 54.7 ml/min/1.73 m2. Kidney US revealed a few cysts (RK 1.3×1.6 cm, LK 0.8×0.6 cm) and single medullary calcifications in both kidneys. Oral sodium hydrocarbonate was given to the patient to correct metabolic acidosis. Treatment with ACE inhibitor (iACE) (enalapril, 0.125 mg/kg/d) was started for antiproteinuric and nephroprotective purposes. NGS identified a variant of uncertain significance с.2907G>T (p.Lys969Asn) in exon 25 of the WDR35 gene in a homozygous state. Both parents were found to be heterozygous carriers of this WDR35 variant. 12-month therapy with sodium bicarbonate led to normalization of the acid-base state, and treatment with iACE led to decreasing proteinuria, microalbuminuria, and stabilization of his kidney function (eGFR 50.1 ml/min/1.73 m2).

About the Authors

S. V. Papizh
Pirogov Russian National Research Medical University
Russian Federation


A. V. Topchiy
Pirogov Russian National Research Medical University
Russian Federation


T. V. Markova
Research Centre for Medical Genetics
Russian Federation


T. S. Nagornova
Research Centre for Medical Genetics
Russian Federation


References

1. Ryżko J, Walczak-Sztulpa J, Czubkowski P. et al. Case Report: Sequential Liver After Kidney Transplantation in a Patient With Sensenbrenner Syndrome (Cranioectodermal Dysplasia). Front Pediatr. 2022. 10:834064. doi: 10.3389/fped.2022.834064

2. Mill P, Christensen ST, Pedersen LB. Primary cilia as dynamic and diverse signalling hubs in development and disease. Nat Rev Genet. 2023. 24(7):421-441. doi: 10.1038/s41576-023-00587-9

3. Sensenbrenner JA, Dorst JP, Owens RP. New syndrome of skeletal, dental and hair anomalies. Birth Defects Orig Artic Ser. 1975. 11(2):372-9

4. Levin LS, Perrin JC, Ose L. et al. A heritable syndrome of craniosynostosis, short thin hair, dental abnormalities, and short limbs: cranioectodermal dysplasia. J Pediatr. 1977. 90(1):55-61. doi: 10.1016/s0022-3476(77)80764-6

5. Oud MM, Lamers IJ, Arts HH. Ciliopathies: Genetics in Pediatric Medicine. J Pediatr Genet. 2017. 6(1):18-29. doi: 10.1055/s-0036-1593841

6. Pazour GJ, Quarmby L, Smith AO. et al. Cilia in cystic kidney and other diseases. Cell Signal. 2020. 69:109519. doi: 10.1016/j.cellsig.2019.109519

7. McConnachie DJ, Stow JL, Mallett AJ. Ciliopathies and the Kidney: A Review. Am J Kidney Dis. 2021. 77(3):410-419. doi: 10.1053/j.ajkd.2020.08.012

8. Walczak-Sztulpa J, Wawrocka A, Kuszel Ł. et al. Ciliary phenotyping in renal epithelial cells in a cranioectodermal dysplasia patient with WDR35 variants. Front Mol Biosci. 2023. 10:1285790. doi: 10.3389/fmolb.2023.1285790

9. Bai Y, Wei C, Li P. et al. Primary cilium in kidney development, function and disease. Front Endocrinol (Lausanne). 2022. 13:952055. doi: 10.3389/fendo.2022.952055

10. Tan W, Lin A, Keppler-Noreuil K. Cranioectodermal Dysplasia. 2013. Updated 2022. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Bean LJH, Gripp KW, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2024.

11. Gilissen C, Arts HH, Hoischen A. et al. Exome sequencing identifies WDR35 variants involved in Sensenbrenner syndrome. Am J Hum Genet. 2010. 87(3):418-23. doi: 10.1016/j.ajhg.2010.08.004

12. Bacino CA, Dhar SU, Brunetti-Pierri N. et al. WDR35 mutation in siblings with Sensenbrenner syndrome: a ciliopathy with variable phenotype. Am J Med Genet A. 2012. 158A(11):2917-24. doi: 10.1002/ajmg.a.35608

13. Hoffer JL, Fryssira H, Konstantinidou AE. et al. Novel WDR35 mutations in patients with cranioectodermal dysplasia (Sensenbrenner syndrome). Clin Genet. 2013. 83(1):92-5. doi: 10.1111/j.1399-0004.2012.01880.x

14. Lin AE, Traum AZ, Sahai I. et al. Sensenbrenner syndrome (Cranioectodermal dysplasia): clinical and molecular analyses of 39 patients including two new patients. Am J Med Genet A. 2013. 161A(11):2762-76. doi: 10.1002/ajmg.a.36265

