Preview

Nephrology and Dialysis

Advanced search

Underlying mechanisms of hyperuricemia-induced renal damage

https://doi.org/10.28996/2618-9801-2025-4-367-379

Abstract

Hyperuricemia (HU) is usually considered as a risk factor for gout, and, even being without arthritis, it can be associated with a large number of comorbid conditions, especially with kidney diseases. The results of representative studies and meta-analyses demonstrate the relationship between HU and development of progressive kidney diseases.

The traditionally discussed complex mechanisms of renal injury, induced by HU, include direct renal damage by monosodium urate (MSU) crystals, oxidative stress and endothelial dysfunction summarized in inflammatory response and resulted in glomerular and tubulointerstitial fibrosis. The key element, which triggers the inflammation, is activation of the cryopyrin inflammasome producing interleukin-1 at high level. Not only crystals although soluble UA could activate the inflammasome. Therefore, HU is to be considered as the autoinflammatory disease.

The data for the evolution of UA metabolism in animals and pathways of its intracellular formation suggest, that it is not the HU, but the intracellular hyperconcentration of uric acid (hyperuricocytosis) triggers "alarm signal" for the autoinflammatory reactions; morover, HU resulted from hyperuricocytosis is only a marker of already realized damage. Being on this position means to reconsider approaches to therapy focusing primarily on anti-inflammatory treatment (colchicine and/or interleukin-1 inhibitors) then urate-lowering strategy.

Further study of the molecular mechanisms of HU and associated inflammation is needed to prove the hypothesis given.

About the Authors

V. V. Rameev
Occupational Diseases and Rheumatology, Tareev Clinic of Internal Diseases, Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

Vilen V Rameev

11/5, Rossolimo str., Moscow, 119435



M. V. Bogdanova
Occupational Diseases and Rheumatology, Tareev Clinic of Internal Diseases, Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

Marina V Bogdanova

11/5, Rossolimo str., Moscow, 119435



L. V. Lysenko (Kozlovskaya)
Occupational Diseases and Rheumatology, Tareev Clinic of Internal Diseases, Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

Lidia V. Lysenko (Kozlovskaya)

11/5, Rossolimo str., Moscow, 119435



References

1. Zhelyabina OV, Eliseev MS. Xanthine oxidase inhibitors in asymptomatic hyperuricemia. Modern rheumatology journal. 2019;13(4):137-142] DOI:10.14412/1996-7012-2019-4-137-142 (In Russian

2. Mironova OYu. Hyperuricemia: contemporary treatment in patients with cardiovascular disease. Eurasian heart journal. 2022;0(2):72-78] DOI: 10.38109/2225-1685-2022-2-72-78 (In Russian)

3. Zhu Y, Pandya BJ, Choi HK. Prevalence of gout and hyperuricemia in the US general population: the National Health and Nutrition Examination Survey 2007-2008. Arthritis Rheum. 2011;63(10):3136-3141. doi:10.1002/art.30520

4. Shalnova SA, Deev AD, Artamova GV et al. Hyperuricemia and its correlates in the Russian population (results of ESSE-RF epidemiological study). Rational Pharmacotherapy in Cardiology. 2014;10(2):153-159] DOI:10.20996/1819-6446-2014-10-2-153-159 (In Russian)

5. Dalbeth N, Phipps-Green A, Frampton C et al. Relationship between serum urate concentration and clinically evident incident gout: an individual participant data analysis. Ann Rheum Dis. 2018;77(7):1048-1052. DOI:10.1136/annrheumdis-2017-212288

6. Richette P, Latourte A, Bardin T. Cardiac and renal protective effects of urate-lowering therapy. Rheumatology (Oxford). 2018;57(1):47-50. DOI:10.1093/rheumatology/kex432

7. Ассоциация ревматологов России. Клинические рекомендации “Подагра” (утв. Минздравом России). Published online 34 2018

8. Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2024 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease // Kidney Int. 2024. Vol. 105, № 4S. P. S117–S314. DOI:10.1016/j.kint.2023. 10.018

9. Kuwabara M, Niwa K, Hisatome I et al. Asymptomatic hyperuricemia without comorbidities predicts cardiometabolic diseases. Hypertension. 2017;69(6):1036-1044. DOI:10.1161/HYPERTENSIONAHA.116.08998

