Российское диализное общество

Просмотр статьи

<< Вернуться к списку статей журнала

Том 22 №2 2020 год - Нефрология и диализ

Артериальная гипертензия при ХБП: от начальных до продвинутых стадий. Диагностические и терапевтические стратегии. Часть 1. Артериальная гипертензия у пациентов с ХБП 1-4 стадий


Зелтынь-Абрамов Е.М. Фролова Н.Ф.

DOI: 10.28996/2618-9801-2020-2-221-236

Аннотация: Артериальная гипертензия (АГ) и хроническая болезнь почек (ХБП) широко распространены в мире. АГ встречается примерно у 30% взрослого населения, а ХБП - у 10-15%, однако в популяции пациентов с ХБП эта цифра достигает 80-90%. АГ и ХБП признаны независимыми факторами прогрессирования сердечно-сосудистых заболеваний (ССЗ), которые являются основной причиной летальных исходов у пациентов с ХБП. Эффективный контроль артериального давления (АД) замедляет темпы развития почечного повреждения и снижает риск развития ССЗ. Достижение целевых показателей АД - основная лечебная стратегия, позволяющая обеспечить нефро- и кардиопротекцию. В статье обсуждаются современные представления о механизмах формирования АГ при ХБП 1-4 стадий и терапевтические подходы к ее адекватному контролю. Среди основных звеньев патогенеза АГ выделяются гиперсимпатикотония, гиперактивация ренин-ангиотензин-альдостероновой системы, задержка натрия и жидкости, а также процессы, обусловленные формированием уремической среды (эндотелиальная дисфункция, оксидативный стресс, хроническое воспаление, артериальная жесткость). Представлены современные методологические подходы к установлению клинического диагноза АГ, включающие в себя фенотипирование АД, хронобиологические особенности и выбор оптимального способа измерения АД. На основании действующих согласительных документов и рекомендаций изложены лечебные стратегии, направленные на эффективный контроль АД. Обсуждается широкий круг проблем, касающихся модификации образа жизни пациентов, диетических рекомендаций и применения гипотензивных препаратов с точки зрения оптимальной нефро- и кардиопротекции и минимизации кардиовакулярных рисков. Представлены новые перспективные направления медикаментозного лечения АГ у пациентов с ХБП 1-4 стадий.

Весь текст

Ключевые слова: хроническая болезнь почек, артериальная гипертензия, кардиоваскулярные риски, гиперсимпатикотония, артериальная жесткость, хронотерапия, мониторинг артериального давления, диетические ограничения, нефропротекция, кардиопротекция, chronic kidney disease, hypertension, cardiovascular risk, sympathetic hyperactivity, arterial stiffness, chronotherapy, blood pressure monitoring, dietary sodium restriction, renoprotection, cardioprotection

Список литературы:
  1. KDIGO 2012 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Kidney International Supplements Volume 3 Issue 1 January 2013; doi:10.1038/kisup.2012.48.
  2. Coresh J., Selvin E., Stevens L.A. et al. Prevalence of chronic kidney disease in the United States. JAMA. 2007; 298: 2038-2047. doi: 10.1001/jama.298.17.2038.
  3. Mills K.T., Xu Y., Zhang W. et al. A systematic analysis of worldwide population-based data on the global burden of chronic kidney disease in 2010. Kidney Int. 2015; 88: 950-957. doi: 10.1038/ki.2015.230.
  4. Muntner P., Anderson A., Charleston J. et al. Hypertension awareness, treatment, and control in adults with CKD: results from the Chronic Renal Insufficiency Cohort (CRIC) Study. Am J Kidney Dis. 2010; 55: 441-451. doi: 10.1053/j.ajkd.2009.09.014.
  5. Kearney P.M., Whelton M., Reynolds K. et al. Global burden of hypertension: analysis of worldwide data. Lancet. 2005; 365: 217-223. doi: 10.1016/S0140-6736(05)70151-3.
  6. Bidani A.K., Griffin K.A. Pathophysiology of hypertensive renal damage: implications for therapy. Hypertension. 2004; 44: 595-601. doi: 10.1161/01.HYP.0000145180.38707.84.
  7. Gansevoort R.T., Correa-Rotter R., Hemmelgarn B.R. et al. Chronic kidney disease and cardiovascular risk: epidemiology, mechanisms, and prevention. Lancet. 2013; 382: 339-352. doi: 10.1016/S0140-6736(13)60595-4.
  8. Pugh D., Gallacher P.J., Dhaun N. Management of Hypertension in Chronic Kidney Disease Drugs. 2019; 79:3 65-379 doi.org/10.1007/s40265-019-1064-1.
  9. Gargiulo R., Suhail F., Lerma E. Cardiovascular disease and chronic kidney disease. Dis Mon 2015; 61(9): 403-413. doi: 10.1016/j.disamonth. 2015.07.005.
