Preview

Nephrology and Dialysis

Advanced search

Innovation in hemodialysis

https://doi.org/10.28996/2618-9801-2019-2-199-212

Abstract

In future update of clinical guidelines on dialysis adequacy prepared by the International Society of Nephrology, the main priorities are given to four topics: the choice of dialysis modality, conditions at dialysis start, vascular access, adequacy of hemodialysis with an emphasis on correction of water balance and dialysis duration. In Europe negative scenarios for the development of these problems have been avoided: the choice of dialysis modality is more available; neither early nor late start is widespread; vascular access is always held in attention; dialysis shorter than four hours is not used, and instrumental hydration assessments are being actively developed. New approaches to the intensification of dialysis, first of all with regard to the elimination of more and more high-molecular substances related to uremic toxins are used. The limiting factor for an increase in permeability of new membranes is the necessity to exclude (at least minimize) the albumin loss. To meet these requirements, the membrane must have a high retention onset (substances with a lower molecular weight are retained by less than 10%) and a medium cut-off (less than 10% of a substance with a higher molecular weight is lost through the membrane). Such membranes effectively remove substances with molecular weight of up to 50 kD, but as reliably as conventional high-flux membranes, eliminate substantial losses of albumin. Fundamentally important is that such membrane permeability provides throughout the dialyzer length the internal filtration, and then back filtration (equivalent to the replacement solution) with a convection volume of about half that of hemodiafiltration with conventional dialysis machines and without a separate system for preparing and introducing the replacement solution. Thereby, the risks of thrombosis of the system and a decrease in the diffusive clearance due to the hemoconcentration in the output part of the dialyzer and the circuit before infusion of replacement solution is reduced. The first clinical evidence confirmed the efficacy and safety of such a solution defined as expander dialysis.

About the Author

A. Sh. Rumyantsev
Pavlov First Saint Petersburg State medical university, Department of Propaedeutics of Internal Disease; Saint Petersburg State university, Department of Faculty Therapy
Russian Federation


References

1. Румянцев А.Ш., Земченков Г.А., Сабодаш А.Б. К вопросу о перспективах обновления клинических рекомендаций по гемодиализу. Нефрология. 2019; 23 (2): 49-76.

2. Cozzolino M, Blankestijn PJ. Translating innovation to clinical outcomes. Nephrol Dial Transplant. 2018;33(suppl_3):iii1. https://doi.org/10.1093/ndt/gfy231

3. Massy ZA, Liabeuf S. From old uraemic toxins to new uraemic toxins: place of 'omics'. Nephrol Dial Transplant. 2018 Oct 1;33(suppl_3):iii2-iii5. doi: 10.1093/ndt/gfy212.

4. Tomlinson JAP, Wheeler DC. The role of trimethylamine N-oxide as a mediator of cardiovascular complications in chronic kidney disease. Kidney Int. 2017;92(4):809-815. doi: 10.1016/j.kint.2017.03.053.

5. Kim RB, Morse BL, Djurdjev O et al. Advanced chronic kidney disease populations have elevated trimethylamine N-oxide levels associated with increased cardiovascular events. Kidney Int. 2016; 89(5):1144-1152. doi: 10.1016/j.kint.2016.01.014.

6. Dou L, Poitevin S, Sallee M et al. Aryl hydrocarbon receptor is activated inpatients and mice with chronic kidney disease. Kidney Int.2018;93(4):986-999. doi: 10.1016/j.kint.2017.11.010.

7. Kolachalama VB, Shashar M, Alousi F et al. Uremic solute-aryl hydrocarbon receptor-tissue factor axis associates with thrombosis after vascular injury in humans. J Am Soc Nephrol. 2018; 29(3):1063-1072. doi: 10.1681/ASN.2017080929.

8. Wolley MJ, Hutchison CA. Large uremic toxins: an unsolved problem in end-stage kidney disease. Nephrol Dial Transplant. 2018 Oct 1;33(suppl_3):iii6-iii11. doi: 10.1093/ndt/gfy179.

