Preview

Nephrology and Dialysis

Advanced search

Chronic kidney disease in children: definition, classification and diagnostics

https://doi.org/10.28996/2618-9801-2020-1-53-70

Abstract

Chronic kidney disease (CKD) occupies a special place among chronic non-infection diseases because it is associated with a deterioration in the quality of life, high mortality and in the terminal stage with the need to use expensive methods of replacement therapy - dialysis and kidney transplantation. The principle of determining CKD was developed for the adult population and, despite the presence of clear recommendations for definition, classification, diagnosis and treatment, there are many unresolved issues for all stages of CKD diagnosis in pediatric patients. The article describes age-related changes in glomerular filtration rate (GFR) in children. The advantages and disadvantages of endogenous and exogenous markers of GFR are detailed. Particular attention is paid to modern methods of measuring of the creatinine and cystatin C concentrations in blood and their standardization. The criteria for definition and classification of CKD, the features of its use in children under 2 years of age are described in detail. The characteristics of the CKD causes in pediatric practice are given. Validated formulas for calculating GFR for pediatric patients with CKD are presented: “bedside” Schwartz equation (2009), Schwartz-Lyon equation (2012), creatinine and creatinine-cystatin C based CKiD equations, as well as screening equations for calculating the GFR for a healthy child population: simple, age-dependent and growth-dependent Q equations, FM (Flanders Metadata) equation, taking into account possible age ranges of their use, advantages and limitations. The sequence of using formulas for a more accurate determination of GFR and the stage of CKD in children is given. The article also describes age-related changes in albuminuria, stages of pathological albuminuria, the assessment of which contributes to predicting the progression and outcome of CKD, serves as a guide to the adequacy of renoprotective therapy. The presented data are aimed to make CKD diagnosis in children on time and accurate grading of CKD and albuminuria stages.

About the Author

S. V. Baiko
1st Department of Pediatrics, Belarusian State Medical University
Russian Federation


References

1. USRDS 2000 - 2000 Annual Data Report [Электронный ресурс]. URL: https://www.usrds.org/2000/2kpdf/01_incid_&_prev.pdf (дата обращения: 27.05.2019).

2. Trivedi H.S., Pang M.M., Campbell A. et al. Slowing the progression of chronic renal failure: economic benefits and patients' perspectives. Am. J. Kidney Dis. 2002. 39(4): 721-729.

3. K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am. J. of Kidney Dis. 2002. 39(2, suppl. 1): 1-266.

4. USRDS 2012 - 2012 Annual Data Report [Электронный ресурс]. URL: https://www.usrds.org/2012/view/v2_01.aspx (дата обращения: 27.05.2019).

5. Hogg R.J., Furth S., Lemley K.V. et al. National Kidney Foundation’s Kidney Disease Outcomes Quality Initiative Clinical Practice Guidelines for Chronic Kidney Disease in Children and Adolescents: Evaluation, Classification, and Stratification. Pediatrics. 2003. 111(6): 1416-1421.

6. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int. Suppl. 2013. 3(1): S 1-150.

7. Клинические практические рекомендации KDIGO 2012 по диагностике и лечению хронической болезни почек: пер. с англ. Е.В. Захаровой. Нефрология и диализ. 2017. 19(1): 22-206.

8. Schwartz G.J., Furth S.L. Glomerular filtration rate measurement and estimation in chronic kidney disease. Pediatr Nephrol. 2007. 22(11): 1839-1848.

9. Piepsz A., Tondeur M., Ham H. Revisiting normal 51Cr-ethylenediaminetetraacetic acid clearance values in children. Eur. J. Nucl. Med. Mol. Imaging. 2006. 33(12): 1477-1482.

10. Schwartz G.J., Work D.F. Measurement and estimation of GFR in children and adolescents. Clin. J. of the Am. Soc. of Nephrol. 2009. 4(11): 1832-1843.

11. Lehrnbecher T., Greissinger S., Navid F. et al. Albumin, IgG, retinol-binding protein, and alpha1-microglobulin excretion in childhood. Pediatr. Nephrol. 1998. 12(4): 290-292.

12. Brandt J.R., Jacobs A., Raissy H.H. et al. Orthostatic proteinuria and the spectrum of di-urnal variability of urinary protein excretion in healthy children. Pediatr. Nephrol. 2010. 25(6): 1131-1137.