  10. Saran R., Robinson B., Abbott K. C., et al. US Renal Data System 2018 Annual Data Report: epidemiology of kidney disease in the United States. American Journal of Kidney Diseases. 2019;73(3):A7-A8. doi:10.1053/j.ajkd.2019.01.001. Suppl 1, pp. Svii-Sxxii, S1-S772.
  11. Foley R.N., Murray A.M., Li S. et al. Chronic kidney disease and the risk for cardiovascular disease, renal replacement, and death in the United States Medicare population, 1998 to 1999. J Am Soc Nephrol. 2005; 16: 489-495. doi: 10.1681/ASN.2004030203.
  12. Keith D.S., Nichols G.A., Gullion C.M. et al. Longitudinal follow-up and outcomes among a population with chronic kidney disease in a large managed care organization. Arch Intern Med. 2004; 164: 659-663. doi: 10.1001/archinte.164.6.659.
  13. Cheung A.K., Rahman M., Reboussin D.M. et al. Effects of intensive BP control in CKD. J Am Soc Nephrol. 2017; 28: 2812-2823. doi: 10.1681/ASN.2017020148.
  14. Kaur J., Young B.E., Fadel P.J. Sympathetic Overactivity in Chronic Kidney Disease: Consequences and Mechanisms. Int J Mol Sci. 2017; 18(8): 1682. Published 2017 Aug 2. doi:10.3390/ijms18081682.
  15. Becker B. K., Zhang D., Soliman R., Pollock D. M. Autonomic nerves and circadian control of renal function. Autonomic Neuroscience: Basic and Clinical. 2019; 217: 58-65. doi: 10.1016/j.autneu.2019.01.00.
  16. Converse R.L., Jr., Jacobsen T.N., Toto R.D. et al. Sympathetic overactivity in patients with chronic renal failure. N. Engl. J. Med. 1992; 327: 1912-1918.doi: 10.1056/NEJM199212313272704.
  17. Grassi G., Quarti-Trevano F., Seravalle G. et al. Early sympathetic activation in the initial clinical stages of chronic renal failure. Hypertension. 2011; 57: 846-851. doi: 10.1161/HYPERTENSIONAHA.110.164780.
  18. Klein I.H., Ligtenberg G., Neumann J. et al. Sympathetic nerve activity is inappropriately increased in chronic renal disease. J. Am. Soc. Nephrol. 2003; 14: 3239-3244. doi: 10.1097/01.ASN.0000098687.01005.A5.
  19. Klein I.H., Ligtenberg G., Oey P.L. et al. Sympathetic activity is increased in polycystic kidney disease and is associated with hypertension. J. Am. Soc. Nephrol. 2001; 12: 2427-2433.
  20. Johns E.J. The neural regulation of the kidney in hypertension and renal failure. Exp Physiol. 2014; 99: 289-294. doi: 10.1113/expphysiol.2013.072686.
  21. Wehrwein E.A., Orer H.S., Barman S.M., Overview of the anatomy, physiology, and pharmacology of the autonomic nervous system. Compr. Physiol. 2016; 6: 1239-1278. doi: 10.1002/cphy.c150037.
  22. Grassi G., Mark A., Esler M., The sympathetic nervous system alterations in human hypertension. Circ. Res. 2015;116: 976-990. doi: 10.1161/CIRCRESAHA.116.303604.
  23. Grassi G., Seravalle G., Ghiadoni L. et al. Sympathetic nerve traffic and asymmetric dimethylarginine in chronic kidney disease. Clin. J. Am. Soc. Nephrol. 2011; 6: 2620-2627. doi: 10.2215/CJN.06970711.
  24. Hausberg M., Kosch M., Harmelink P. et al. Sympathetic nerve activity in end-stage renal disease. Circulation. 2002; 106: 1974-1979. doi: 10.1161/01.CIR.0000034043.16664.96.
  25. Park J., Campese V.M., Nobakht N., Middlekauff H.R. Differential distribution of muscle and skin sympathetic nerve activity in patients with end-stage renal disease. J. Appl. Physiol. 2008; 105:1873-1876. doi: 10.1152/japplphysiol.90849.2008.
  26. Di Bona G.F. Sympathetic nervous system and the kidney in hypertension. Curr. Opin. Nephrol. Hypertens. 2002; 11:197-200. doi: 10.1097/00041552-200203000-00011.
  27. Reid I.A. Interactions between ANG II, sympathetic nervous system, and baroreceptor reflexes in regulation of blood pressure. Am. J. Physiol. 1992; 262: E763-E778.
  28. Siddiqi L., Joles J.A., Grassi G., Blankestijn P.J. Is kidney ischemia the central mechanism in parallel activation of the renin and sympathetic system? J. Hypertens. 2009; 27: 1341-1349. doi: 10.1097/HJH.0b013e32832b521b.
  29. Hu L., Zhu D.N., Yu Z. et al. Expression of angiotensin II type 1 (AT1) receptor in the rostral ventrolateral medulla in rats. J. Appl. Physiol. 2002; 92: 2153-2161. doi: 10.1152/japplphysiol.00261.2001.
