Российское диализное общество

Просмотр статьи

<< Вернуться к списку статей журнала

Том 24 №4 2022 год - Нефрология и диализ

Клинические практические рекомендации KDIGO 2021 по лечению гломерулярных болезней


Бобкова И.Н. Буланов Н.М. Захарова Е.В. Земченков А.Ю. Камышова Е.С. Паршина Е.В. Приходина Л.С. Путинцева А.Д. Шведова А.Н.

DOI: 10.28996/2618-9801-2022-4-577-874

Аннотация: Клинические рекомендации KDIGO («Инициатива по Улучшению Глобальных Исходов при Болезни Почек») 2021 года по лечению гломерулярным болезням является обновлением Рекомендаций KDIGO 2012 года по этой теме. Цель состоит в том, чтобы помочь клиницистам, оказывающим помощь пациентам с гломерулярными болезнями, как взрослым, так и детям. Область применения включает различные гломерулярные болезни, включая IgA-нефропатию (IgAН) и IgA-васкулит (IgAВ), мембранозную нефропатию, нефротический синдром у детей, болезнь минимальных изменений (БМИ), фокальный сегментарный гломерулосклероз (ФСГС), связанный с инфекцией гломерулонефрит (ГН), васкулит, связанный с антинейтрофильными цитоплазматическими антителами (АНЦА), волчаночный нефрит и ГН, вызванный антителами к гломерулярной базальной мембране (анти-ГБМ). Кроме того, это руководство будет первым, в котором будет рассмотрен подтип болезней, опосредованных комплементом. Каждая глава соответствует единому формату, предоставляя рекомендации, касающиеся диагностики, прогноза, лечения и особых ситуаций. Цель руководства - создать полезный ресурс для врачей и пациентов, предоставляя практические рекомендации с ценной инфографикой, основанной на строгом формальном систематическом обзоре литературы. Другая цель состоит в том, чтобы предложить рекомендации по проведению исследований в областях, где имеются пробелы в знаниях. Рекомендации ориентированы на широкую аудиторию врачей, ведущих пациентов с гломерулярными болезнями, учитывая при этом условия организации здравоохранения и затраты и затраты. Разработке этого обновления Рекомендаций предшествовал четкий процесс анализа фактических данных. Подходы к лечению и рекомендации руководства основаны на систематических обзорах и обобщении фактических данных соответствующих исследований, а также оценке качества фактических данных и силы рекомендаций в соответствии с подходом “Оценка, разработка и оценивание рекомендаций” (GRADE). Обсуждаются ограничения фактических данных, а также представлены области будущих исследований.

Для цитирования: Перевод на русский язык Клинических практических рекомендаций KDIGO 2021 по лечению гломерулярных болезней. И.Н. Бобкова, Н.М. Буланов, Е.В. Захарова, А.Ю. Земченков, Е.С. Камышова, Е.В. Паршина, Л.С. Приходина, А.Д. Путинцева, А.Н. Шведова, под общей редакцией Е.В. Захаровой. Нефрология и диализ. 2022. 24(4):577-874. doi: 10.28996/2618-9801-2022-4-577-874


Весь текст



Ключевые слова: ААВ, АНЦА, анти-ГБМ, C3, комплемент, основанный на доказательствах, ФСГС, гломерулярные болезни, гломерулонефрит, рекомендации, IgA нефропатия, IgA васкулит, связанный с инфекцией гломерулонефрит, KDIGO, волчаночный нефрит, мембранозная нефропатия, болезнь минимальных изменений, МПГН, нефротический синдром, систематический обзор, AAV, ANCA, anti-GBM, C3, complement, evidence-based, FSGS, glomerular diseases, glomerulonephritis, guideline, IgA nephropathy, IgA vasculitis, infection-related glomerulonephritis, KDIGO, lupus nephritis, membranous nephropathy, minimal change disease, MPGN, nephrotic syndrome, systematic review

Список литературы:
  1. Floege J, Barbour SJ, Cattran DC, et al. Management and treatment of glomerular diseases (part 1): conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference. Kidney Int. 2019;95:268-280.
  2. Rovin BH, Caster DJ, Cattran DC, et al. Management and treatment of glomerular diseases (part 2): conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference. Kidney Int. 2019;95:281-295.
  3. Walker PD, Cavallo T, Bonsib SM, et al. Practice guidelines for the renal biopsy. Mod Pathol. 2004;17:1555-1563.
  4. Corwin HL, Schwartz MM, Lewis EJ. The importance of sample size in the interpretation of the renal biopsy. Am J Nephrol. 1988;8:85-89.
  5. Hogan JJ, Mocanu M, Berns JS. The native kidney biopsy: update and evidence for best practice. Clin J Am Soc Nephrol. 2016;11:354-362.
  6. Rovin BH, Parikh SV, Alvarado A. The kidney biopsy in lupus nephritis: Is it still relevant? Rheum Dis Clin North Am. 2014;40:537-552.
  7. Glassock RJ. Evaluation of proteinuria redux. Kidney Int. 2016;90:938-940.
  8. Tangri N, Grams ME, Levey AS, et al. Multinational assessment of accuracy of equations for predicting risk of kidney failure: a meta-analysis. JAMA 2016;315:164-174.
  9. Weaver RG, James MT, Ravani P, et al. Estimating urine albumin-to-creatinine ratio from protein-to-creatinine ratio: development of equations using same-day measurements. J Am Soc Nephrol. 2020;31:591-601.
  10. Clase CM, St Pierre MW, Churchill DN. Conversion between bromcresol green- and bromcresol purple-measured albumin in renal disease. Nephrol Dial Transplant. 2001;16:1925-1929.
