Preview

Nephrology and Dialysis

Advanced search

The mechanism of reduction of tubular phosphate reabsorption after successful kidney transplantation

Abstract

Renal tubular reabsorption of phosphate (TmP/GFR) was reduced in 375 recipients with good renal allograft function and in 36 patients with exogenous hypercorticoidism (bronchial asthma). Among them 161 recipients received CyA along with azathioprin and corticosteroids that was received by all allograft recipients. TmP/GFR was decreased in the allograft recipient compared to patients with normal PTH level (p < 0,01) and in recipients with reduced Na reabsorption compared to those with normal Na reabsorption (p < 0,05). The TmP/GFR level was increased in patients with hypercorticoidism comparted to that in kidney allograft recipients. There was no difference in TmP/GFR between recipients treated and not treated with CyA. A negative correlation was found between TmP/FGR and PHT, CNs/FGR and CLi/FGR (p < 0,01). Partial correlation estimation showed that TmP/GFR correlates with CNa/GFR and CLi/GFR at constant PTH and correlates with PTH at constant CNa/GFR and CLi/GFR. In patients with normal PTH and Can/GFR, the TmP/GFR level was reduced in allograft patients rather than in those with hypercorticoidism. Conclusion: hypercorticoidism, hyperparathyroidism, reduced Na reabsorption and possibly phosphatonin reduce phosphate reabsorption after kidney transplantation.

About the Authors

I. E. Borodulin
НИИ трансплантологии и искусственных органов МЗ РФ, Московский городской нефрологический центр при городской клинической больнице № 52, г. Москва
Russian Federation


O. N. Kotenko
НИИ трансплантологии и искусственных органов МЗ РФ, Московский городской нефрологический центр при городской клинической больнице № 52, г. Москва
Russian Federation


T. Yu. Nikonova
НИИ трансплантологии и искусственных органов МЗ РФ, Московский городской нефрологический центр при городской клинической больнице № 52, г. Москва
Russian Federation


V. P. Buzulina
НИИ трансплантологии и искусственных органов МЗ РФ, Московский городской нефрологический центр при городской клинической больнице № 52, г. Москва
Russian Federation


I. P. Yermakova
НИИ трансплантологии и искусственных органов МЗ РФ, Московский городской нефрологический центр при городской клинической больнице № 52, г. Москва
Russian Federation


References

1. Бабарыкин Д.А., Иванов Л.Н., Наточин Ю.В. и соавт. В кн.: Физиология водно-солевого обмена и почки. Под ред. Ю.В. Наточина. СПб.: Наука, 1993: 263-313.

2. Ермакова И.П., Бузулина В.П., Пронченко И.А. Сравнительная оценка двух способов исследования клиренса экзогенного лития утром натощак и в дневные часы у здоровых и больных после аллотрансплантации трупной почки. Клиническая лабораторная диагностика 1997; 12: 10-14.

3. Котенко О.Н. Ренальная дисфункция почечного аллотрансплантата при применении циклоспорина А: Дисс. … канд. мед. наук. М.: 1997: 72-82.

4. Пронченко И.А., Бузулина В.П., Кузьмин Б.В. Определение лития в крови и моче методом атомно-эмиссионной спектрофотометрии. Лаб. дело 1994; 6: 26.

5. Шумаков В.И., Мойсюк Я.Г., Томилина Н.А. Трансплантация почки. В кн.: Трансплантология: руководство. Под ред. В.И. Шумакова. М.: Медицина, 1995: 194-196.

6. Biber L., Custer M., Magagnin S. et al. Renal Na/Pi-cotransporters. Kidney International 1996; 49: 981-985.

7. Biber J., Hernando N., Traebert M. et al. Parathyroid hormone-mediated regulation of renal phosphate reabsorption. Nephrol Dial Transplant 2000; 15 (Suppl. 6): 29-30.

8. Bijvoet O.L.M. Relation of plasma phosphate concentration to renal tubular reabsorption of phosphate. Clin Sci 1969; 37: 23-36.

9. Dumoulin G., Hory B., Nguyen N.U. et al. Lack of evidence, that cyclosporine treatment impairs calcium-phosphorus homeostasis and bone remodeling in normocalcemic long-term renal transplant recipients. Transplantation 1995; 59: 1690-1694.