  30. Muratani H., Averill D.B., Ferrario C.M. Effect of angiotensin II in ventrolateral medulla of spontaneously hypertensive rats. Am. J. Physiol. 1991; 260: 977-984. doi: 10.1152/ajpregu. 1991. 260.5.R977.
  31. Hirooka Y., Potts P.D., Dampney R.A. Role of angiotensin II receptor subtypes in mediating the sympathoexcitatory effects of exogenous and endogenous angiotensin peptides in the rostral ventrolateral medulla of the rabbit. Brain Res. 1997; 772: 107-114. doi: 10.1016/S0006-8993(97)00861-5.
  32. Allen A.M. Blockade of angiotensin AT1-receptors in the rostral ventrolateral medulla of spontaneously hypertensive rats reduces blood pressure and sympathetic nerve discharge. J. Renin Angiotensin Aldosterone Syst. 2001; 2: 120-124. doi: 10.1177/14703203010020012101.
  33. Allen A.M., Moeller I., Jenkins T.A. et al. Angiotensin receptors in the nervous system. Brain Res. Bull. 1998; 47: 17-28. doi: 10.1016/S0361-9230(98)00039-2.
  34. Davisson R.L. Physiological genomic analysis of the brain renin-angiotensin system. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2003; 285: 498-511. doi: 10.1152/ajpregu.00190.2003.
  35. Klein I.H., Ligtenberg G., Oey P.L. et al. Enalapril and losartan reduce sympathetic hyperactivity in patients with chronic renal failure. J. Am. Soc. Nephrol. 2003; 14: 425-430. doi: 10.1097/01.ASN.0000045049.72965.B7.
  36. Ligtenberg G., Blankestijn P.J., Oey P.L. et al. Reduction of sympathetic hyperactivity by enalapril in patients with chronic renal failure. N Engl J Med. 1999; 340: 1321-1328. doi: 10.1056/NEJM199904293401704.
  37. Cozzolino M., Mangano M., Stucchi A. et al. Cardiovascular disease in dialysis patients. Nephrol Dial Transplant. 2018; 33(suppl_3):iii28-iii34. doi:10.1093/ndt/gfy174.
  38. Wolley M.J., Hutchison C.A. Large uremic toxins: an unsolved problem in end-stage kidney disease. Nephrol Dial Transplant. 2018; 33(suppl 3):iii6-iii11. doi: 10.1093/ndt/gfy179.
  39. Sakuma I., Togashi H., Yoshioka M. et al. NG-methyl-l-arginine, an inhibitor of l-arginine-derived nitric oxide synthesis, stimulates renal sympathetic nerve activity in vivo. A role for nitric oxide in the central regulation of sympathetic tone? Circ. Res. 1992; 70:607-611. doi: 10.1161/01.RES.70.3.607.
  40. Sander M., Hansen J., Victor R.G. The sympathetic nervous system is involved in the maintenance but not initiation of the hypertension induced by N(omega)-nitro-l-arginine methyl ester. Hypertension. 1997; 30: 64-70. doi: 10.1161/01.HYP.30.1.64.
  41. Sander M., Chavoshan B., Victor R.G. A large blood pressure-raising effect of nitric oxide synthase inhibition in humans. Hypertension. 1999; 33:937-942. doi: 10.1161/01.HYP.33.4.937.
  42. Hansen J., Jacobsen T.N., Victor R.G. Is nitric oxide involved in the tonic inhibition of central sympathetic outflow in humans? Hypertension. 1994; 24:439-444. doi: 10.1161/01.HYP.24.4.439.
  43. Young C.N., Fisher J.P., Gallagher K.M. et al. Inhibition of nitric oxide synthase evokes central sympatho-excitation in healthy humans. J. Physiol. 2009; 587:4977-4986. doi: 10.1113/jphysiol.2009.177204.
  44. Xiao S., Wagner L., Schmidt R.J. et al. Circulating endothelial nitric oxide synthase inhibitory factor in some patients with chronic renal disease. Kidney Int. 2001; 59:1466-1472. doi: 10.1046/j.1523-1755.2001.0590041466.x.
  45. 45 Kielstein J.T., Boger R.H., Bode-Boger S.M. et al. Marked increase of asymmetric dimethylarginine in patients with incipient primary chronic renal disease. J. Am. Soc. Nephrol. 2002; 13:170-176.
  46. Ravani P., Tripepi G., Malberti F et al. Asymmetrical dimethylarginine predicts progression to dialysis and death in patients with chronic kidney disease: A competing risks modeling approach. J. Am. Soc. Nephrol. 2005; 16:2449-2455. doi: 10.1681/ASN.2005010076.
  47. Ueda S., Yamagishi S., Kaida Y. Et al. Asymmetric dimethylarginine may be a missing link between cardiovascular disease and chronic kidney disease. Nephrology. 2007; 12:582-590. doi: 10.1111/j.1440-1797.2007.00840.x.