  11. Cockcroft DW, Gault MH. Prediction of creatinine clearance from serum creatinine. Nephron. 1976;16:31-41.
  12. Gaspari F, Perico N, Ruggenenti P, et al. Plasma clearance of nonradioactive iohexol as a measure of glomerular filtration rate. J Am Soc Nephrol. 1995;6:257-263.
  13. Perrone RD, Steinman TI, Beck GJ, et al. Utility of radioisotopic filtration markers in chronic renal insufficiency: simultaneous comparison of 125I, 169Yb-DTPA, 99mTc-DTPA, and inulin. The Modification of Diet in Renal Disease Study. Am J Kidney Dis. 1990;16:224-235.
  14. Pottel H, Delanaye P, Schaeffner E, et al. Estimating glomerular filtration rate for the full age spectrum from serum creatinine and cystatin C. Nephrol Dial Transplant. 2017;32:497-507.
  15. Schwartz GJ, Munoz A, Schneider MF, et al. New equations to estimate GFR in children with CKD. J Am Soc Nephrol. 2009;20:629-637.
  16. Stevens LA, Coresh J, Greene T, et al. Assessing kidney function-measured and estimated glomerular filtration rate. N Engl J Med. 2006;354:2473-2483.
  17. Stevens LA, Coresh J, Schmid CH, et al. Estimating GFR using serum cystatin C alone and in combination with serum creatinine: a pooled analysis of 3,418 individuals with CKD. Am J Kidney Dis. 2008;51:395-406.
  18. Stevens PE, Levin A, Kidney Disease. Improving Global Outcomes Chronic Kidney Disease Guideline Development Work Group members. Evaluation and management of chronic kidney disease: synopsis of the kidney disease: improving global outcomes 2012 clinical practice guideline. Ann Intern Med. 2013;158:825-830.
  19. Branten AJ, Vervoort G, Wetzels JF. Serum creatinine is a poor marker of GFR in nephrotic syndrome. Nephrol Dial Transplant. 2005;20:707-711.
  20. Diao JA, Wu GJ, Taylor HA, et al. Clinical implications of removing race from estimates of kidney function. JAMA 2021;325:184-186.
  21. Zhai JL, Ge N, Zhen Y, et al. Corticosteroids significantly increase serum cystatin C concentration without affecting renal function in symptomatic heart failure. Clin Lab. 2016;62:203-207.
  22. Levey AS, Perrone RD, Madias NE. Serum creatinine and renal function. Annu Rev Med. 1988;39:465-490.
  23. Coppo R, Fervenza FC. Persistent microscopic hematuria as a risk factor for progression of IgA nephropathy: new floodlight on a nearly forgotten biomarker. J Am Soc Nephrol. 2017;28:2831-2834.
  24. Ray EC, Rondon-Berrios H, Boyd CR, et al. Sodium retention and volume expansion in nephrotic syndrome: implications for hypertension. Adv Chronic Kidney Dis. 2015;22:179-184.
  25. Jentzer JC, DeWald TA, Hernandez AF. Combination of loop diuretics with thiazide-type diuretics in heart failure. J Am Coll Cardiol. 2010;56:1527-1534.
  26. Staehr M, Buhl KB, Andersen RF, et al. Aberrant glomerular filtration of urokinase-type plasminogen activator in nephrotic syndrome leads to amiloride-sensitive plasminogen activation in urine. Am J Physiol Renal Physiol. 2015;309:F235-F241.
  27. Duffy M, Jain S, Harrell N, et al. Albumin and furosemide combination for management of edema in nephrotic syndrome: a review of clinical studies. Cells. 2015;4:622-630.
  28. Tamargo J, Segura J, Ruilope LM. Diuretics in the treatment of hypertension. Part 2: loop diuretics and potassium-sparing agents. Expert Opin Pharmacother. 2014;15:605-621.
  29. Ho JJ, Adnan AS, Kueh YC, et al. Human albumin infusion for treating oedema in people with nephrotic syndrome. Cochrane Database Syst Rev. 2019;7:CD009692.
  30. ONTARGET Investigators; , Yusuf S, Teo KK, et al. Telmisartan, ramipril, or both in patients at high risk for vascular events. N Engl J Med. 2008;358:1547-1559.
  31. Leehey DJ, Zhang JH, Emanuele NV, et al. BP and renal outcomes in diabetic kidney disease: the Veterans Affairs Nephropathy in Diabetes Trial. Clin J Am Soc Nephrol. 2015;10:2159-2169.
  32. Dhaybi OA, Bakris G. Mineralocorticoid antagonists in chronic kidney disease. Curr Opin Nephrol Hypertens. 2017;26:50-55.
  33. Parving HH, Brenner BM, McMurray JJ, et al. Cardiorenal end points in a trial of aliskiren for type 2 diabetes. N Engl J Med. 2012;367:2204-2213.
  34. Coresh J, Heerspink HJL, Sang Y, et al. Change in albuminuria and subsequent risk of end-stage kidney disease: an individual participant-level consortium meta-analysis of observational studies. Lancet Diabetes Endocrinol. 2019;7:115-127.
  35. Heerspink HJL, Greene T, Tighiouart H, et al. Change in albuminuria as a surrogate endpoint for progression of kidney disease: a meta-analysis of treatment effects in randomised clinical trials. Lancet Diabetes Endocrinol. 2019;7:128-139.
  36. Thompson A, Carroll K, Inker LA, et al. Proteinuria reduction as a surrogate end point in trials of IgA nephropathy. Clin J Am Soc Nephrol. 2019;14:469-481.
  37. Agrawal S, Zaritsky JJ, Fornoni A, et al. Dyslipidaemia in nephrotic syndrome: mechanisms and treatment. Nat Rev Nephrol. 2018;14:57-70.