9. Gejyo F, Yamada T, Odani S et al. A new form of amyloid protein associated with chronic hemodialysis was identified as beta 2-microglobulin. Biochem Biophys Res Commun. 1985; 129(3): 701-706

10. Cheung AK, Rocco MV, Yan G et al. Serum beta-2 microglobulin levels predict mortality in dialysis patients: results of the HEMO study. J Am Soc Nephrol. 2006; 17(2): 546-555.

11. Okuno S, Ishimura E, Kohno K et al. Serum beta2-microglobulin level is a significant predictor of mortality in maintenance haemodialysis patients. Nephrol Dial Transplant. 2009;24(2):571-7. doi: 10.1093/ndt/gfn521.

12. Watanabe Y, Kawanishi H, Suzuki K et al. Japanese Society for Dialysis Therapy Clinical Guideline for “Maintenance hemodialysis: hemodialysis prescriptions”.Ther Apher Dial. 2015; 19(Suppl 1):67-92. doi: 10.1111/1744-9987.12294.

13. Masakane I, Sakurai K. Current approaches to middle molecule removal: room for innovation. Nephrol Dial Transplant. 2018 Oct 1;33(suppl_3):iii12-iii21. doi: 10.1093/ndt/gfy224.

14. Vanholder R, Schepers E, Pletinck A et al. The uremic toxicity of indoxyl sulfate and p-cresyl sulfate: a systematic review. J Am Soc Nephrol. 2014; 25:1897-1907

15. Vanholder R, Pletinck A, Schepers E, Glorieux G. Biochemical and Clinical Impact of Organic Uremic Retention Solutes: A Comprehensive Update. Toxins (Basel). 2018;10(1). pii: E33. doi: 10.3390/toxins10010033.

16. Vanholder RC, Eloot S, Glorieux GL. Future avenues to decrease uremic toxin concentration. Am J Kidney Disease. 2016; 67(4): 664-676. doi: 10.1053/j.ajkd.2015.08.029.

17. Meyer TW, Sirich TL, Hostetter TH. Dialysis cannot be dosed. Semin Dial. 2011;24(5):471-9. doi: 10.1111/j.1525-139X.2011.00979.x

18. Ko GJ, Obi Y, Soohoo M et al. No Survival Benefit in Octogenarians and Nonagenarians with Extended Hemodialysis Treatment Time. Am J Nephrol. 2018;48(5):389-398. doi: 10.1159/000494336.

19. Babb AL, Popovich RP, Christopher TG et al. The genesis of the squaremeter-hour hypothesis. Trans Am Soc Artif Intern Organs. 1971; 17: 81-91

20. Fürst P, Zimmerman L, Bergstro ¨m J. Determination of endogenous middlemolecules in normal and uremic body fluids. Clin Nephrol. 1976; 3: 178-188

21. Storr M, Ward RA. Membrane innovation: closer to native kidneys. Nephrol Dial Transplant. 2018 Oct 1;33(suppl_3):iii22-iii27. doi: 10.1093/ndt/gfy228.

22. Wolley M, Jardine M, Hutchison CA. Exploring the clinical relevance of providing increased removal of large middle molecules. Clin J Am Soc Nephrol. 2018; 13(5): 805-814. doi: 10.2215/CJN.10110917.

23. Morena M, Jaussent A, Chalabi L et al. Treatment tolerance and patient-reported outcomes favor online hemodiafiltration compared to high-flux hemodialysis in the elderly. Kidney Int. 2017;91(6):1495-1509. doi: 10.1016/j.kint.2017.01.013.

24. Земченков А.Ю., Герасимчук Р.П., Сабодаш А.Б. Гемодиафильтрация: внимание на объем (обзор литературы). Нефрология и диализ. 2014. 16(1):128-138.