  48. Zoccali C. Asymmetric dimethylarginine (ADMA): A cardiovascular and renal risk factor on the move. J. Hypertens. 2006; 24: 611-619. doi: 10.1097/01.hjh.0000217839.26971.8d.
  49. Zoccali C., Bode-Boger S., Mallamaci F. et al. Plasma concentration of asymmetrical dimethylarginine and mortality in patients with end-stage renal disease: A prospective study. Lancet. 2001; 358: 2113-2117. doi: 10.1016/S0140-6736(01)07217-8.
  50. Fliser D., Kronenberg F., Kielstein J.T. et al. Asymmetric dimethylarginine and progression of chronic kidney disease: The mild to moderate kidney disease study. J. Am. Soc. Nephrol. 2005; 16: 2456-2461. doi: 10.1681/ASN.2005020179.
  51. Boger R.H., Bode-Boger S.M., Szuba A. et al. Asymmetric dimethylarginine (ADMA): A novel risk factor for endothelial dysfunction: Its role in hypercholesterolemia. Circulation. 1998; 98: 1842-1847. doi: 10.1161/01.CIR.98.18.1842.
  52. Niwa T. Uremic toxicity of indoxyl sulfate. Nagoya J Med Sci 2010; 72: 1-11.
  53. Haugen E., Nath K.A. The involvement of oxidative stress in the progression of renal injury. Blood Purif 1999; 17: 58-65.
  54. Ito A., Tsao P.S., Adimoolam S. et al. Novel mechanism for endothelial dysfunction: Dysregulation of dimethylarginine dimethylaminohydrolase. Circulation. 1999; 99:3092-3095. doi: 10.1161/01.CIR.99.24.3092.
  55. Vlachopoulos C., Aznaouridis K., Stefanadis C. Prediction of cardiovascular events and all-cause mortality with arterial stiffness: a systematic review and meta-analysis. J Am Coll Cardiol. 2010; 55: 1318-1327. doi: 10.1016/j.jacc.2009.10.061.
  56. Shroff R., Long D.A., Shanahan C. Mechanistic insights into vascular calcification in CKD. J Am Soc Nephrol. 2013; 24: 179-89. doi: 10.1681/ASN.2011121191.
  57. Zanoli L., Lentini P., Briet M. et al. Arterial Stiffness in the Heart Disease of CKD. J Am Soc Nephrol. 2019 Jun; 30(6):918-928. doi: 10.1681/ASN.2019020117.
  58. Safar M.E., Asmar R., Benetos A. et al. Interaction Between Hypertension and Arterial Stiffness. Hypertension. 2018 Oct; 72(4): 796-805. doi10.1161/HYPERTENSIONAHA. 118. 11212.
  59. Becker B.K., Zhang D.R. Soliman et al. Autonomic nerves and circadian control of renal function Autonomic Neuroscience: Basic and Clinical 217 (2019) 58-65.
  60. Diedrich A., Jordan J., Tank J. et al. The sympathetic nervous system in hypertension: assessment by blood pressure variability and ganglionic blockade. J. Hypertens. 2003; 21: 1677-1686.
  61. Grassi G., Bombelli M., Seravalle G. et al. Diurnal blood pressure variation and sympathetic activity. Hypertens. Res. 2010; 33: 381-385.
  62. Gamble K.L., Berry R., Frank S.J. et al. Circadian clock control of endocrine factors. Nat. Rev. Endocrinol. 2014; 10: 466-475.
  63. Kalsbeek A., Perreau-Lenz S., Buijs R.M., Anetwork of (autonomic) clock outputs. Chronobiol. Int. 2006; 23: 521-535.
  64. Whelton P.K., Carey R.M., Aronow W.S. et al. 2017 ACC/ AHA/ AAPA/ ABC/ ACPM/ AGS/ APhA/ ASH/ ASPC /NMA/ PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J Am Coll Cardiol. 2018;71:e127-e248. doi: 10.1016/j.jacc.2017.11.006.
  65. Fabbian F., Smolensky M.H., Tiseo R. et al. Dipper and non-dipper blood pressure 24-hour patterns: circadian rhythm-dependent physiologic and pathophysiologic mechanisms. Chronobiol Int. 2013; 30:17-30. doi: 10.3109/07420528.2012.715872.
  66. Mojon A., Ayala D.E., Pineiro L. et al. Comparison of ambulatory blood pressure parameters of hypertensive patients with and without chronic kidney disease. Chronobiol Int. 2013; 30:145-158. doi: 10.3109/07420528.2012.703083.
  67. Agarwal R., Andersen M.J. Prognostic importance of ambulatory blood pressure recordings in patients with chronic kidney disease. Kidney Int. 2006; 69: 1175-1180. doi: 10.1038/sj.ki.5000247.
  68. Sebo P., Pechere-Bertschi A., Herrmann F.R. et al. Blood pressure measurements are unreliable to diagnose hypertension in primary care. J Hypertens. 2014; 32: 509-517. doi: 10.1097/HJH.0000000000000058.