  38. Vaziri ND. Disorders of lipid metabolism in nephrotic syndrome: mechanisms and consequences. Kidney Int. 2016;90:41-52.
  39. Kong X, Yuan H, Fan J, et al. Lipid-lowering agents for nephrotic syndrome. Cochrane Database Syst Rev. 2013;12:CD005425.
  40. Morris AW. Nephrotic syndrome: PCSK9: a target for hypercholesterolaemia in nephrotic syndrome. Nat Rev Nephrol. 2016;12:510.
  41. Pincus KJ, Hynicka LM. Prophylaxis of thromboembolic events in patients with nephrotic syndrome. Ann Pharmacother. 2013;47:725-734.
  42. Sexton DJ, de Freitas DG, Little MA, et al. Direct-acting oral anticoagulants as prophylaxis against thromboembolism in the nephrotic syndrome. Kidney Int Rep. 2018;3:784-793.
  43. Makani A, Saba S, Jain S, et al. The safety of anticoagulation for atrial fibrillation with DOAC versus warfarin in patients with various stages of renal function. J Am Coll Cardiol. 2019;73:322.
  44. Hofstra JM, Wetzels JFM. Should aspirin be used for primary prevention of thrombotic events in patients with membranous nephropathy? Kidney Int. 2016;89:981-983.
  45. Menzies D, Adjobimey M, Ruslami R, et al. Four months of rifampin or nine months of isoniazid for latent tuberculosis in adults. N Engl J Med. 2018;379:440-453.
  46. Mejia R, Nutman TB. Screening, prevention, and treatment for hyperinfection syndrome and disseminated infections caused by Strongyloides stercoralis. Curr Opin Infect Dis. 2012;25:458-463.
  47. Carter SA, Lightstone L, Cattran D, et al. Standardized outcomes in nephrology-glomerular disease (SONG-GD): establishing a core outcome set for trials in patients with glomerular disease. Kidney Int. 2019;95:1280-1283.
  48. Levey AS, Gansevoort RT, Coresh J, et al. Change in albuminuria and GFR as end points for clinical trials in early stages of CKD: a scientific workshop sponsored by the National Kidney Foundation in collaboration with the US Food and Drug Administration and European Medicines Agency. Am J Kidney Dis. 2020;75:84-104.
  49. Grams ME, Sang Y, Ballew SH, et al. Evaluating glomerular filtration rate slope as a surrogate end point for ESKD in clinical trials: an individual participant meta-analysis of observational data. J Am Soc Nephrol. 2019;30:1746-1755.
  50. Greene T, Ying J, Vonesh EF, et al. Performance of GFR slope as a surrogate end point for kidney disease progression in clinical trials: a statistical simulation. J Am Soc Nephrol. 2019;30:1756-1769.
  51. Groopman E, Goldstein D, Gharavi A. Diagnostic utility of exome sequencing for kidney disease. Reply. N Engl J Med. 2019;380:2080-2081.
  52. Hamidi H, Kretzler M. Systems biology approaches to identify disease mechanisms and facilitate targeted therapy in the management of glomerular disease. Curr Opin Nephrol Hypertens. 2018;27:433-439.
  53. Hayek SS, Sever S, Ko YA, et al. Soluble urokinase receptor and chronic kidney disease. N Engl J Med. 2015;373:1916-1925.
  54. Siwy J, Mischak H, Zurbig P. Proteomics and personalized medicine: a focus on kidney disease. Expert Rev Proteomics. 2019;16:773-782.
  55. Ponticelli C, Glassock RJ. Prevention of complications from use of conventional immunosuppressants: a critical review. J Nephrol. 2019;32:851-870.
  56. Blumenfeld Z, Patel B, Leiba R, et al. Gonadotropin-releasing hormone agonist may minimize premature ovarian failure in young women undergoing autologous stem cell transplantation. Fertil Steril. 2012;98:1266-1270 e1261.
  57. Lazarus B, Chen Y, Wilson FP, et al. Proton pump inhibitor use and the risk of chronic kidney disease. JAMA Intern Med. 2016;176:238-246.
  58. Xie Y, Bowe B, Li T, et al. Proton pump inhibitors and risk of incident CKD and progression to ESRD. J Am Soc Nephrol. 2016;27:3153-3163.
  59. Kidney Disease: Improving Global Outcomes (KDIGO) CKD-MBD Update Work Group. KDIGO 2017. Clinical Practice Guideline Update for the Diagnosis, Evaluation, Prevention, and Treatment of Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD). Kidney Int Suppl. 2017;7:1-59.
  60. Meyrier A, Noel LH, Auriche P, et al. Long-term renal tolerance of cyclosporin A treatment in adult idiopathic nephrotic syndrome. Collaborative Group of the Societe de Nephrologie. Kidney Int. 1994;45:1446-1456.
  61. Iijima K, Hamahira K, Tanaka R, et al. Risk factors for cyclosporine-induced tubulointerstitial lesions in children with minimal change nephrotic syndrome. Kidney Int. 2002;61:1801-1805.
  62. Salemi S, D'Amelio R. Could autoimmunity be induced by vaccination? Int Rev Immunol. 2010;29:247-269.
  63. Blom K, Odutayo A, Bramham K, et al. Pregnancy and glomerular disease: a systematic review of the literature with management guidelines. Clin J Am Soc Nephrol. 2017;12:1862-1872.
  64. Wiles K, Lightstone L. Glomerular disease in women. Kidney Int Rep. 2018;3:258-270.
  65. Oliverio AL, Zee J, Mariani LH, et al. Renal complications in pregnancy preceding glomerulonephropathy diagnosis. Kidney Int Rep. 2019;4:159-162.