25. Peters SA et al. Haemodiafiltration and mortality in end-stage kidney disease patients: a pooled individual participant data analysis from four randomized controlled trials. Nephrol Dial Transplant. 2016;31(6):978-84. doi: 10.1093/ndt/gfv349

26. Masakane I, Kikuchi K, Kawanishi H.Evidence for the Clinical Advantages of Predilution On-Line Hemodiafiltration. Contrib Nephrol. 2017;189:17-23. 10.1159/000450635.

27. Kikuchi K, Hamano T, Wada A et al. Predilution online hemodiafiltration is associated with improved survival compared with hemodialysis. Kidney Int. 2019 Feb 16. doi: 10.1016/j.kint.2018.10.036. [Epub ahead of print].

28. Сабодаш АБ, Земченков ГА, Казанцева НС, Салихова К.А., Макарова О.В., Пролетов Я.Ю., Земченков А.Ю. Возможности достижения целевого конвекционного объема при on-line гемодиафильтрации. Вестник трансплантации и искусственных органов. 2015; 17(4):63-71.

29. Kirsch AH, Lyko R, Nilsson LG et al. Performance of hemodialysis with novel medium cut-off dialyzers. Nephrol Dial Transplant. 2017; 32(1): 165-172. doi: 10.1093/ndt/gfw310.

30. Ok E, Asci G, Toz H et al. Mortality and cardiovascular events in online haemodiafiltration (OL-HDF) compared with high-flux dialysis: results from the Turkish OL-HDF Study. Nephrol Dial Transplant. 2013; 28(1):192-202. doi: 10.1093/ndt/gfs407.

31. Klammt S, Wojak HJ, Mitzner A et al. Albumin-binding capacity (ABiC) is reduced in patients with chronic kidney disease along with an accumulation of protein-bound uraemic toxins. Nephrol Dial Transplant. 2012; 27(6):2377-83. doi: 10.1093/ndt/gfr616.

32. Susantitaphong P, Siribamrungwong M, Jaber BL. Convective therapies versus low-flux hemodialysis for chronic kidney failure: a meta-analysis of randomized controlled trials. Nephrol Dial Transplant. 2013; 28(11):2859-74. doi: 10.1093/ndt/gft396.

33. Maduell F, Arias-Guillen M, Fontsere´N et al. Elimination of large uremic toxins by a dialyzer specifically designed for high-volume convective therapies. Blood Purif. 2014; 37(4):125-130. doi: 10.1159/000358214.

34. Tsuchida K, Minakuchi J. Albumin loss under the use of the high performance membrane. Contrib Nephrol. 2011; 173: 76-83. doi: 10.1159/000328957.

35. Bonomini M, Pieroni L, Di Liberato L et al. Examining hemodialyzer membrane performance using proteomic technologies. Ther Clin Risk Manag. 2018;14:1-9. doi: 10.2147/TCRM.S150824.

36. Ronco C. The rise of expanded hemodialysis. Blood Purif. 2017; 44(2): I-VIII. doi: 10.1159/000476012.

37. Öberg CM, Rippe B. A distributed two-pore model: theoretical implications and practical application to the glomerular sieving of Ficoll. Am J Physiology. 2014; 306: F844-F854

38. Boschetti-de-Fierro A, Beck W, Hildwein Het al. Membrane innovation in dialysis.Contrib Nephrol. 2017; 191: 100-114

39. Schepers E, Glorieux G, Eloot S et al. Assessment of the association between increasing membrane pore size and endotoxin permeability using a novel experimental dialysis simulation set-up. BMC Nephrol. 2018; Jan 5;19(1):1. doi: 10.1186/s12882-017-0808-y.

40. Lorenzin A, Neri M, Lupi A et al. Quantification of internal filtration in hollow fiber hemodialyzers with medium cut-off membrane. Blood Purif. 2018;46(3):196-204. doi: 10.1159/000489993.