  69. Davis T.K., Davis A.J. Ambulatory blood pressure monitoring should be used in the primary care setting to diagnose hypertension. Am J Hypertens. 2013; 26: 1057-1058. doi: 10.1093/ajh/hpt089.
  70. Minutolo R., Gabbai F.B., Agarwal R. et al. Assessment of achieved clinic and ambulatory blood pressure recordings and outcomes during treatment in hypertensive patients with CKD: a multicenter prospective cohort study. Am J Kidney Dis. 2014; 64: 744-752. doi: 10.1053/j.ajkd.2014.06.014.
  71. Cohen D.L., Huan Y., Townsend R.R. Home blood pressure monitoring in CKD. Am J Kidney Dis. 2014; 63: 835-842. doi: 10.1053/j.ajkd.2013.12.015.
  72. Williams B., Mancia G., Spiering W. et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension: the Task Force for the Management of Arterial Hypertension of the European Society of Cardiology and the European Society of Hypertension: the Task Force for the Management of Arterial Hypertension of the European Society of Cardiology and the European Society of Hypertension. J Hypertens. 2018; 36: 1953-2041. doi: 10.1097/HJH.0000000000001940.
  73. Taler S.J., Agarwal R., Bakris G.L. et al. KDOQI US commentary on the 2012 KDIGO clinical practice guideline for management of blood pressure in CKD. Am J Kidney Dis. 2013; 62: 201-213. doi: 10.1053/j.ajkd.2013.03.018.
  74. The UK Renal Association. Hypertension. 2018. https://renal.org/information-resources/the-uk-eckd-guide/hypertension/. Accessed 1 Nov 2018.
  75. Кутырина И.М., Швецов М.Ю., Фомин В.В. и др. Клинические рекомендации по диагностике и лечению почечной артериальной гипертензии. 2014. М. 50 с.
  76. Gansevoort R.T., Correa-Rotter R., Hemmelgarn B.R. et al. Chronic kidney disease and cardiovascular risk: epidemiology, mechanisms, and prevention. Lancet. 2013; 382: 339-352. doi: 10.1016/S0140-6736(13)60595-4.
  77. Guy M., Borzomato J.K., Newall R.G. et al. Protein and albumin-to-creatinine ratios in random urines accurately predict 24 h protein and albumin loss in patients with kidney disease. Ann Clin Biochem. 2009; 46: 468-476. doi: 10.1258/acb.2009.009001.
  78. Zhao Y.F., Zhu L., Liu L.J. et al. Measures of urinary protein and albumin in the prediction of progression of IgA nephropathy. Clin J Am Soc Nephrol. 2016; 11: 947-955. doi: 10.2215/CJN.10150915.
  79. Levey A.S., Eckardt K.U., Tsukamoto Y. et al. Definition and classification of chronic kidney disease: a position statement from Kidney Disease: Improving Global Outcomes (KDIGO) Kidney Int. 2005; 67: 2089-2100. doi: 10.1111/j.1523-1755.2005.00365.x.
  80. Lambers Heerspink H.J., Gansevoort R.T., Brenner B.M. et al. Comparison of different measures of urinary protein excretion for prediction of renal events. J Am Soc Nephrol. 2010; 21: 1355-1360. doi: 10.1681/ASN.2010010063.
  81. Methven S., MacGregor M.S., Traynor J.P. et al. Comparison of urinary albumin and urinary total protein as predictors of patient outcomes in CKD. Am J Kidney Dis. 2011; 57: 21-28. doi: 10.1053/j.ajkd.2010.08.009.
  82. Klahr S., Levey A.S., Beck G.J. et al. The effects of dietary protein restriction and blood-pressure control on the progression of chronic renal disease. Modification of Diet in Renal Disease Study Group. N Engl J Med. 1994; 330:877-884. doi: 10.1056/NEJM199403313301301
  83. Wright J.T., Bakris G., Greene T., et al. Effect of blood pressure lowering and antihypertensive drug class on progression of hypertensive kidney disease: results from the AASK trial. JAMA. 2002; 288: 2421-2431. doi: 10.1001/jama.288.19.2421.
  84. Ruggenenti P., Perna A., Loriga G. et al. Blood-pressure control for renoprotection in patients with non-diabetic chronic renal disease (REIN-2): multicentre, randomised controlled trial. Lancet. 2005; 365: 939-946. doi: 10.1016/S0140-6736(05)71082-5.
  85. Appel L.J., Wright J.T., Greene T. et al. Intensive blood-pressure control in hypertensive chronic kidney disease. N Engl J Med. 2010; 363: 918-929. doi: 10.1056/NEJMoa0910975.
  86. Slagman M.C., Waanders F., Hemmelder M.H. et al. Moderate dietary sodium restriction added to angiotensin converting enzyme inhibition compared with dual blockade in lowering proteinuria and blood pressure: randomised controlled trial. BMJ. 2011; 343: d4366. doi: 10.1136/bmj.d4366.