  66. Trussell J. Contraceptive failure in the United States. Contraception. 2011;83:397-404.
  67. Davison JM, Katz AI, Lindheimer MD. Kidney disease and pregnancy: obstetric outcome and long-term renal prognosis. Clin Perinatol. 1985;12:497-519.
  68. Jungers P, Forget D, Henry-Amar M, et al. Chronic kidney disease and pregnancy. Adv Nephrol Necker Hosp. 1986;15:103-141.
  69. Lindheimer MD, Katz AI. Gestation in women with kidney disease: prognosis and management. Baillieres Clin Obstet Gynaecol. 1994;8:387-404.
  70. Park S, Lee SM, Park JS, et al. Midterm eGFR and adverse pregnancy outcomes: the clinical significance of gestational hyperfiltration. Clin J Am Soc Nephrol. 2017;12:1048-1056.
  71. Kattah AG, Garovic VD. Pregnancy and lupus nephritis. Semin Nephrol. 2015;35:487-499.
  72. Piccoli GB, Attini R, Cabiddu G, et al. Maternal-foetal outcomes in pregnant women with glomerulonephritides. Are all glomerulonephritides alike in pregnancy? J Autoimmun. 2017;79:91-98.
  73. Smyth A, Oliveira GH, Lahr BD, et al. A systematic review and meta-analysis of pregnancy outcomes in patients with systemic lupus erythematosus and lupus nephritis. Clin J Am Soc Nephrol. 2010;5:2060-2068.
  74. Buyon JP, Kim MY, Guerra MM, et al. Predictors of pregnancy outcomes in patients with lupus: a cohort study. Ann Intern Med. 2015;163:153-163.
  75. Moroni G, Doria A, Giglio E, et al. Fetal outcome and recommendations of pregnancies in lupus nephritis in the 21st century. A prospective multicenter study. J Autoimmun. 2016;74:6-12.
  76. Ahmed SB, Hovind P, Parving HH, et al. Oral contraceptives, angiotensin-dependent renal vasoconstriction, and risk of diabetic nephropathy. Diabetes Care. 2005;28:1988-1994.
  77. Ahmed SB, Kang AK, Burns KD, et al. Effects of oral contraceptive use on the renal and systemic vascular response to angiotensin II infusion. J Am Soc Nephrol. 2004;15:780-786.
  78. Kang AK, Duncan JA, Cattran DC, et al. Effect of oral contraceptives on the renin angiotensin system and renal function. Am J Physiol Regul Integr Comp Physiol. 2001;280:R807-R813.
  79. Lidegaard O, Lokkegaard E, Jensen A, et al. Thrombotic stroke and myocardial infarction with hormonal contraception. N Engl J Med. 2012;366:2257-2266.
  80. Bartosik LP, Lajoie G, Sugar L, et al. Predicting progression in IgA nephropathy. Am J Kidney Dis. 2001;38:728-735.
  81. Berthoux F, Mohey H, Laurent B, et al. Predicting the risk for dialysis or death in IgA nephropathy. J Am Soc Nephrol. 2011;22:752-761.
  82. Goto M, Wakai K, Kawamura T, et al. A scoring system to predict renal outcome in IgA nephropathy: a nationwide 10-year prospective cohort study. Nephrol Dial Transplant. 2009;24:3068-3074.
  83. Pesce F, Diciolla M, Binetti G, et al. Clinical decision support system for end-stage kidney disease risk estimation in IgA nephropathy patients. Nephrol Dial Transplant. 2016;31:80-86.
  84. Wakai K, Kawamura T, Endoh M, et al. A scoring system to predict renal outcome in IgA nephropathy: from a nationwide prospective study. Nephrol Dial Transplant. 2006;21:2800-2808.
  85. Xie J, Kiryluk K, Wang W, et al. Predicting progression of IgA nephropathy: new clinical progression risk score. PLoS One. 2012;7:e38904.
  86. Tanaka S, Ninomiya T, Katafuchi R, et al. Development and validation of a prediction rule using the Oxford classification in IgA nephropathy. Clin J Am Soc Nephrol. 2013;8:2082-2090.
  87. Chen T, Li X, Li Y, et al. Prediction and risk stratification of kidney outcomes in IgA nephropathy. Am J Kidney Dis. 2019;74:300-309.
  88. Barbour SJ, Coppo R, Zhang H, et al. Evaluating a new international risk-prediction tool in IgA nephropathy. JAMA Intern Med. 2019;179:942-952.
  89. Lennartz DP, Seikrit C, Wied S, et al. Single versus dual blockade of the renin-angiotensin system in patients with IgA nephropathy. J Nephrol. 2020;33:1231-1239.
  90. Jafar TH, Stark PC, Schmid CH, et al. Progression of chronic kidney disease: the role of blood pressure control, proteinuria, and angiotensin-converting enzyme inhibition: a patient-level meta-analysis. Ann Intern Med. 2003;139:244-252.
  91. Xie X, Atkins E, Lv J, et al. Effects of intensive blood pressure lowering on cardiovascular and renal outcomes: updated systematic review and meta-analysis. Lancet. 2016;387:435-443.
  92. Xie X, Liu Y, Perkovic V, et al. Renin-angiotensin system inhibitors and kidney and cardiovascular outcomes in patients with CKD: a Bayesian network meta-analysis of randomized clinical trials. Am J Kidney Dis. 2016;67:728-741.
  93. Nakamura T, Ushiyama C, Suzuki S, et al. Effects of angiotensin-converting enzyme inhibitor, angiotensin II receptor antagonist and calcium antagonist on urinary podocytes in patients with IgA nephropathy. Am J Nephrol. 2000;20:373-379.
