Просмотр статьи

<< Вернуться к списку статей журнала

Том 19 №4 2017 год - Нефрология и диализ

Двойной короткий тест перитонеального равновесия (двойной мини-РЕТ) в оценке функции перитонеальной мембраны и влияющие на нее факторы


Салихова К.А. Костылева Т.Г. Андрусев А.М. Герасимчук Р.П. Сабодаш А.Б. Эйдельшейн В.А. Земченков А.Ю. Румянцев А.Ш.

DOI: 10.28996/1680-4422-2017-4-499-511

Аннотация: Введение: функция перитонеальной мембраны с течением времени изменяется, затрудняя достижение важнейшего компонента адекватности диализа - состояния эуволемии. Важными причинами этого могут быть перитониты и глюкозная нагрузка. Современные функциональные тесты позволяют оценить динамику транспорта воды через мембрану и предсказать прогрессирование субмезотелиального фиброза. Методы: срезовое обследование 46 неотобранных пациентов одного центра (возраст 59±16 лет, срок диализа 35±34 месяца) явилось стартом проспективного исследования. Функция мембраны оценена в двойном мини-PET (в двух одночасовых обменах с растворами 4,25% и 1,5% глюкозы). Нагрузка глюкозой оценена как масса глюкозы, введенной в перитонеальную полость за время лечения, по истории режимов диализа суммарно и в расчете на месяц. Результаты: общая ультрафильтрация составила 562±199 мл, в т.ч. транспорт свободной воды (ТСВ) - 171±68 мл, транспорт воды по малым порам - 391±161 мл. Осмотическая проводимость по глюкозе (ОПГ) составила 5,38±2,88 мкл/мин/ммHg. При большем сроке диализа меньшими были ТСВ (-16 мл/год) и ОПГ (-0,233 мкл/мин/ммHg/год), большим - коэффициент массо-переноса по креатинину (MTAC-Cr) (+1,2 мл/мин/год). По мере увеличения суммарной глюкозной нагрузки достоверно снижается ТСВ, но для среднемесячной глюкозной нагрузки связь сохранялась только в подгруппах без перитонитов и с нагрузкой выше медианы (2,72 кг/мес). В моделях множественной регрессии большая суммарная нагрузка (но не срок диализа) была связана с меньшим ТСВ (-4,9 мл/[10 кг]) для всей группы. В подгруппе со среднемесячной нагрузкой выше медианы, напротив, больший срок диализа (но не суммарная нагрузка) был связан с меньшим ТСВ (-24 мл/[1 год ПД]). Заключение: продемонстрирована связь транспорта свободной воды со сроком диализа, перенесенными перитонитами и глюкозной нагрузкой, но её характер требуется уточнять в продолжительных исследованиях.

Весь текст

Ключевые слова: перитонеальная мембрана, мини-PET, транспорт свободной воды, несостоятельность ультрафильтрации, перитонеальный диализ, peritoneal membrane, mini-PET, free water transport, ultrafiltration failure, peritoneal dialysis