  87. Vogt L., Waanders F., Boomsma F. et al. Effects of dietary sodium and hydrochlorothiazide on the antiproteinuric efficacy of losartan. J Am Soc Nephrol. 2008; 19:999-1007. doi: 10.1681/ASN.2007060693.
  88. Koomans H.A., Roos J.C., Boer P. et al. Salt sensitivity of blood pressure in chronic renal failure. Evidence for renal control of body fluid distribution in man. Hypertension. 1982; 4: 190-197. doi: 10.1161/01.HYP.4.2.190.
  89. McMahon E.J., Campbell K.L., Mudge D.W., Bauer J.D. Achieving salt restriction in chronic kidney disease. Int J Nephrol. 2012; 2012: 720429. doi: 10.1155/2012/720429.
  90. Navaneethan S.D., Yehnert H., Moustarah F. et al. Weight loss interventions in chronic kidney disease: a systematic review and meta-analysis. Clin J Am Soc Nephrol. 2009; 4: 1565-1574. doi: 10.2215/CJN.02250409.
  91. Morales E., Valero M.A., Leon M. et al. Beneficial effects of weight loss in overweight patients with chronic proteinuric nephropathies. Am J Kidney Dis. 2003; 41: 319-327. doi: 10.1053/ajkd.2003.50039.
  92. Santschi V., Chiolero A., Burnand B. et al. Impact of pharmacist care in the management of cardiovascular disease risk factors: a systematic review and meta-analysis of randomized trials. Arch Intern Med. 2011; 171: 1441-1453. doi: 10.1001/archinternmed.2011.399.
  93. Van Zuilen A.D., Wetzels J.F., Bots M.L. et al. MASTERPLAN: study of the role of nurse practitioners in a multifactorial intervention to reduce cardiovascular risk in chronic kidney disease patients. J Nephrol. 2008; 21: 261-267.
  94. Wright J.T., Bakris G., Greene T. et al. Effect of blood pressure lowering and antihypertensive drug class on progression of hypertensive kidney disease: results from the AASK trial. JAMA. 2002; 288: 2421-2431. doi: 10.1001/jama.288.19.2421.
  95. Peralta C.A., Hicks L.S., Chertow G.M., et al. Control of hypertension in adults with chronic kidney disease in the United States. Hypertension. 2005; 45: 1119-1124. doi: 10.1161/01.HYP.0000164577.81087.70.
  96. Jafar T.H., Stark P.C., Schmid C.H. et al. Progression of chronic kidney disease: the role of blood pressure control, proteinuria, and angiotensin-converting enzyme inhibition: a patient-level meta-analysis. Ann Intern Med. 2003; 139: 244-252. doi: 10.7326/0003-4819-139-4-200308190-00006.
  97. Pohl M.A., Blumenthal S., Cordonnier D.J. et al. Independent and additive impact of blood pressure control and angiotensin II receptor blockade on renal outcomes in the irbesartan diabetic nephropathy trial: clinical implications and limitations. J Am Soc Nephrol. 2005; 16: 3027-3037. doi: 10.1681/ASN.2004110919.
  98. Banegas J.R., Ruilope L.M., de la Sierra A. et al. Relationship between clinic and ambulatory blood-pressure measurements and mortality. N Engl J Med. 2018; 378: 1509-1520. doi: 10.1056/NEJMoa1712231.
  99. Sarafidis P.A., Khosla N., Bakris G.L. Antihypertensive therapy in the presence of proteinuria. Am J Kidney Dis. 2007; 49: 12-26. doi: 10.1053/j.ajkd.2006.10.014.
  100. Lewis E.J., Hunsicker L.G., Bain R.P., Rohde R.D. The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. The Collaborative Study Group. N Engl J Med. 1993; 329: 1456-1462. doi: 10.1056/NEJM199311113292004.
  101. Maschio G., Alberti D., Locatelli F. et al. Angiotensin-converting enzyme inhibitors and kidney protection: the AIPRI trial. The ACE Inhibition in Progressive Renal Insufficiency (AIPRI) Study Group. J Cardiovasc Pharmacol. 1999; 33(Suppl 1): S16-S20. doi: 10.1097/00005344-199900001-00004.
  102. Williams B., Mancia G., Spiering W. et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension: the Task Force for the Management of Arterial Hypertension of the European Society of Cardiology and the European Society of Hypertension: the Task Force for the Management of Arterial Hypertension of the European Society of Cardiology and the European Society of Hypertension. J Hypertens. 2018; 36: 1953-2041. doi: 10.1097/HJH.0000000000001940.
  103. Casas J.P., Chua W., Loukogeorgakis S. et al. Effect of inhibitors of the renin-angiotensin system and other antihypertensive drugs on renal outcomes: systematic review and meta-analysis. Lancet. 2005; 366: 2026-2033. doi: 10.1016/S0140-6736(05)67814-2.