  94. Coppo R, Troyanov S, Bellur S, et al. Validation of the Oxford classification of IgA nephropathy in cohorts with different presentations and treatments. Kidney Int. 2014;86:828-836.
  95. Reid S, Cawthon PM, Craig JC, et al. Non-immunosuppressive treatment for IgA nephropathy. Cochrane Database Syst Rev. 2011:CD003962.
  96. Praga M, Gutierrez E, Gonzalez E, et al. Treatment of IgA nephropathy with ACE inhibitors: a randomized and controlled trial. J Am Soc Nephrol. 2003;14:1578-1583.
  97. Shi X, Chen X, Liu S, et al. The effects of angiotensin-converting enzyme inhibitor on IgA nephropathy and the influencing factors. Zhonghua nei ke za zhi [Chinese J Intern Med] 2002;41:399-403.
  98. Horita Y, Tadokoro M, Taura K, et al. Low-dose combination therapy with temocapril and losartan reduces proteinuria in normotensive patients with immunoglobulin a nephropathy. Hypertens Res. 2004;27:963-970.
  99. Woo KT, Lau YK, Wong KS, et al. ACEI/ATRA therapy decreases proteinuria by improving glomerular permselectivity in IgA nephritis. Kidney Int. 2000;58:2485-2491.
  100. Rauen T, Eitner F, Fitzner C, et al. Intensive supportive care plus immunosuppression in IgA nephropathy. N Engl J Med. 2015;373:2225-2236.
  101. Le W, Liang S, Hu Y, et al. Long-term renal survival and related risk factors in patients with IgA nephropathy: results from a cohort of 1155 cases in a Chinese adult population. Nephrol Dial Transplant. 2012;27:1479-1485.
  102. Reich HN, Troyanov S, Scholey JW, et al. Remission of proteinuria improves prognosis in IgA nephropathy. J Am Soc Nephrol. 2007;18:3177-3183.
  103. Kanno Y, Okada H, Saruta T, et al. Blood pressure reduction associated with preservation of renal function in hypertensive patients with IgA nephropathy: a 3-year follow-up. Clin Nephrol. 2000;54:360-365.
  104. Li PK, Leung CB, Chow KM, et al. Hong Kong study using valsartan in IgA nephropathy (HKVIN): a double-blind, randomized, placebo-controlled study. Am J Kidney Dis. 2006;47:751-760.
  105. Ruggenenti P, Perna A, Gherardi G, et al. Renoprotective properties of ACE-inhibition in non-diabetic nephropathies with non-nephrotic proteinuria. Lancet. 1999;354:359-364.
  106. Inker LA, Mondal H, Greene T, et al. Early change in urine protein as a surrogate end point in studies of IgA nephropathy: an individual-patient meta-analysis. Am J Kidney Dis. 2016;68:392-401.
  107. World Health Organization. The selection and use of essential medicines: report of the WHO Expert Committee, 2017 (including the 20th WHO Model List of Essential Medicines and the 6th Model List of Essential Medicines for Children). Available at: https://apps.who.int/iris/handle/10665/259481. Accessed January 27, 2021.
  108. Geng DF, Sun WF, Yang L, et al. Antiproteinuric effect of angiotensin receptor blockers in normotensive patients with proteinuria: a meta-analysis of randomized controlled trials. J Renin Angiotensin Aldosterone Syst. 2014;15:44-51.
  109. Lv J, Zhang H, Wong MG, et al. Effect of oral methylprednisolone on clinical outcomes in patients with IgA nephropathy: the TESTING randomized clinical trial. JAMA 2017;318:432-442.
  110. Lv J, Zhang H, Chen Y, et al. Combination therapy of prednisone and ACE inhibitor versus ACE-inhibitor therapy alone in patients with IgA nephropathy: a randomized controlled trial. Am J Kidney Dis. 2009;53:26-32.
  111. Manno C, Torres DD, Rossini M, et al. Randomized controlled clinical trial of corticosteroids plus ACE-inhibitors with long-term follow-up in proteinuric IgA nephropathy. Nephrol Dial Transplant. 2009;24:3694-3701.
  112. Natale P, Palmer SC, Ruospo M, et al. Immunosuppressive agents for treating IgA nephropathy. Cochrane Database Syst Rev. 2020;3:CD003965.
  113. Pozzi C, Bolasco PG, Fogazzi GB, et al. Corticosteroids in IgA nephropathy: a randomised controlled trial. Lancet. 1999;353:883-887.
  114. Rauen T, Wied S, Fitzner C, et al. After ten years of follow-up, no difference between supportive care plus immunosuppression and supportive care alone in IgA nephropathy. Kidney Int. 2020;98:1044-1052.
  115. Hou JH, Le WB, Chen N, et al. Mycophenolate mofetil combined with prednisone versus full-dose prednisone in IgA nephropathy with active proliferative lesions: a randomized controlled trial. Am J Kidney Dis. 2017;69:788-795.
  116. Hogg RJ, Bay RC, Jennette JC, et al. Randomized controlled trial of mycophenolate mofetil in children, adolescents, and adults with IgA nephropathy. Am J Kidney Dis. 2015;66:783-791.
  117. Frisch G, Lin J, Rosenstock J, et al. Mycophenolate mofetil (MMF) vs placebo in patients with moderately advanced IgA nephropathy: a double-blind randomized controlled trial. Nephrol Dial Transplant. 2005;20:2139-2145.
  118. Maes BD, Oyen R, Claes K, et al. Mycophenolate mofetil in IgA nephropathy: results of a 3-year prospective placebo-controlled randomized study. Kidney Int. 2004;65:1842-1849.
  119. Vecchio M, Bonerba B, Palmer SC, et al. Immunosuppressive agents for treating IgA nephropathy. Cochrane Database Syst Rev. 2015:CD003965.