10. Bardin T, Richette P. Impact of comorbidities on gout and hyperuricaemia: an update on prevalence and treatment options. BMC Med. 2017;15:123-133. doi:10.1186/s12916-017-0890-9

11. Gagliardi ACM, Miname MH, Santos RD. Uric acid: A marker of increased cardiovascular risk. Atherosclerosis. 2009;202(1):11-17. DOI:10.1016/j.atherosclerosis.2008.05.022

12. Talbott J, Terplan K. The kidney in gout. Medicine. 1960;39:405-467. PMID: 13775026

13. Zhu Y, Pandya B, Choi H. Comorbidities of gout and hyperuricemia in the US general population: NHANES 2007- 2008. The American journal of medicine. 2012;125(7):679-687. DOI:10.1016/j.amjmed.2011.09.033

14. Li L, Yang C, Zhao Y et al. Is hyperuricemia an independent risk factor for new-onset chronic kidney disease? A systematic review and meta-analysis based on observational cohort studies. BMC Nephrol. 2014;15:122-134. DOI:10.1186/1471-2369-15-122

15. Zhu P, Liu Y, Han L et al. Serum uric acid is associated with incident chronic kidney disease in middle-aged populations: a meta-analysis of 15 cohort studies. PLoS One. 2014;9(6):100801- 10. DOI:10.1371/journal.pone.0100801

16. Oh TR, Choi HS, Kim CS et al. Hyperuricemia has increased the risk of progression of chronic kidney disease: propensity score matching analysis from the KNOW-CKD study. Sci Rep. 2019;9:6681-6690. DOI:10.1038/s41598-019-43241-3

17. Sofue T, Nakagawa N, Kanda E et al. Prevalences of hyperuricemia and electrolyte abnormalities in patients with chronic kidney disease in Japan: A nationwide, cross-sectional cohort study using data from the Japan Chronic Kidney Disease Database (J-CKD-DB). PLoS One. 2020;15(10):e0240402-18. DOI:10.1371/journal.pone.0240402

18. Rodenbach KE, Schneider MF, Furth SL et al. Hyperuricemia and Progression of CKD in Children and Adolescents: The Chronic Kidney Disease in Children (CKiD) Cohort Study. Am J Kidney Dis. 2015;66(6):984-992. DOI:10.1053/j.ajkd.2015.06.015

19. Kumagai T, Ota T, Tamura Y et al. Time to target uric acid to retard CKD progression. Clin Exp Nephrol. 2017;21(2):182- 192. DOI:10.1007/s10157-016-1288-2

20. Sturm G, Kollerits B, Neyer U et al. MMKD Study Group. Uric acid as a risk factor for progression of non-diabetic chronic kidney disease? The Mild to Moderate Kidney Disease (MMKD) Study. Exp Gerontol. 2008;43(4):347-352. DOI:10.1016/j.exger.2008.01.006

21. Madero M, Sarnak MJ, Wang X et al. Uric acid and longterm outcomes in CKD. Am J Kidney Dis. 2009;53(5):796-803. DOI:10.1053/j.ajkd.2008.12.021

22. Srivastava A, Kaze AD, McMullan CJ et al. Uric acid and the risks of kidney failure and death in individuals with CKD. Am J Kidney Dis. 2018;71(3):362-370. DOI:10.1053/j.ajkd.2017.08.017

23. Sellmayr M, Hernandez Petzsche MR, Ma Q et al. Only hyperuricemia with crystalluria, but not asymptomatic hyperuricemia, drives progression of chronic kidney disease. J Am Soc Nephrol. 2020;31(12):2773-2792. DOI:10.1681/ASN.2020040523

24. Hoffstein S, Weissmann G. Mechanisms of lysosomal enzyme release from leukocytes. IV. Interaction of monosodium urate crystals with dogfish and human leukocytes. Arthritis Rheum. 1975;18(2):153-165. DOI:10.1002/art.1780180213

25. Shirahama T, Cohen AS. Ultrastructural evidence for leakage of lysosomal contents after phagocytosis of monosodium urate crystals. A mechanism of gouty inflammation. Am J Pathol. 1974;76(3):501-520. PMID: 4370533