  104. Fried L.F., Emanuele N., Zhang J.H. et al. Combined angiotensin inhibition for the treatment of diabetic nephropathy. N Engl J Med. 2013; 369: 1892-1903. doi: 10.1056/NEJMoa1303154.
  105. Lesogor A., Cohn J.N., Latini R. et al. Interaction between baseline and early worsening of renal function and efficacy of renin-angiotensin-aldosterone system blockade in patients with heart failure: insights from the Val-HeFT study. Eur J Heart Fail. 2013; 15: 1236-1244. doi: 10.1093/eurjhf/hft089.
  106. Brenner B.M., Cooper M.E., de Zeeuw D. et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med. 2001; 345: 861-869. doi: 10.1056/NEJMoa011161.
  107. Holtkamp F.A., de Zeeuw D., Thomas M.C. et al. An acute fall in estimated glomerular filtration rate during treatment with losartan predicts a slower decrease in long-term renal function. Kidney Int. 2011; 80: 282-287. doi: 10.1038/ki.2011.79.
  108. National Institute for Health and Care Excellence. Chronic kidney disease in adults: assessment and management. London: NICE; 2014.
  109. Ahmed A.K., Kamath N.S., El Kossi M., El Nahas A.M. The impact of stopping inhibitors of the renin-angiotensin system in patients with advanced chronic kidney disease. Nephrol Dial Transplant. 2010; 25: 3977-3982. doi: 10.1093/ndt/gfp511.
  110. Bhandari S., Ives N., Brettell E.A. et al. Multicentre randomized controlled trial of angiotensin-converting enzyme inhibitor/angiotensin receptor blocker withdrawal in advanced renal disease: the STOP-ACEi trial. Nephrol Dial Transplant. 2016; 31: 255-261. doi: 10.1093/ndt/gfw166.13.
  111. Hung S.C., Kuo K.L., Peng C.H. et al. Volume overload correlates with cardiovascular risk factors in patients with chronic kidney disease. Kidney Int. 2014; 85: 703-709.
  112. Zamboli P., De Nicola L., Minutolo R. et al. Effect of furosemide on left ventricular mass in non-dialysis chronic kidney disease patients: a randomized controlled trial. Nephrol Dial Transplant. 2011; 26: 1575-1583.
  113. Edwards N.C., Steeds R.P., Stewart P.M. et al. Effect of spironolactone on left ventricular mass and aortic stiffness in early-stage chronic kidney disease: a randomized controlled trial. J Am Coll Cardiol. 2009; 54: 505-512.
  114. Uzu T., Kimura G. Diuretics shift circadian rhythm of blood pressure from nondipper to dipper in essential hypertension. Circulation. 1999; 100: 1635-1638.
  115. Ecder T., Edelstein C.L., Fick-Brosnahan G.M. et al. Diuretics versus angiotensin-converting enzyme inhibitors in autosomal dominant polycystic kidney disease. Am J Nephrol. 2001; 21: 98-103.
  116. Currie G., Taylor A.H., Fujita T. et al. Effect of mineralocorticoid receptor antagonists on proteinuria and progression of chronic kidney disease: a systematic review and meta-analysis. BMC Nephrol. 2016; 17: 127.
  117. Edwards N.C., Ferro C.J., Kirkwood H. et al. Effect of spironolactone on left ventricular systolic and diastolic function in patients with early stage chronic kidney disease. Am J Cardiol. 2010; 106: 1505-1511.
  118. Hayer M.K., Edwards N.C., Slinn G. et al. A randomized, multicenter, open-label, blinded end point trial comparing the effects of spironolactone to chlorthalidone on left ventricular mass in patients with early-stage chronic kidney disease: Rationale and design of the SPIRO-CKD trial. Am Heart J. 2017; 191: 37-46.
  119. Schwenk M.H., Hirsch J.S., Bomback A.S. Aldosterone blockade in CKD: emphasis on pharmacology. Adv Chronic Kidney Dis. 2015 Mar; 22(2): 123-32. doi:10.1053/j.ackd.2014.08.003.
  120. Appel L.J., Wright J.T., Greene T. et al. Intensive blood-pressure control in hypertensive chronic kidney disease. N Engl J Med. 2010; 363: 918-929.
  121. Brenner B.M., Cooper M.E., de Zeeuw D. et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med. 2001; 345: 861-869.
  122. Jamerson K., Weber M.A., Bakris G.L. et al. Benazepril plus amlodipine or hydrochlorothiazide for hypertension in high-risk patients. N Engl J Med. 2008; 359:2417-2428.
  123. Bakris G.L., Weir M.R., Secic M. et al. Differential effects of calcium antagonist subclasses on markers of nephropathy progression. Kidney Int. 2004; 65: 1991-2002.
  124. Gottlieb S.S., McCarter R.J., Vogel R.A. Effect of beta-blockade on mortality among high-risk and low-risk patients after myocardial infarction. N Engl J Med. 1998; 339: 489-497.