10. Green J., Debby H., Lederer E. et al. Evidence for a PTH-independent humoral mechanism in post-transplant hypophosphatemia and phosphaturia. Kidney International 2001; 60: 1182-1196.

11. Leyssak P.P., Holsten-Ratblou N.H., Scott P. et al. A micropuncture study of proximal tubule transport of lithium during osmotic diuresis. Am J Physiol 1990; 258: 1090-1095.

12. Levi M., Kempson S.A., Lotscher M. et al. Molecular regulation of renal phosphate transport. J Membrane Biol 1996; 154: 1-9.

13. Loffing J., Lotscher M., Kaissling B. et al. Renal Na/H exchanger NHE-3 and Na-PO4 cotransporter NaPi-2 protein expression in glucocorticoid excess and deficient states. J Am Soc Nephrol 1998; 9: 1560-1567.

14. Mazzaferro S., Barberi S., Scarda S. et al. Ionised and total magnesium in renal transplant patients. J Nephrol 2002; 15: 275-280.

15. Mazzola B.L., Vannini S.D.P., Truttmann A.C. et al. Long-term calcineurin inhibition and magnesium balance after renal transplantation. Transpl Int 2003; 16: 76-81.

16. Murer H., Forster I., Hernando N. et al. Posttranscriptional regulation of the proximal tubule NaPi-2 transporter in response to PTH and dietary Pi. Am J Physiol 1999; 277 (46): F676-F684.

17. Murer H., Forster I., Hilfiker H. et al. Cellular/molecular control of renal Na/Pi-cotransport. Kidney International 1998; 53 (65): S2-S10.

18. Murer H., Hernando H., Forster I., Biber J. Proximal Tubular Phosphate Reabsorption: Molecular Mechanisms Physiol Rev 2000; 80: 1373-1409.

19. Murer H., Lotschtr M., Kaissling B. Renal brush border membrane Na/Pi-cotransport: Molecular aspects in PTH-dependent and dietary regulation. Kidney International 1996; 49: 1769-1773.

20. Palestine A.G., Austin H.A., Nussenblatt R.B. Renal Tubular Function in Cyclosporine-treated Patients. The American Journal of Medicine 1986; 81: 419-424.

21. Parfitt A.M., Kleerekoper M., Cruz C. Reduced Phosphate Reabsorption Unrelated to Parathyroid Hormone after Renal Transplantation: Implications for the Pathogenesis of Hyperparathyroidism in Chronic Renal Failure. Mineral Electrolyte Metab 1986; 12: 356-362.

22. Rosenbaum R.W., Hruska K.A., Korkor A. Decreased phosphate reabsorption after renal transplantation: Evidence for a mechanism independent of calcium and parathyroid hormone. Kidney International 1981; 19: 568-578.

23. Steiner R.W., Ziegler M., Halasz N.A. et al. Effect of daily oral vitamin D and calcium therapy, hypophosphatemia, and endogenous 1-25 dihydroxycholecalciferol on parathyroid hormone and phosphate wasting in renal transplant recipients. Transplantation 1993; 56 (4): 843-846.

24. Suki W.N., Rouse D. Renal Transport of Calcium, Magnesium and Phosphate. In: The Kidney. Edited by B.M. Brenner, F.C. Rector. W B Saunders Company, Phyladelphia, London, Toronto, Montreal, Sydney, Tokyo: 1996: 472-486.

25. Thomsen K., Schou M., Steiness I. et al. Lithium as indicator of proximal sodium reabsorption. Pflugers Arch 1969; 308: 180-184.

26. Thomsen K. Lithium Clearence: A new method for determining proximal and distal reabsorption of sodium and water. Nephron 1984; 37: 217-223.

27. Vincent H.H., Wenting R. Impaired fractional excretion of Li and early marker of CsA-induced changes in renal hemodynamics. 2 congress on CsA Transplant Proc 1988; 10: 3.


Review

For citations:


Borodulin I.E., Kotenko O.N., Nikonova T.Yu., Buzulina V.P., Yermakova I.P. The mechanism of reduction of tubular phosphate reabsorption after successful kidney transplantation. Nephrology and Dialysis. 2004;6(4):301-304. (In Russ.)

Views: 2


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1680-4422 (Print)
ISSN 2618-9801 (Online)