26. Kim SM, Lee SH, Kim YG et al. Hyperuricemia-induced NLRP3 activation of macrophages contributes to the progression of diabetic nephropathy. American Journal of PhysiologyRenal Physiology. 2015;308(9):993-1003. DOI:10.1152/ajprenal.00637.2014

27. Martinon F, Pétrilli V, Mayor A et al. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature. 2006;440(7081):237-241. DOI:10.1038/nature04516

28. Punzi L, Scanu A, Ramonda R, Oliviero F. Gout as autoinflammatory disease: new mechanisms for more appropriated treatment targets. Autoimmun Rev. 2012;12(1):66-71. Doi:10.1016/j.autrev.2012.07.024

29. Xia S, Hollingsworth LR, Wu H. Mechanism and Regulation of Gasdermin-Mediated Cell Death. Cold Spring Harb Perspect Biol. 2020;12(3):036400-13. DOI:10.1101/cshperspect.a036400

30. Wang G, Zuo T, Li R. The mechanism of Arhalofenate in alleviating hyperuricemia-Activating PPARγ thereby reducing caspase-1 activity. Drug development research. 2020;81(7):859- 866. DOI:10.1002/ddr.21699

31. Koka R, Huang E, Lieske J. Adhesion of uric acid crystals to the surface of renal epithelial cells. American journal of physiology Renal physiology. 2000;278(6):989-998. DOI:10.1152/ajprenal.2000.278.6.F989

32. Kim YG, Huang XR, Suga S et al. Involvement of macrophage migration inhibitory factor (MIF) in experimental uric acid nephropathy. Mol Med. 2000;6(10):837-848. DOI:10.1007/BF03401822

33. Giamarellos-Bourboulis EJ, Mouktaroudi M, Bodar E et al. Crystals of monosodium urate monohydrate enhance lipopolysaccharide-induced release of interleukin 1β by mononuclear cells through a caspase 1-mediated process. Annals of the Rheumatic Diseases. 2009;68(2):273-278. DOI:10.1136/ard.2007.082222

34. Scott P, Ma H, Viriyakosol S et al. Engagement of CD14 Mediates the Inflammatory Potential of Monosodium Urate Crystals. The Journal of Immunology. 2006;177(9):6370-6378. DOI:10.4049/jimmunol.177.9.6370

35. Jermendi É, Fernández-Lainez C, Beukema M et al. TLR 2/1 interaction of pectin depends on its chemical structure and conformation. Carbohydrate Polymers. 2023;303:120444-60. DOI:10.1016/j.carbpol.2022.120444

36. Matsumoto Y, Dimitriou ID, La Rose J et al. Tankyrase represses autoinflammation through the attenuation of TLR2 signaling. J Clin Invest. 132(7):140869-86. DOI:10.1172/JCI140869

37. Bradfield CJ, Liang JJ, Ernst O et al. Biphasic JNK signaling reveals distinct MAP3K complexes licensing inflammasome formation and pyroptosis. Cell Death Differ. 2023;30(2):589-604. DOI:10.1038/s41418-022-01106-9

38. Tian C, Heng D, Zhao N et al. Short telomeres impede germ cell specification by upregulating MAPK and TGFβ signaling. Sci China Life Sci. 2023;66(2):324-339. DOI:10.1007/s11427-022-2151-0

39. Tatebayashi K, Yamamoto K, Tomida T et al. Osmostress enhances activating phosphorylation of Hog1 MAP kinase by mono-phosphorylated Pbs2 MAP2K. EMBO J. 2020;39(5):103444-69. DOI:10.15252/embj.2019103444

40. Li GN, Zhao XJ, Wang Z et al. Elaiophylin triggers paraptosis and preferentially kills ovarian cancer drug-resistant cells by inducing MAPK hyperactivation. Signal Transduct Target Ther. 2022;7:317-332. DOI:10.1038/s41392-022-01131-7

41. Lee Y, Hyun CG. Anti-Inflammatory Effects of Psoralen Derivatives on RAW264.7 Cells via Regulation of the NF-κB and MAPK Signaling Pathways. Int J Mol Sci. 2022;23(10):5813-5825. DOI:10.3390/ijms23105813