Список литературы:
  1. Бикбов Б.Т., Томилина Н.А. Cостав больных и показатели качества лечения на заместительной терапии терминальной хронической почечной недостаточности в Российской Федерации в 1998-2013 гг. Нефрология и диализ. 2016. 18(2): 98-164. Bikbov B.T., Tomilina N.A. The contingent and treatment quality indicators in patients on replacement therapy of end stage renal disease in the Russian Federation in 1998-2013 years. Nephrology and Dialysis. 18(2): 98-164.
  2. Земченков А.Ю., Вишневский К.А., Сабодаш А.Б. и соавт. Сроки начала и другие факторы на старте диализа, влияющие на выживаемость: Санкт-Петербургский регистр пациентов на заместительной почечной терапии. Нефрология и диализ. 2017. 19(2): 255-270. Zemchenkov A.Yu., Vishnevskii K.A., Sabodash A.B. et al. The timing and other dialysis start features associated with survival: St-Petersburg renal replacement therapy register. Nephrology and Dialysis. 2017. 19(2): 255-270.
  3. Bernardo A.P., Bajo M.A., Santos O. et al. Two-in-one protocol: simultaneous small-pore and ultrasmall-pore peritoneal transport quantification. Perit Dial Int. 2012. 32(5):537-44.
  4. Chen Y.T., Chang Y.T., Pan S.Y. et al. Lineage tracing reveals distinctive fates for mesothelial cells and submesothelial fibroblasts during peritoneal injury. J Am Soc Nephrol. 2014. 25(12):2847-58. doi: 10.1681/ASN.2013101079.
  5. Coester A.M., Smit W., Struijk D.G. et al. Longitudinal analysis of peritoneal fluid transport and its determinants in a cohort of incident peritoneal dialysis patients. Perit Dial Int. 2014. 34(2):195-203. doi: 10.3747/pdi.2012.00189.
  6. De Sousa E., Del Peso G., Alvarez L. et al. Peritoneal resting with heparinized lavage reverses peritoneal type I membrane failure. A comparative study of the resting effects on normal membranes. Perit Dial Int. 2014. 34(7):698-705. doi: 10.3747/pdi.2013.00286.
  7. Devuyst O., Margetts P.J., Topley N. The pathophysiology of the peritoneal membrane. J Am Soc Nephrol. 2010. 21(7):1077-85. doi: 10.1681/ASN.2009070694.
  8. Farhat K., Andrea W.D. Stavenuiteret al. Pharmacologic Targets and Peritoneal Membrane Remodeling. Perit Dial Int. 2014. 34(1): 114-123. doi: 10.3747/pdi.2011.00332.
  9. Hassan K., Hassan F., Edgem R.et al. The impact of the peritoneal glucose load index on hydration status and inflammation in peritoneal dialysis patients. J Int Med Res. 2015. 43(1):42-53. doi: 10.1177/0300060514550013.
  10. Johnson D.W., Brown F.G., Clarke M. et al. balANZ Trial Investigators. The effect of low glucose degradation product, neutral pH versus standard peritoneal dialysis solutions on peritoneal membrane function: the balANZ trial. Nephrol Dial Transplant. 2012. 27(12):4445-53. doi: 10.1093/ndt/gfs314.
  11. Kolesnyk I., Noordzij M., Dekker F.W. et al. A positive effect of AII inhibitors on peritoneal membrane function in long-term PD patients. Nephrol Dial Transplant. 2009. 24(1): 272-277.
  12. Krediet R.T., Lopes Barreto D., Struijk D.G. Can Free Water Transport Be Used as a Clinical Parameter for Peritoneal Fibrosis in Long-Term PD Patients? Perit Dial Int. 2016. 36(2):124-8. doi: 10.3747/pdi.2015.00129.
  13. Krediet R.T. Should Peritoneal Resting be Advised in Ultrafiltration Failure Associated with a Fast Peritoneal Solute Transport Status? Perit Dial Int. 2014. 34(7): 695-697. doi: 10.3747/pdi.2014.00196
  14. La Milia V., Di Filippo S., Crepaldi M. et al. Mini-peritoneal equilibration test: A simple and fast method to assess free water and small solute transport across the peritoneal membrane. Kidney Int. 2005. 68(2):840-6.
  15. La Milia V., Limardo M., Virga G. et al. Simultaneous measurement of peritoneal glucose and free water osmotic conductances. Kidney Int. 2007. 72(5):643-50.