41. Blankestijn PJ, Grooteman MP, Nube MJ, Bots ML. Clinical evidence on haemodiafiltration. Nephrol Dial Transplant. 2018 Oct 1;33(suppl_3):iii53-iii58. doi: 10.1093/ndt/gfy218.

42. Lorenzin A, Neri M, Clark WR et al. Modeling of Internal Filtration in Theranova Hemodialyzers. Contrib Nephrol. 2017;191:127-141. doi: 10.1159/000479261.

43. Ronco C. The rise of expanded hemodialysis. Blood Purif. 2017;44(2):I-VIII. doi: 10.1159/000476012.

44. Ronco C, La Manna G. Expanded hemodialysis: a new therapy for a new class of membranes. Contrib Nephrol. 2017;190:124-133. doi: 10.1159/000468959.

45. Ronco C. Fluid mechanics and crossfiltration in hollow-fiber hemodialyzers. Contrib Nephrol. 2007;158:34-49. doi: 10.1159/000107233

46. Ronco C, Marchionna N, Brendolan A et al. Expanded haemodialysis: from operational mechanism to clinical results. Nephrol Dial Transplant. 2018 Oct 1;33(suppl_3):iii41-iii47. doi: 10.1093/ndt/gfy202.

47. Simonsen E, Komenda P, Lerner B et al. Treatment of uremic pruritus: a systematic review. Am J Kidney Dis. 2017; 70(5):638-655. doi: 10.1053/j.ajkd.2017.05.018.

48. Chen ZJ, Cao G, Tang WX et al. A randomized controlled trial of high-permeability haemodialysis against conventional haemodialysis in the treatment of uraemic pruritus. Clin Exp Dermatol. 2009; 34(6):679-83. doi: 10.1111/j.1365-2230.2008.03075.x.

49. Scherer JS, Combs SA, Brennan F. Sleep disorders, restless legs syndrome, and uremic pruritus: diagnosis and treatment of common symptoms in dialysis patients. Am J Kidney Dis. 2017; 69(1):117-128. doi: 10.1053/j.ajkd.2016.07.031.

50. Monzani A, Perrone M, Prodam F et al. Unacylated ghrelin and obestatin: promising biomarkers of protein energy wasting in children with chronic kidney disease. Pediatric Nephrology. 2018; 33(4):661-672. doi: 10.1007/s00467-017-3840-z.

51. Florens N, Juillard L. Large middle molecule and albumin removal: why should we not rest on our laurels? Contrib Nephrol. 2017; 191:178-187. doi: 10.1159/000479266.

52. Bridoux F, Carron P-L, Pegourie B et al. Effect of high-cutoff hemodialysis vs conventional hemodialysis on hemodialysis independence among patients with myeloma cast nephropathy. A randomized clinical trial. J Am Med Assoc. 2017; 318(21):2099-2110. doi: 10.1001/jama.2017.17924.

53. Heyne N, Guthoff M, Krieger J et al. High cut-off renal replacement therapy for removal of myoglobin in severe rhabdomyolysis and acute kidney injury: a case series. Nephron Clin Pract. 2013; 121(3-4):c159-64. doi: 10.1159/000343564.

54. Florens N, Juillard L. Expanded haemodialysis: news from the field. Nephrol Dial Transplant. 2018 Oct 1;33(suppl_3):iii48-iii52. doi: 10.1093/ndt/gfy203.

55. Massy ZA, Liabeuf S. Middle-molecule uremic toxins and outcomes in chronic kidney disease. Contrib Nephrol. 2017; 191:8-17. doi: 10.1159/000479252.


Review

For citations:


Rumyantsev A.Sh. Innovation in hemodialysis. Nephrology and Dialysis. 2019;21(2):199-212. (In Russ.) https://doi.org/10.28996/2618-9801-2019-2-199-212

Views: 76


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1680-4422 (Print)
ISSN 2618-9801 (Online)