13. Levey A.S., de Jong P.E., Coresh J. et al. The definition, classification, and prognosis of chronic kidney disease: a KDIGO Controversies Conference report. Kidney Int. 2011. 80(1): 17-28.

14. van der Velde M., Matsushita K., Coresh J. et al. Lower Estimated Glomerular Filtration Rate and Higher Albuminuria are Associated with All-cause and Cardiovascular Mortality. Kidney Int. 2011: 79 (12): 1341-1352.

15. Даминова М.А. Хроническая болезнь почек у детей: этиология, классификация и факторы прогрессирования. Вестник современной клинической медицины. 2016. 9(2): 36-41.

16. Gracchi V., van den Belt SM., Küpers L.K. et al. Prevalence and distribution of (micro)albuminuria in toddlers. Nephrol. Dial. Transplant. 2016. 31(10): 1686-1692.

17. Brandt J.R., Wong C.S., Jacobs A. et al. Urine albumin excretion: Characterization of normal variability in healthy children. Open Journal of Pediatrics. 2013. 3: 58-64.

18. Cowell C.T., Rogers S., Silink M. First morning urinary albumin concentration is a good predictor of 24-hour urinary albumin excretion in children with type 1 (insulin-dependent) diabetes. Diabetologia. 1986. 29(2): 97-99.

19. Report of the annual WHO-FIC meeting 2007 [Электронный ресурс]. URL: https://www.who.int/classifications/icd/ICD-10%20Updates%202007.pdf (дата обращения: 19.06.2019).

20. Каримджанов И.А., Исраилова Н.А. Хроническая болезнь почек у детей (обзор литературы). Здоровье ребенка. 2017. 12(7): 832-840.

21. Pottel H. Measuring and estimating glomerular filtration rate in children. Pediatr Nephrol. 2017. 32(2): 249-263.

22. Soveri I., Berg U.B., Björk J. et al. Measuring GFR: a systematic review. Am. J. Kidney Dis. 2014. 64(3): 411-424.

23. Аверьянов С.Н., Амчеславский В.Г., Багаев В.Г. и др. Определение скорости клубочковой фильтрации у детей: история и современные подходы. Педиатрическая фармакология. 2018. 15(3): 218-223.

24. Delanaye P., Cavalier E., Pottel H. Serum Creatinine: Not So Simple! Nephron. 2017. 136(4): 302-308.

25. den Bakker E., Gemke R.J.B.J., Bökenkamp A. Endogenous markers for kidney function in children: a review. Crit. Rev. Clin. Lab. Sci. 2018. 55(3): 163-183.

26. Ostermann M., Joannidis M. Acute kidney injury 2016: diagnosis and diagnostic workup. Crit. Care. 2016. 20(1): 299.

27. Lempert K.D. Probiotics and CKD Progression: Are Creatinine-Based Estimates of GFR Applicable? AJKD. 2019. doi: 10.1053/j.ajkd.2019.02.003. [Epub ahead of print].

28. Dunn S.R., Gabuzda G.M., Superdock K.R. et al. Induction of creatininase activity in chronic renal failure: timing of creatinine degradation and effect of antibiotics. Am. J. Kidney Dis. 1997. 29(1): 72-77.

29. Papadakis M.A., Arieff A.I. Unpredictability of clinical evaluation of renal function in cirrhosis. Prospective study. Am. J. Med. 1987. 82(5): 945-952.

30. Doi K., Yuen P.S., Eisner C. et al. Reduced production of creatinine limits its use as marker of kidney injury in sepsis. J. Am. Soc. Nephrol. 2009. 20(6): 1217-1221.

31. Rodieux F., Wilbaux M., van den Anker J.N. et al. Effect of Kidney Function on Drug Kinetics and Dosing in Neonates, Infants, and Children. Clin. Pharmacokinet. 2015. 54(12): 1183-204.

32. Hodari A.A., Mariona F.G., Houlihan R.T. et al. Creatinine transport in the maternal-fetal complex. Obstet. Gynecol. 1973. 41(1):47-55.