  120. Liu LJ, Yang YZ, Shi SF, et al. Effects of hydroxychloroquine on proteinuria in IgA nephropathy: a randomized controlled trial. Am J Kidney Dis. 2019;74:15-22.
  121. Hotta O, Taguma Y, Kurosawa K, et al. Early intensive therapy for clinical remission of active IgA nephropathy: a three-year follow-up study. Nihon Jinzo Gakkai Shi. 1993;35:967-973.
  122. Kawamura T, Yoshimura M, Miyazaki Y, et al. A multicenter randomized controlled trial of tonsillectomy combined with steroid pulse therapy in patients with immunoglobulin A nephropathy. Nephrol Dial Transplant. 2014;29:1546-1553.
  123. Kawasaki Y, Takano K, Suyama K, et al. Efficacy of tonsillectomy pulse therapy versus multiple-drug therapy for IgA nephropathy. Pediatr Nephrol. 2006;21:1701-1706.
  124. Yang D, He L, Peng X, et al. The efficacy of tonsillectomy on clinical remission and relapse in patients with IgA nephropathy: a randomized controlled trial. Ren Fail. 2016;38:242-248.
  125. Hirano K, Matsuzaki K, Yasuda T, et al. Association between tonsillectomy and outcomes in patients with immunoglobulin A nephropathy. JAMA Netw Open. 2019;2:.
  126. Yata N, Nakanishi K, Shima Y, et al. Improved renal survival in Japanese children with IgA nephropathy. Pediatr Nephrol. 2008;23:905-912.
  127. Selewski DT, Ambruzs JM, Appel GB, et al. Clinical characteristics and treatment patterns of children and adults with IgA nephropathy or IgA vasculitis: findings from the CureGN Study. Kidney Int Rep. 2018;3:1373-1384.
  128. Cambier A, Rabant M, Peuchmaur M, et al. Immunosuppressive treatment in children with IgA nephropathy and the clinical value of podocytopathic features. Kidney Int Rep. 2018;3:916-925.
  129. Working Group of the International IgA Nephropathy Network and the Renal Pathology Society; , Coppo R, Troyanov S, et al. The Oxford IgA nephropathy clinicopathological classification is valid for children as well as adults. Kidney Int. 2010;77:921-927.
  130. Yoshikawa N, Honda M, Iijima K, et al. Steroid treatment for severe childhood IgA nephropathy: a randomized, controlled trial. Clin J Am Soc Nephrol. 2006;1:511-517.
  131. Yoshikawa N, Ito H, Sakai T, et al. A controlled trial of combined therapy for newly diagnosed severe childhood IgA nephropathy. The Japanese Pediatric IgA Nephropathy Treatment Study Group. J Am Soc Nephrol. 1999;10:101-109.
  132. Coppo R, Peruzzi L, Amore A, et al. IgACE: a placebo-controlled, randomized trial of angiotensin-converting enzyme inhibitors in children and young people with IgA nephropathy and moderate proteinuria. J Am Soc Nephrol. 2007;18:1880-1888.
  133. Coppo R. Biomarkers and targeted new therapies for IgA nephropathy. Pediatr Nephrol. 2017;32:725-731.
  134. Yoshikawa N, Ito H. Combined therapy with prednisolone, azathioprine, heparin-warfarin, and dipyridamole for paediatric patients with severe IgA nephropathy-is it relevant for adult patients? Nephrol Dial Transplant. 1999;14:1097-1099.
  135. Lv J, Yang Y, Zhang H, et al. Prediction of outcomes in crescentic IgA nephropathy in a multicenter cohort study. J Am Soc Nephrol. 2013;24:2118-2125.
  136. Shima Y, Nakanishi K, Hama T, et al. Spontaneous remission in children with IgA nephropathy. Pediatr Nephrol. 2013;28:71-76.
  137. Barratt J, Floege J. SGLT-2 inhibition in IgA nephropathy: the new standard of care? Kidney Int. 2021;100:24-26.
  138. Wheeler DC, Toto RD, Stefánsson BV, et al. A pre-specified analysis of the DAPA-CKD trial demonstrates the effects of dapagliflozin on major adverse kidney events in patients with IgA nephropathy. Kidney Int. 2021;100:215-224.
  139. Fellstrom BC, Barratt J, Cook H, et al. Targeted-release budesonide versus placebo in patients with IgA nephropathy (NEFIGAN): a double-blind, randomised, placebo-controlled phase 2b trial. Lancet. 2017;389:2117-2127.
  140. Ozen S, Marks SD, Brogan P, et al. European consensus-based recommendations for diagnosis and treatment of immunoglobulin A vasculitis-the SHARE initiative. Rheumatology (Oxford) 2019;58:1607-1616.
  141. Ozen S, Ruperto N, Dillon MJ, et al. EULAR/PReS endorsed consensus criteria for the classification of childhood vasculitides. Ann Rheum Dis. 2006;65:936-941.
  142. Coppo R, Andrulli S, Amore A, et al. Predictors of outcome in Henoch-Schönlein nephritis in children and adults. Am J Kidney Dis. 2006;47:993-1003.
  143. Pillebout E, Thervet E, Hill G, et al. Henoch-Schönlein purpura in adults: outcome and prognostic factors. J Am Soc Nephrol. 2002;13:1271-1278.
  144. Shrestha S, Sumingan N, Tan J, et al. Henoch Schönlein purpura with nephritis in adults: adverse prognostic indicators in a UK population. QJM 2006;99:253-265.
  145. Dudley J, Smith G, Llewelyn-Edwards A, et al. Randomised, double-blind, placebo-controlled trial to determine whether steroids reduce the incidence and severity of nephropathy in Henoch-Schönlein Purpura (HSP). Arch Dis Child. 2013;98:756-763.