  125. Bangalore S., Messerli F.H., Kostis J.B., Pepine CJ. Cardiovascular protection using beta-blockers: a critical review of the evidence. J Am Coll Cardiol. 2007; 50: 563-572.
  126. Jovanovic D., Jovovic D., Mihailovic-Stanojevic N. et al. Influence of carvedilol on chronic renal failure progression in spontaneously hypertensive rats with adriamycin nephropathy. Clin Nephrol. 2005; 63: 446-453.
  127. Salplachta J., Bartosikova L., Necas J. Effects of carvedilol and BL-443 on kidney of rats with cyclosporine nephropathy. Gen Physiol Biophys. 2002; 21: 189-195.
  128. Cice G., Ferrara L., D’Andrea A. et al. Carvedilol increases two-year survivalin dialysis patients with dilated cardiomyopathy: a prospective, placebo-controlled trial. J Am Coll Cardiol. 2003; 41: 1438-1444.
  129. Foley R.N., Herzog C.A., Collins A.J. Blood pressure and long-term mortality in United States hemodialysis patients: USRDS Waves 3 and 4 Study. Kidney Int. 2002; 62: 1784-1790.
  130. Abbott K.C., Trespalacios F.C., Agodoa L.Y. et al. beta-Blocker use in long-term dialysis patients: association with hospitalized heart failure and mortality. Arch Intern Med. 2004; 164: 2465-2471.
  131. Bakris G.L., Hart P., Ritz E. Beta blockers in the management of chronic kidney disease. Kidney Int. 2006; 70: 1905-1913.
  132. Mori Y., Matsubara H., Nose A. et al. Safety and availability of doxazosin in treating hypertensive patients with chronic renal failure. Hypertens Res. 2001; 24: 359-363.
  133. Erley C.M., Haefele U., Heyne N. et al. Microalbuminuria in essential hypertension. Reduction by different antihypertensive drugs. Hypertension. 1993; 21: 810-815.
  134. Yildiz A., Hursit M., Celik A.V. et al. Doxazosin, but not amlodipine decreases insulin resistance in patients with chronic renal failure: a prospective, randomized-controlled study. Clin Nephrol. 2002; 58: 405-410.
  135. Antihypertensive and, Lipid-Lowering Treatment to Prevent Heart Attack Trial Collaborative Research Group Diuretic versus alpha-blocker as first-step antihypertensive therapy: final results from the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT) Hypertension. 2003; 42: 239-246.
  136. Hermida R.C., Ayala D.E., Mojon A., Fernandez J.R. Bedtime dosing of antihypertensive medications reduces cardiovascular risk in CKD. J Am Soc Nephrol. 2011; 22: 2313-2321.
  137. Muntner P., Judd S.E., Krousel-Wood M. et al. Low medication adherence and hypertension control among adults with CKD: data from the REGARDS (Reasons for Geographic and Racial Differences in Stroke) Study. Am J Kidney Dis. 2010; 56: 447-457.
  138. Magacho E.J., Ribeiro L.C., Chaoubah A., Bastos M.G. Adherence to drug therapy in kidney disease. Braz J Med Biol Res. 2011; 44: 258-262.
  139. Beckett N.S., Peters R., Fletcher A.E. et al. Treatment of hypertension in patients 80 years of age or older. N Engl J Med. 2008; 358: 1887-98.
  140. Kithas P.A., Supiano M.A. Hypertension and chronic kidney disease in the elderly. Adv Chronic Kidney Dis. 2010;17:341-7.
  141. Dhaun N., Macintyre I.M., Melville V. et al. Blood pressure-independent reduction in proteinuria and arterial stiffness after acute endothelin-a receptor antagonism in chronic kidney disease. Hypertension. 2009; 54: 113-9.
  142. Komers R., Gipson D.S., Nelson P. et al. Efficacy and safety of sparsentan compared with irbesartan in patients with primary focal segmental glomerulosclerosis: randomized, controlled trial design (DUET). Kidney Int Rep. 2017; 2: 654-64.
  143. Parving H.H., Persson F., Lewis J.B. et al. Aliskiren combined with losartan in type 2 diabetes and nephropathy. N Engl J Med. 2008; 358: 2433-46.
  144. Townsend R.R., Mahfoud F., Kandzari D.E. et al. Catheter-based renal denervation in patients with uncontrolled hypertension in the absence of antihypertensive medications (SPYRAL HTN-OFF MED): a randomised, sham-controlled, proof-of-concept trial. Lancet. 2017; 390:2 160-70.
  145. Kramer H. J., Townsend R. R., Griffin K. et al. KDOQI US Commentary on the 2017 ACC/AHA Hypertension Guideline Am J Kidney Dis.2019 Apr; 73(4): 437-458. doi: 10.1053/j.ajkd.2019.01.007

Другие статьи по теме


Навигация по статьям
Разделы журнала
Наиболее читаемые статьи
Журнал "Нефрология и диализ"