33. Treiber M., Gorenjak M., Pecovnik Balon B. Serum cystatin C as a marker of acute kidney injury in the newborn after perinatal hypoxia/asphyxia. Ther. Apher. Dial. 2014. 18(1): 57-67.

34. Feldman H., Guignard J.P. Plasma creatinine in the first month of life. Arch. Dis. Child. 1982. 57(2): 123-126.

35. Guignard J.P., Drukker A. Why do newborn infants have a high plasma creatinine? Pediatrics. 1999.103(4): e49.

36. Matos P., Duarte-Silva M., Drukker A. et al. Creatinine reabsorption by the newborn rabbit kidney. Pediatr Res. 1998. 44(5): 639-641.

37. Delanghe J.R., Speeckaert M.M. Creatinine determination according to Jaffe-what does it stand for? NDT Plus. 2011. 4(2): 83-86.

38. Cobbaert C.M., Baadenhuijsen H., Weykamp C.W. Prime time for enzymatic creatinine methods in pediatrics. Clin. Chem. 2009. 55 (3): 549-558.

39. Каюков И.Г. Почему скорость клубочковой фильтрации, а не концентрация креатинина в сыворотке крови? Нефрология. 2004. 8(4): 99-102.

40. Myers G.L., Miller W.G., Coresh J. Recommendations for improving serum creatinine measurement: a report from the Laboratory Working Group of the National Kidney Dis-ease Education Program. Clin. Chem. 2006. 52(1): 5-18.

41. Weber J.A., van Zanten A.P. Interferences in current methods for measurements of creatinine. Clinical chemistry. 1991. 37(5): 695-700.

42. Greenberg N., Roberts W.L., Bachmann L.M. et al. Specificity characteristics of 7 commercial creatinine measurement procedures by enzymatic and Jaffe method principles. Clinical chemistry. 2012. 58(2): 391-401.

43. Ou M., Song Y., Li S. et al. LC-MS/MS Method for Serum Creatinine: Comparison with Enzymatic Method and Jaffe Method. PLoS One. 2015. 10(7): e0133912.

44. Неонатология: учебник. Под ред. А. К. Ткаченко, А. А. Устинович. Минск: Вышэйшая школа, 2017. 608 с.

45. Knapp M.L., Hadid O. Investigations into negative interference by jaundiced plasma in kinetic Jaffe methods for plasma creatinine determination. Ann. Clin. Biochem. 1987. 24(Pt. 1): 85-97.

46. Nah H., Lee S.G., Lee K.S. et al. Evaluation of bilirubin interference and accuracy of six creatinine assays compared with isotope dilution-liquid chromatography mass spectrome-try. Clin. Biochem. 2016. 49(3): 274-281.

47. Delanghe J.R. How to estimate GFR in children. Nephrol. Dial. Transplant. 2009. 24(3): 714-716.

48. Panteghini M. Enzymatic assays for creatinine: time for action. Scand. J. Clin. Lab. In-vest. 2008. 46(4): 567-572.

49. Piéroni L., Delanaye P., Boutten A. et al. A multicentric evaluation of IDMS-traceable creatinine enzymatic assays. Clin. Chim. Acta 2011; 412(23-24): 2070-2075.

50. Filler G., Bökenkamp A., HofmannW. et al. Cystatin C as a marker of GFR - history, indications, and future research. Clin. Biochem. 2005. 38(1): 1-8.

51. Andersen T.B., Eskild-Jensen A., Frøkiaer J. et al. Measuring glomerular filtration rate in children; can cystatin C replace established methods? A review. Pediatr. Nephrol. 2009. 24(5): 929-941.

52. Newman D.J. Cystatin C. Ann. Clin. Biochem. 2002; 39 (Pt. 2): 89-104.

53. Tenstad O., Roald A.B., Grubb A. et al. Renal handling of radiolabelled human cystatin C in the rat. Scand. J. Clin. Lab. Invest. 1996. 56(5):409-414.

54. Uchida K., Gotoh A. Measurement of cystatin-C and creatinine in urine. Clin. Chim. Acta. 2002. 323(1-2): 121-128.

55. Slort P.R., Ozden N., Pape L. et al. Comparing cystatin C and creatinine in the diagnosis of pediatric acute renal allograft dysfunction. Pediatr. Nephrol. 2012. 27(5): 843-849.