  16. Mehrotra R., Devuyst O., Davies S.J., Johnson D.W. The Current State of Peritoneal Dialysis. J Am Soc Nephrol. 2016. 27(11):3238-3252.
  17. Morelle J., Sow A., Hautem N. et al. Interstitial Fibrosis Restricts Osmotic Water Transport in Encapsulating Peritoneal Sclerosis. J Am Soc Nephrol. 2015. 26(10):2521-2533
  18. Mujais S., Nolph K., Gokal R. et al. Evaluation and management of ultrafiltration problems in peritoneal dialysis. International Society for Peritoneal Dialysis Ad Hoc Committee on Ultrafiltration Management in Peritoneal Dialysis. Perit Dial Int. 2000. 20 Suppl 4:S5-21.
  19. Nolph K.D., Hano J.E., Teschan P.E. Peritoneal sodium transport during hypertonic peritoneal dialysis. Ann Intern Med. 1969. 70(5):931-41.
  20. Nolph K.D., Twardowsky Z.J., Popovich R.P., Rubin J. Equilibration of peritoneal dialysis solutions during long-dwell exchanges. J Lab Clin Med. 1979. 93(2):246-56.
  21. Pannekeet M.M., Imholz A.L., Struijk D.G. et al. The standard peritoneal permeability analysis: A tool for the assessment of peritoneal permeability characteristics in CAPD patients. Kidney Int. 1995. 48(3):866-875.
  22. Pippias M., Stel V.S., Abad Diez J.M. et al. Renal replacement therapy in Europe: a summary of the 2012 ERA-EDTA Registry Annual Report. Clin Kidney J. 2015. 8(3):248-61. doi: 10.1093/ckj/sfv014.
  23. Rippe B., Stelin G. Simulations of peritoneal solute transport during CAPD. Application of two pore formalism. Kidney Int. 1989. 35(5):1234-44.
  24. Rippe B., Venturoli D., Simonsen O., DeArtega J. Fluid and electrolyte trtansport across the peritoneal membrane during CAPD according to the three-pore model. Perit Dial Int. 2004. 24(1):10-27.
  25. Sajwani S.H., Bargman J.M. Novel ways to preserve the peritoneal membrane. Adv Perit Dial. 2012. 28:37-41.
  26. Smit W., Struijk D.G., Ho-Dac-Pannekeet M.M., Krediet RT. Quantification of free water transport in peritoneal dialysis. Kidney Int. 2004. 66(2):849-54.
  27. Twardowsky ZJ, Nolph KD, Khanna R et al. Peritoneal equilibration test. Perit Dial Bull. 1987. 7:138-47.
  28. Van Biesen W, Carlsson O, Bergia R et al. Personal dialysis capacity (PDC(TM)) test: a multicentre clinical study. Nephrol Dial Transplant. 2003. 18(4):788-96.
  29. van Biesen W, Heimburger O, Krediet R. Evaluation of peritoneal membrane characteristics: clinical advice for prescription management by the ERBP working group. Nephrol Dial Transplant. 2010. 25(7):2052-62. doi: 10.1093/ndt/gfq100.
  30. van Esch S, Struijk DG, Krediet RT. The Natural Time Course of Membrane Alterations During Peritoneal Dialysis Is Partly Altered by Peritonitis. Perit Dial Int. 2016. 36(4):448-56. doi: 10.3747/pdi.2014.00215.
  31. van Esch S, van Diepen AT, Struijk DG, Krediet RT. The Mutual Relationship Between Peritonitis and Peritoneal Transport. Perit Dial Int. 2016. 36(1):33-42. doi: 10.3747/pdi.2014.00115.
  32. Verger C., Larpent L., Veniez G., Corvaisier B. Monitoring of the peritoneal permeability in peritoneal dialysis. Rev Prat. 1991. 41(12):1086-90.
  33. Waniewski J., Antosiewicz S., Baczynski D. et al. Peritoneal Fluid Transport rather than Peritoneal Solute Transport Associates with Dialysis Vintage and Age of Peritoneal Dialysis Patients. Comput Math Methods Med. 2016. 2016:8204294. doi: 10.1155/2016/8204294.
  34. Wu H.Y., Hung K.Y., Huang T.M. Safety issues of long-term glucose load in patients on peritoneal dialysis--a 7-year cohort study. PLoS One. 2012. 7(1):e30337. doi: 10.1371/journal.pone.0030337.

Другие статьи по теме


Навигация по статьям
Разделы журнала
Наиболее читаемые статьи