  146. Hahn D, Hodson EM, Willis NS, et al. Interventions for preventing and treating kidney disease in Henoch-Schönlein Purpura (HSP). Cochrane Database Syst Rev. 2015:CD005128.
  147. Huber AM, King J, McLaine P, et al. A randomized, placebo-controlled trial of prednisone in early Henoch Schönlein Purpura [ISRCTN85109383]. BMC Med. 2004;2:7.
  148. Islek I, Sezer T, Totan M (eds). The effect of prophylactic prednisolone therapy on renal involvement in Henoch Schönlein vasculitis [abstract 103]. In: Proceedings of the XXXVI Congress of the European Renal Association European Dialyslsis and Transplant Association; September 5-8, 1999; Madrid Spain.
  149. Mollica F, Li Volti S, Garozzo R, et al. Effectiveness of early prednisone treatment in preventing the development of nephropathy in anaphylactoid purpura. Eur J Pediatr. 1992;151:140-144.
  150. Ronkainen J, Koskimies O, Ala-Houhala M, et al. Early prednisone therapy in Henoch-Schonlein purpura: a randomized, double-blind, placebo-controlled trial. J Pediatr. 2006;149:241-247.
  151. Augusto JF, Sayegh J, Delapierre L, et al. Addition of plasma exchange to glucocorticosteroids for the treatment of severe Henoch-Schonlein purpura in adults: a case series. Am J Kidney Dis. 2012;59:663-669.
  152. Schwartz J, Padmanabhan A, Aqui N, et al. Guidelines on the use of therapeutic apheresis in clinical practice-evidence-based approach from the Writing Committee of the American Society for Apheresis: the seventh special issue. J Clin Apher. 2016;31:149-162.
  153. Chartapisak W, Opastiraku S, Willis NS, et al. Prevention and treatment of renal disease in Henoch-Schonlein purpura: a systematic review. Arch Dis Child. 2009;94:132-137.
  154. Chartapisak W, Opastirakul S, Hodson EM, et al. Interventions for preventing and treating kidney disease in Henoch-Schönlein Purpura (HSP). Cochrane Database Syst Rev. 2009:CD005128.
  155. Hennies I, Gimpel C, Gellermann J, et al. Presentation of pediatric Henoch-Schönlein purpura nephritis changes with age and renal histology depends on biopsy timing. Pediatr Nephrol. 2018;33:277-286.
  156. Crayne CB, Eloseily E, Mannion ML, et al. Rituximab treatment for chronic steroid-dependent Henoch-Schönlein purpura: 8 cases and a review of the literature. Pediatr Rheumatol Online J 2018;16:71.
  157. Maritati F, Fenoglio R, Pillebout E, et al. Brief report: rituximab for the treatment of adult-onset IgA vasculitis (Henoch-Schönlein). Arthritis Rheumatol. 2018;70:109-114.
  158. Du Y, Li J, He F, et al. The diagnosis accuracy of PLA2R-AB in the diagnosis of idiopathic membranous nephropathy: a meta-analysis. PLoS One. 2014;9:e104936.
  159. Behnert A, Schiffer M, Muller-Deile J, et al. Antiphospholipase A(2) receptor autoantibodies: a comparison of three different immunoassays for the diagnosis of idiopathic membranous nephropathy. J Immunol Res. 2014;2014:143274.
  160. Bobart SA, De Vriese AS, Pawar AS, et al. Noninvasive diagnosis of primary membranous nephropathy using phospholipase A2 receptor antibodies. Kidney Int. 2019;95:429-438.
  161. Wiech T, Stahl RAK, Hoxha E. Diagnostic role of renal biopsy in PLA2R1-antibody-positive patients with nephrotic syndrome. Mod Pathol. 2019;32:1320-1328.
  162. Howman A, Chapman TL, Langdon MM, et al. Immunosuppression for progressive membranous nephropathy: a UK randomised controlled trial. Lancet. 2013;381:744-751.
  163. Seitz-Polski B, Debiec H, Rousseau A, et al. Phospholipase A2 receptor 1 epitope spreading at baseline predicts reduced likelihood of remission of membranous nephropathy. J Am Soc Nephrol. 2018;29:401-408.
  164. Pei Y, Cattran D, Greenwood C. Predicting chronic renal insufficiency in idiopathic membranous glomerulonephritis. Kidney Int. 1992;42:960-966.
  165. van den Brand JA, Hofstra JM, Wetzels JF. Prognostic value of risk score and urinary markers in idiopathic membranous nephropathy. Clin J Am Soc Nephrol. 2012;7:1242-1248.
  166. Hofstra JM, Debiec H, Short CD, et al. Antiphospholipase A2 receptor antibody titer and subclass in idiopathic membranous nephropathy. J Am Soc Nephrol. 2012;23:1735-1743.
  167. Dahan K, Debiec H, Plaisier E, et al. Rituximab for severe membranous nephropathy: a 6-month trial with extended follow-up. J Am Soc Nephrol. 2017;28:348-358.
  168. Peng L, Wei SY, Li LT, et al. Comparison of different therapies in high-risk patients with idiopathic membranous nephropathy. J Formos Med Assoc. 2016;115:11-18.
  169. Yuan H, Liu N, Sun GD, et al. Effect of prolonged tacrolimus treatment in idiopathic membranous nephropathy with nephrotic syndrome. Pharmacology. 2013;91:259-266.
  170. Falk RJ, Hogan SL, Muller KE, et al. Treatment of progressive membranous glomerulopathy. A randomized trial comparing cyclophosphamide and corticosteroids with corticosteroids alone. The Glomerular Disease Collaborative Network. Ann Intern Med. 1992;116:438-445.