15. Li Y, Garrod AS, Madan-Khetarpal S. et al. Respiratory motile cilia dysfunction in a patient with cranioectodermal dysplasia. Am J Med Genet A. 2015. 167A(9):2188-96. doi: 10.1002/ajmg.a.37133

16. Antony D, Nampoory N, Bacchelli C. et al. Exome sequencing for the differential diagnosis of ciliary chondrodysplasias: Example of a WDR35 mutation case and review of the literature. Eur J Med Genet. 2017. 60(12):658-666. doi: 10.1016/j.ejmg.2017.08.019

17. Walczak-Sztulpa J, Wawrocka A, Sobierajewicz A. et al. Intrafamilial phenotypic variability in a Polish family with Sensenbrenner syndrome and biallelic WDR35 mutations. Am J Med Genet A. 2017. 173(5):1364-1368. doi: 10.1002/ajmg.a.38163

18. Walczak-Sztulpa J, Wawrocka A, Swiader-Lesniak A. et al. Clinical and molecular genetic characterization of a male patient with Sensenbrenner syndrome (cranioectodermal dysplasia) and biallelic WDR35 mutations. Birth Defects Res. 2018. 110(4):376-381. doi: 10.1002/bdr2.1151

19. Walczak-Sztulpa J, Wawrocka A, Leszczynska B. et al. Prenatal genetic diagnosis of cranioectodermal dysplasia in a Polish family with compound heterozygous variants in WDR35. Am J Med Genet A. 2020. 182(10):2417-2425. doi: 10.1002/ajmg.a.61785

20. Brndiarova M, Mraz M, Kolkova Z. et al. Sensenbrenner Syndrome Presenting with Severe Anorexia, Failure to Thrive, Chronic Kidney Disease and Angel-Shaped Middle Phalanges in Two Siblings. Mol Syndromol. 2021. 12(4):263-267. doi: 10.1159/000515645

21. Li L, Liu C, Tian M. et al. Novel compound heterozygous WDR35 variants in a Chinese patient associated with cranioectodermal dysplasia and ectopic testis: a case report and review of the literature. BMC Pediatr. 2023. 23(1):407. doi: 10.1186/s12887-023-04110-1

22. Stokman MF, van der Zwaag B, van de Kar NCAJ. et al. Clinical and genetic analyses of a Dutch cohort of 40 patients with a nephronophthisis-related ciliopathy. Pediatr Nephrol. 2018. 33(10):1701-1712. doi: 10.1007/s00467-018-3958-7

23. Quinaux T, Custodi V, Putoux A. et al. Sensenbrenner syndrome: a further challenge in evaluating sagittal synostosis and a need for a multidisciplinary approach. Childs Nerv Syst. 2021. 37(5):1695-1701. doi: 10.1007/s00381-021-05075-1

24. Ackah RL, Yoeli D, Kueht M. et al. Orthotopic liver transplantation for Sensenbrenner syndrome. Pediatr Transplant. 2018. 22(1). doi: 10.1111/petr.13077

25. Walczak-Sztulpa J, Wawrocka A, Stańczyk M. et al. Interfamilial clinical variability in four Polish families with cranioectodermal dysplasia and identical compound heterozygous variants in WDR35. Am J Med Genet A. 2021. 185(4):1195-1203. doi: 10.1002/ajmg.a.62067

26. Bayat A, Kerr B, Douzgou S; DDD Study. The evolving craniofacial phenotype of a patient with Sensenbrenner syndrome caused by IFT140 compound heterozygous mutations. Clin Dysmorphol. 2017. 26(4):247-251. doi: 10.1097/MCD.0000000000000169

27. Walczak-Sztulpa J, Wawrocka A, Doornbos C. et al. Identical IFT140 Variants Cause Variable Skeletal Ciliopathy Phenotypes-Challenges for the Accurate Diagnosis. Front Genet. 2022. 13:931822. doi: 10.3389/fgene.2022.931822

28. Walczak-Sztulpa J, Posmyk R, Bukowska-Olech EM. et al. Compound heterozygous IFT140 variants in two Polish families with Sensenbrenner syndrome and early onset end-stage renal disease. Orphanet J Rare Dis. 2020. 15(1):36. doi: 10.1186/s13023-020-1303-2

29. Sharova M., Markova T., Sumina M. et al. Rare IFT140-Associated Phenotype of Cranioectodermal Dysplasia and Features of Diagnostic Journey in Patients with Suspected Ciliopathies. Genes 2023. 14, 1553. doi: 10.3390/genes14081553

30. Walczak-Sztulpa J, Eggenschwiler J, Osborn D. et al. Cranioectodermal Dysplasia, Sensenbrenner syndrome, is a ciliopathy caused by mutations in the IFT122 gene. Am J Hum Genet. 2010. 86(6):949-56. doi: 10.1016/j.ajhg.2010.04.012