56. Keevil B.G., Kilpatrick E.S., Nichols S.P. et al. Biological variation of cystatin C: implications for the assessment of glomerular filtration rate. Clin. Chem. 1998. 44(7): 1535-1539.

57. Bökenkamp A., Laarman C.A., Braam K.I. et al. Effect of corticosteroid therapy on low-molecular weight protein markers of kidney function. Clin. Chem. 2007. 53(12): 2219-2221.

58. Fricker M., Wiesli P., Brändle M. et al. Impact of thyroid dysfunction on serum cystatin C. Kidney Int. 2003. 63(5): 1944-1947.

59. Knight E.L., Verhave J.C., Spiegelman D. et al. Factors influencing serum cystatin C levels other than renal function and the impact on renal function measurement. Kidney Int. 2004. 65(4): 1416-1421.

60. Grubb A., Björk J., Nyman U. et al. Cystatin C, a marker for successful aging and glomerular filtration rate, is not influenced by inflammation. Scand. J. Clin. Lab. Invest. 2011. 71(2): 145-149.

61. Randers E., Kristensen J.H., Erlandsen E.J. et al. Serum cystatin C as a marker of the renal function. Scand. J. Clin. Lab. Invest. 1998. 58(7): 585-592.

62. Ristiniemi N., Savage C., Bruun L. et al. Evaluation of a new immunoassay for cystatin C, based on a double monoclonal principle, in men with normal and impaired renal function. Nephrol. Dial. Transplant. 2012. 27(2): 682-687.

63. Yang S.K., Liu J., Zhang X.M. et al. Diagnostic accuracy of serum cystatin C for the evaluation of renal dysfunction in diabetic patients: a meta-analysis. Ther. Apher. Dial. 2016. 20(6): 579-587.

64. Schwartz G.J., Schneider M.F., Maier P.S. et al. Improved equations estimating GFR in children with chronic kidney disease using an immunonephelometric determination of cystatin C. Kidney Int. 2012. 82(4): 445-453.

65. Grubb A., Blirup-Jensen S., Lindström V. et al. First certified reference material for cystatin C in human serum ERM-DA471/IFCC. Clin. Chem. Lab. Med. 2010. 48(11): 1619-1621.

66. Delanaye P., Pieroni L., Abshoff C. et al. Analytical study of three cystatin C assays and their impact on cystatin C-based GFR-prediction equations. Clin. Chim. Acta. 2008. 398(1-2): 118-124.

67. Bökenkamp A., Dieterich C., Dressler F. et al. Fetal serum concentrations of cystatin C and beta2-microglobulin as predictors of postnatal kidney function. Am. J. Obstet. Gynecol. 2001. 185(2): 468-475.

68. Bökenkamp A., Domanetzki M., Zinck R. et al. Reference values for cystatin C serum concentrations in children. Pediatr. Nephrol. 1998. 12(2): 125-129.

69. Du Bois D., Du Bois E.F. Clinical calorimetry: tenth paper a formula to estimate the approximate surface area if height and weight be known. Arch. Intern. Med. 1916. 17: 863-871.

70. van der Sijs H., Guchelaar H.J. Formulas for calculating body surface area. Ann. Pharmacother. 2002. 36(2): 345-346.

71. Mosteller R. Simplified calculation of body surface area. New Engl. J. Med. 1987. 317(17): 1098.

72. Haycock G.B., Schwartz G.J.,Wisotsky D.H. Geometric method for measuring body surface area: a height-weight formula validated in infants, children, and adults. J. Pediatr. 1978. 93(1): 62-66.

73. Интернет-калькулятор площади поверхности тела у детей по формуле Дюбуа [Электронный ресурс]. URL: https://www.merckmanuals.com/medical-calculators/BodySurfaceArea-ru.htm (дата обращения: 04.07.2019).

74. Интернет-калькулятор площади поверхности тела у детей по формуле Мостеллера [Электронный ресурс]. URL:http://allcalc.ru/node/257 (дата обращения: 04.07.2019).

75. Hellerstein S., Berenbom M., Erwin P. et al. Timed-urine collections for renal clearance studies. Pediatr. Nephrol. 2006. 21(1): 96-101.