42. Braga TT, Foresto-Neto O, Camara NOS. The role of uric acid in inflammasome-mediated kidney injury. Curr Opin Nephrol Hypertens. 2020;29(4):423-431. DOI:10.1097/MNH.0000000000000619

43. Braga TT, Forni MF, Correa-Costa M et al. Soluble Uric Acid Activates the NLRP3 Inflammasome. Sci Rep. 2017;7: 39884-39898. DOI:10.1038/srep39884

44. Yu S, Ren Q, Wu W. Effects of losartan on expression of monocyte chemoattractant protein-1 (MCP-1) in hyperuricemic nephropathy rats. Journal of receptor and signal transduction research. 2015;35(5):458-461. DOI: 10.3109/10799893.2015.1006332

45. Zhou Y, Fang L, Jiang L et al. Uric acid induces renal inflammation via activating tubular NF-κB signaling pathway. PLoS One. 2012;7(6):39738-39748. DOI:10.1371/journal.pone.0039738

46. Shimada M, Dass B, Ejaz A. Paradigm shift in the role of uric acid in acute kidney injury. Seminars in Nephrology. 2011;31(5):453-458. DOI:10.1016/j.semnephrol.2011.08.010

47. Karbowska A, Boratynska M, Kusztal M, Klinger M. Hyperuricemia is a mediator of endothelial dysfunction and inflammation in renal allograft recipients. Transplantation Proceedings. 2009;41(8):3052-3055. DOI:10.1016/j.transproceed.2009.07.080

48. Roumeliotis S, Roumeliotis A, Dounousi E et al. Dietary antioxidant supplements and uric acid in chronic kidney disease: a review. Nutrients. 2019;11(8):1911-1929. DOI:10.3390/nu11081911

49. Yang L, Chang B, Guo Y et al. The role of oxidative stress-mediated apoptosis in the pathogenesis of uric acid nephropathy. Ren Fail. 2019;41(1):616-622. DOI:10.1080/0886022X.2019.1633350

50. Cristóbal-García M, García-Arroyo FE, Tapia E et al. Renal oxidative stress induced by long-term hyperuricemia alters mitochondrial function and maintains systemic hypertension. Oxid Med Cell Longev. 2015;2015:535686-535694. DOI:10.1155/2015/535686

51. Hong Q, Qi K, Feng Z et al. Hyperuricemia induces endothelial dysfunction via mitochondrial Na+/Ca2+ exchangermediated mitochondrial calcium overload. Cell Calcium. 2012;51(5):402-410. DOI:10.1016/j.ceca.2012.01.003

52. Sánchez-Lozada LG, Lanaspa MA, Cristóbal-García M et al. Uric acid-induced endothelial dysfunction is associated with mitochondrial alterations and decreased intracellular ATP concentrations. Nephron Exp Nephrol. 2012;121(0):71-78. DOI:10.1159/000345509

53. Kadowaki D, Sakaguchi S, Miyamoto Y et al. Direct radical scavenging activity of benzbromarone provides beneficial antioxidant properties for hyperuricemia treatment. Biol Pharm Bull. 2015;38(3):487-492. DOI:10.1248/bpb.b14-00514

54. Song X, Sun Z, Chen G et al. Matrix stiffening induces endothelial dysfunction via the TRPV4/microRNA-6740/endothelin-1 mechanotransduction pathway. Acta Biomater. 2019;100:52- 60. DOI:10.1016/j.actbio.2019.10.013

55. Coelho SC, Berillo O, Caillon A et al. Three-month endothelial human endothelin-1 overexpression causes blood pressure elevation and vascular and kidney injury. Hypertension. 2018;71(1):208-216. DOI:10.1161/HYPERTENSIONAHA.117.09925

56. Li P, Zhang L, Zhang M et al. Uric acid enhances PKC-dependent eNOS phosphorylation and mediates cellular ER stress: A mechanism for uric acid-induced endothelial dysfunction. Int J Mol Med. 2016;37(4):989-997. DOI:10.3892/ijmm.2016.2491

57. Park JH, Jin YM, Hwang S et al. Uric acid attenuates nitric oxide production by decreasing the interaction between endothelial nitric oxide synthase and calmodulin in human umbilical vein endothelial cells: a mechanism for uric acid-induced cardiovascular disease development. Nitric Oxide. 2013;32:36-42. DOI:10.1016/j.niox.2013.04.003