31. Fry AE, Klingenberg C, Matthes J. et al. Connective tissue involvement in two patients with features of cranioectodermal dysplasia. Am J Med Genet A. 2009. 149A(10):2212-5. doi: 10.1002/ajmg.a.33027

32. Moosa S, Obregon MG, Altmüller J. et al. Novel IFT122 mutations in three Argentinian patients with cranioectodermal dysplasia: Expanding the mutational spectrum. Am J Med Genet A. 2016. 170A(5):1295-301. doi: 10.1002/ajmg.a.37570

33. Yang Q, Zhang Q, Chen F. et al. A novel combination of biallelic IFT122 variants associated with cranioectodermal dysplasia: A case report. Exp Ther Med. 2021. 21(4):311. doi: 10.3892/etm.2021.9742

34. Arts HH, Bongers EM, Mans DA. et al. C14ORF179 encoding IFT43 is mutated in Sensenbrenner syndrome. J Med Genet. 2011. 48(6):390-5. doi: 10.1136/jmg.2011.088864

35. Bredrup C, Saunier S, Oud MM. et al. Ciliopathies with skeletal anomalies and renal insufficiency due to mutations in the IFT-A gene WDR19. Am J Hum Genet. 2011. 89(5):634-43. doi: 10.1016/j.ajhg.2011.10.001

36. Yoshikawa T, Kamei K, Nagata H. et al. Diversity of renal phenotypes in patients with WDR19 mutations: Two case reports. Nephrology (Carlton). 2017. 22(7):566-571. doi: 10.1111/nep.12996

37. Gunay-Aygun M. Liver and kidney disease in ciliopathies. Am J Med Genet C Semin Med Genet. 2009. 151C(4):296-306. doi: 10.1002/ajmg.c.30225

38. Zaffanello M, Diomedi-Camassei F, Melzi ML. et al. Sensenbrenner syndrome: a new member of the hepatorenal fibrocystic family. Am J Med Genet A. 2006. 140(21):2336-40. doi: 10.1002/ajmg.a.31464

39. Tamai S, Tojo M, Kamimaki T. et al. Intrafamilial phenotypic variations in cranioectodermal dysplasia: propositus with typical manifestations and her brother with perinatal death. Am J Med Genet. 2002. 107(1):78-80. doi: 10.1002/ajmg.10088

40. Costet C, Betis F, Bérard E. et al. Rétinopathie pigmentaire et néphropathie tubulo-interstitielle lors du syndrome de Sensenbrenner [Pigmentosum retinis and tubulo-interstitial nephronophtisis in Sensenbrenner syndrome: a case report]. J Fr Ophtalmol. 2000. 23(2):158-60

41. Mill P, Lockhart PJ, Fitzpatrick E. et al. Human and mouse mutations in WDR35 cause short-rib polydactyly syndromes due to abnormal ciliogenesis. Am J Hum Genet. 2011. 88(4):508-15. doi: 10.1016/j.ajhg.2011.03.015

42. Zhang W, Taylor SP, Ennis HA. et al. University of Washington Center for Mendelian Genomics; Lachman RS, Krakow D, Cohn DH. Expanding the genetic architecture and phenotypic spectrum in the skeletal ciliopathies. Hum Mutat. 2018. 39(1):152-166. doi: 10.1002/humu.23362

43. Al Noaim K, Alfadhel M, Carré A, et al. Resolved Severe Primary Hypothyroidism in Sensenbrenner Syndrome Post Hepatorenal Transplantation: A Case Report. Horm Res Paediatr. 2023. 96(4):426-431. doi: 10.1159/000528660

44. Richards S, Aziz N, Bale S. et al. ACMG Laboratory Quality Assurance Committee. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015. 17(5):405-24. doi: 10.1038/gim.2015.30

45. Srivastava S, Ramsbottom SA, Molinari E. et al. A human patient-derived cellular model of Joubert syndrome reveals ciliary defects which can be rescued with targeted therapies. Hum Mol Genet. 2017. 26(23):4657-4667. doi: 10.1093/hmg/ddx347

46. Molinari E, Srivastava S, Dewhurst RM. et al. Use of patient derived urine renal epithelial cells to confirm pathogenicity of PKHD1 alleles. BMC Nephrol. 2020. 21(1):435. doi: 10.1186/s12882-020-02094-z


Review

For citations:


Papizh S.V., Topchiy A.V., Markova T.V., Nagornova T.S. Nephronophthisis-associated ciliopathy within Sensenbrenner's syndrome: clinical report and literature review. Nephrology and Dialysis. 2024;26(2):216-228. (In Russ.) https://doi.org/10.28996/2618-9801-2024-2-216-228

Views: 276


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1680-4422 (Print)
ISSN 2618-9801 (Online)