76. Schwartz G.J., Brion L.P., Spitzer A. The use of plasma creatinine concentration for esti-mating glomerular filtration rate in infants, children, and adolescents. Pediatr. Clin. North. Am. 1987. 34(3): 571-590.

77. Counahan R., Ghazali S., Kirkwood B et al. Estimation of glomerular filtration rate from plasma creatinine concentration in children. Arch. Dis. Child. 1976. 51(11): 875-878.

78. Schwartz G.J., Furth S., Cole S.R. et al. Glomerular filtration rate via plasma iohexol dis-appearance: pilot study for chronic kidney disease in children. Kidney Int. 2006. 69(11): 2070-2077.

79. Интернет-калькулятор «bedside» формулы Шварца (2009) [Электронный ресурс]. URL: https://www.kidney.org/content/creatinine-based-“bedside-schwartz”-equation-2009 (дата обращения: 13.07.2019).

80. Schwartz G.J., Muñoz A., Schneider M.F. et al. New Equations to Estimate GFR in Children with CKD. J. Am. Soc. Nephrol. 2009. 20(3): 629-637.

81. De Souza V.C., Rabilloud M., Cochat P. et al. Schwartz formula: is one k-coefficient ad-equate for all children? PLoS One. 2012. 7(12): e53439.

82. Selistre L., De Souza V., Cochat P. et al. GFR estimation in adolescents and young adults. J. Am. Soc. Nephrol. 2012. 23(6): 989-996.

83. Levey A.S., Inker L.A., Coresh J. GFR estimation: from physiology to public health. Am. J. Kidney Dis. 2014. 63(5): 820-834.

84. Mian A.N., Schwartz G.J. Measurement and Estimation of Glomerular Filtration Rate in Children. Adv. Chronic Kidney Dis. 2017. 24(6): 348-356

85. Morgan C., Senthilselvan A., Bamforth F. et al. Correlation between cystatin C- and renal scan-determined glomerular filtration rate in children with spina bifida. Pediatr. Nephrol. 2008. 23(2): 329-332.

86. Nehus E.J., Laskin B.L., Kathman T.I. et al. Performance of cystatin C-based equations in a pediatric cohort at high risk of kidney injury. Pediatr. Nephrol. 2013; 28(3): 453-461.

87. Erlandsen E.J., Hansen R.M., Randers E. et al. Estimating the glomerular filtration rate using serum cystatin C levels in patients with spinal cord injuries. Spinal Cord. 2012. 50(10): 778-783.

88. Laskin B.L., Nehus E., Goebel J. et al. Estimated versus measured glomerular filtration rate in children before hematopoietic cell transplantation. Biol. Blood Marrow Transplant. 2014. 20(12): 2056-2061.

89. Braat E., Hoste L., De Waele L. et al. Renal function in children and adolescents with Duchenne muscular dystrophy. Neuromuscul Disord. 2015. 25(5): 381-387.

90. Schwartz G.J. Height: the missing link in estimating glomerular filtration rate in children and adolescents. Nephrol. Dial. Transplant. 2014. 29(5): 944-947.

91. Pottel H., Martens F. A simple height-independent equation for estimating glomerular filtration rate in children. Pediatr. Nephrol. 2012. 27(6): 973-979.

92. Hoste L., Dubourg L., Selistre L. et al. A new equation to estimate the glomerular filtration rate in children, adolescents and young adults. Nephrol. Dial. Transplant. 2014. 29(5): 1082-1091.

93. Pottel H., Mottaghy F.M., Zaman Z. et al. On the relationship between glomerular filtration rate and serum creatinine in children. Pediatr. Nephrol. 2010. 25(5): 927-934.

94. Abitbol C.L., Seeherunvong W., Galarza M.G. et al. Neonatal kidney size and function in preterm infants: what is a true estimate of glomerular filtration rate? J. Pediatr. 2014. 164(5): 1026-1031.


Review

For citations:


Baiko S.V. Chronic kidney disease in children: definition, classification and diagnostics. Nephrology and Dialysis. 2020;22(1):53-70. (In Russ.) https://doi.org/10.28996/2618-9801-2020-1-53-70

Views: 591


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1680-4422 (Print)
ISSN 2618-9801 (Online)