58. Joosten LAB, Crisan TO, Bjornstad P, Johnson RJ. Asymptomatic hyperuricemia – a silent activator of the innate immune system. Nat Rev Rheumatol. 2020;16(2):75-86. DOI:10.1038/s41584-019-0334-3

59. Yang X, Gu J, Lv H et al. Uric acid induced inflammatory responses in endothelial cells via up-regulating(pro)renin receptor. Biomed Pharmacother. 2019;109:1163-1170. DOI:10.1016/j.biopha.2018.10.129

60. Sato Y, Feig D, Stack A et al. The case for uric acidlowering treatment in patients with hyperuricaemia and CKD. Nature reviews Nephrology. 2019;15(12):767-775. DOI:10.1038/s41581-019-0174-z

61. Rodriguez-Iturbe B, Pons H, Johnson RJ. Role of the immune system in hypertension. Physiol Rev. 2017;97(3):1127-1164. DOI:10.1152/physrev.00031.2016

62. Watanabe S, Kang DH, Feng L et al. Uric acid, hominoid evolution, and the pathogenesis of salt-sensitivity. Hypertension. 2002;40(3):355-360. DOI:10.1161/01.HYP.0000028589.66335.AA

63. Fan S, Zhang P, Wang AY et al. Hyperuricemia and its related histopathological features on renal biopsy. BMC Nephrol. 2019;20(1):95-103. DOI:10.1186/s12882-019-1275-4

64. Johnson RJ, Nakagawa T, Jalal D et al. Uric acid and chronic kidney disease: which is chasing which? Nephrol Dial Transplant. 2013;28(9):2221-2228. DOI:10.1093/ndt/gft029

65. Kang DH. Hyperuricemia and progression of chronic kidney disease: role of phenotype transition of renal tubular and endothelial cells. Contrib Nephrol. 2018;192:48-55. DOI:10.1159/000484278

66. Zhuang Y, Feng Q, Ding G et al. Activation of ERK1/2 by NADPH oxidase-originated reactive oxygen species mediates uric acid-induced mesangial cell proliferation. Am J Physiol Renal Physiol. 2014;307(4):396-406. DOI:10.1152/ajprenal.00565.2013

67. Li S, Sun Z, Zhang Y et al. COX-2/mPGES-1/PGE2 cascade activation mediates uric acid-induced mesangial cell proliferation. Oncotarget. 2016;8(6):10185-10198. DOI:10.18632/oncotarget.14363

68. Convento MS, Pessoa E, Dalboni MA et al. Pro-inflammatory and oxidative effects of noncrystalline uric acid in human mesangial cells: contribution to hyperuricemic glomerular damage. Urol Res. 2011;39(1):21-27. DOI:10.1007/s00240-010-0282-5

69. Albertoni G, Maquigussa E, Pessoa E et al. Soluble uric acid increases intracellular calcium through an angiotensin IIdependent mechanism in immortalized human mesangial cells. Exp Biol Med (Maywood). 2010;235(7):825-832. DOI:10.1258/ebm.2010.010007

70. Li S, Zhao F, Cheng S et al. Uric acid-induced endoplasmic reticulum stress triggers phenotypic change in rat glomerular mesangial cells. Nephrology (Carlton). 2013;18(10):682-689. DOI:10.1111/nep.12127

71. Dikshteĭn EA, Vasilenko IV, Siniachenko OV et al. Morphological changes in the kidney glomeruli in gout. Arkh Patol. 1986;48(9):54-58] PMID: 3789948 (In Russian).

72. Asakawa S, Shibata S, Morimoto C et al. Podocyte Injury and Albuminuria in Experimental Hyperuricemic Model Rats. Oxid Med Cell Longev. 2017;2017:3759153-3759167. DOI:10.1155/2017/3759153

73. Kawamorita Y, Shiraishi T, Tamura Y et al. Renoprotective effect of topiroxostat via antioxidant activity in puromycin aminonucleoside nephrosis rats. Physiol Rep. 2017;5(15):13358- 13370. DOI:10.14814/phy2.13358

74. Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial–mesenchymal transition. Nat Rev Mol Cell Biol. 2014;15(3):178-196. DOI:10.1038/nrm3758

75. Zaza G, Masola V, Granata S et al. Sulodexide alone or in combination with low doses of everolimus inhibits the hypoxia-mediated epithelial to mesenchymal transition in human renal proximal tubular cells. J Nephrol. 2015;28(4):431-440. DOI:10.1007/s40620-015-0216-y

76. Grgic I, Duffield JS, Humphreys BD. The origin of interstitial myofibroblasts in chronic kidney disease. Pediatr Nephrol. 2012;27(2):183-193. DOI:10.1007/s00467-011-1772-6

77. Sader F, Denis JF, Laref H, Roy S. Epithelial to mesenchymal transition is mediated by both TGF-β canonical and non-canonical signaling during axolotl limb regeneration. Sci Rep. 2019;9(1):1144-1157. DOI:10.1038/s41598-018-38171-5

78. Zavadil J, Cermak L, Soto-Nieves N, Böttinger EP. Integration of TGF-β/Smad and Jagged1/Notch signalling in epithelial-to-mesenchymal transition. EMBO J. 2004;23(5):1155-1165. DOI:10.1038/sj.emboj.7600069

79. Zavadil J, Böttinger EP. TGF-beta and epithelial-tomesenchymal transitions. Oncogene. 2005;24(37):5764-5774. DOI:10.1038/sj.onc.1208927

80. Xiong XY, Bai L, Bai SJ et al. Uric acid induced epithelialmesenchymal transition of renal tubular cells through PI3K/pAkt signaling pathway. J Cell Physiol. 2019;234(9):15563-15569. DOI:10.1002/jcp.28203

81. Grande MT, Sánchez-Laorden B, López-Blau C, et al. Snail1-induced partial epithelial-to-mesenchymal transition drives renal fibrosis in mice and can be targeted to reverse established disease. Nat Med. 2015;21(9):989-997. DOI:10.1038/nm.3901

82. Ryu E, Kim M, Shin H et al. Uric acid-induced phenotypic transition of renal tubular cells as a novel mechanism of chronic kidney disease. American journal of physiology Renal physiology. 2013;304(5):471-480. DOI:10.1152/ajprenal.00560.2012

83. Cybulsky AV. Endoplasmic reticulum stress, the unfolded protein response and autophagy in kidney diseases. Nat Rev Nephrol. 2017;13(11):681-696. DOI:10.1038/nrneph.2017.129

84. Kropski JA, Blackwell TS. Endoplasmic reticulum stress in the pathogenesis of fibrotic disease. J Clin Invest. 128(1):64-73. DOI:10.1172/JCI93560

85. He L, Fan Y, Xiao W et al. Febuxostat attenuates ER stress mediated kidney injury in a rat model of hyperuricemic nephropathy. Oncotarget. 2017;8(67):111295-111308. DOI:10.18632/oncotarget.22784

86. Su H yong, Yang C, Liang D, Liu H feng. Research Advances in the Mechanisms of Hyperuricemia-Induced Renal Injury. Biomed Res Int. 2020;2020:5817348-5817360. DOI:10.1155/2020/5817348

87. Kratzer JT, Lanaspa MA, Murphy MN et al. Evolutionary history and metabolic insights of ancient mammalian uricases. Proc Natl Acad Sci U S A. 2014;111(10):3763-3768. DOI:10.1073/pnas.1320393111

88. Ichida K, Matsuo H, Takada T et al. Decreased extra-renal urate excretion is a common cause of hyperuricemia. Nat Commun. 2012;3:764-771. DOI:10.1038/ncomms1756

89. Maxwell SR, Thomason H, Sandler D et al. Antioxidant status in patients with uncomplicated insulin-dependent and non-insulin-dependent diabetes mellitus. Eur J Clin Invest. 1997;27(6):484-490. DOI:10.1046/j.1365-2362.1997.1390687.


Review

For citations:


Rameev V.V., Bogdanova M.V., Lysenko (Kozlovskaya) L.V. Underlying mechanisms of hyperuricemia-induced renal damage. Nephrology and Dialysis. 2025;27(4):367-379. (In Russ.) https://doi.org/10.28996/2618-9801-2025-4-367-379

Views: 15


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1680-4422 (Print)
ISSN 2618-9801 (Online)