  171. Reichert LJ, Huysmans FT, Assmann K, et al. Preserving renal function in patients with membranous nephropathy: daily oral chlorambucil compared with intermittent monthly pulses of cyclophosphamide. Ann Intern Med. 1994;121:328-333.
  172. Dussol B, Morange S, Burtey S, et al. Mycophenolate mofetil monotherapy in membranous nephropathy: a 1-year randomized controlled trial. Am J Kidney Dis. 2008;52:699-705.
  173. Chan TM, Lin AW, Tang SC, et al. Prospective controlled study on mycophenolate mofetil and prednisolone in the treatment of membranous nephropathy with nephrotic syndrome. Nephrology (Carlton) 2007;12:576-581.
  174. Senthil Nayagam L, Ganguli A, Rathi M, et al. Mycophenolate mofetil or standard therapy for membranous nephropathy and focal segmental glomerulosclerosis: a pilot study. Nephrol Dial Transplant. 2008;23:1926-1930.
  175. Choi JY, Kim DK, Kim YW, et al. The effect of mycophenolate mofetil versus cyclosporine as combination therapy with low dose corticosteroids in high-risk patients with idiopathic membranous nephropathy: a multicenter randomized trial. J Korean Med Sci. 2018;33:e74.
  176. Branten AJ, du Buf-Vereijken PW, Vervloet M, et al. Mycophenolate mofetil in idiopathic membranous nephropathy: a clinical trial with comparison to a historic control group treated with cyclophosphamide. Am J Kidney Dis. 2007;50:248-256.
  177. van de Logt AE, Hofstra JM, Wetzels JF. Pharmacological treatment of primary membranous nephropathy in 2016. Expert Rev Clin Pharmacol. 2016;9:1463-1478.
  178. Gellermann J, Weber L, Pape L, et al. Mycophenolate mofetil versus cyclosporin A in children with frequently relapsing nephrotic syndrome. J Am Soc Nephrol. 2013;24:1689-1697.
  179. van den Brand JA, van Dijk PR, Hofstra JM, et al. Long-term outcomes in idiopathic membranous nephropathy using a restrictive treatment strategy. J Am Soc Nephrol. 2014;25:150-158.
  180. Ponticelli C, Zucchelli P, Passerini P, Cesana B. Methylprednisolone plus chlorambucil as compared with methylprednisolone alone for the treatment of idiopathic membranous nephropathy. The Italian Idiopathic Membranous Nephropathy Treatment Study Group. N Engl J Med. 1992;327:599-603.
  181. Ponticelli C, Altieri P, Scolari F, et al. A randomized study comparing methylprednisolone plus chlorambucil versus methylprednisolone plus cyclophosphamide in idiopathic membranous nephropathy. J Am Soc Nephrol. 1998;9:444-450.
  182. Branten AJ, Reichert LJ, Koene RA, et al. Oral cyclophosphamide versus chlorambucil in the treatment of patients with membranous nephropathy and renal insufficiency. QJM 1998;91:359-366.
  183. du Buf-Vereijken PW, Branten AJ, Wetzels JF. Idiopathic membranous nephropathy: outline and rationale of a treatment strategy. Am J Kidney Dis. 2005;46:1012-1029.
  184. Ahmed S, Rahman M, Alam MR, et al. Methyl prednisolone plus chlorambucil as compared with prednisolone alone for the treatment of idiopathic membranous nephropathy-a preliminary study. Bangladesh Renal J 1994;13:51-54.
  185. Braun N, Erley CM, Benda N, et al. Therapy of membranous glomerulonephritis with nephrotic syndrome. 5 years follow-up of a prospective, randomized multi-centre study [abstract]. Nephrol Dial Transplant. 1995;10:967.
  186. Donadio Jr. JV, Holley KE, Anderson CF, et al. Controlled trial of cyclophosphamide in idiopathic membranous nephropathy. Kidney Int. 1974;6:431-439.
  187. Imbasciati E, Cagnoli L, Case N, et al. [Controlled study of treatment of steroids and chlorambucil, in alternate months, for membranous nephropathy and focal glomerulosclerosis. Preliminary evaluation of the results]. Minerva Nefrol. 1980;27:571-575. [in Italian].
  188. Jha V, Ganguli A, Saha TK, et al. A randomized, controlled trial of steroids and cyclophosphamide in adults with nephrotic syndrome caused by idiopathic membranous nephropathy. J Am Soc Nephrol. 2007;18:1899-1904.
  189. Kosmadakis G, Filiopoulos V, Smirloglou D, et al. Comparison of immunosuppressive therapeutic regimens in patients with nephrotic syndrome due to idiopathic membranous nephropathy. Ren Fail. 2010;32:566-571.
  190. Pahari DK, Das S, Dutta BN, et al. Prognosis and management of membraneous nephropathy. J Assoc Phys India. 1993;41:350-351.
  191. Ponticelli C, Zucchelli P, Imbasciati E, et al. Controlled trial of methylprednisolone and chlorambucil in idiopathic membranous nephropathy. N Engl J Med. 1984;310:946-950.
  192. Ponticelli C, Zucchelli P, Passerini P, et al. A 10-year follow-up of a randomized study with methylprednisolone and chlorambucil in membranous nephropathy. Kidney Int. 1995;48:1600-1604.
  193. Chen Y, Schieppati A, Chen X, et al. Immunosuppressive treatment for idiopathic membranous nephropathy in adults with nephrotic syndrome. Cochrane Database Syst Rev. 2014:CD004293.
  194. Xu J, Zhang W, Xu Y, et al. Tacrolimus combined with corticosteroids in idiopathic membranous nephropathy: a randomized, prospective, controlled trial. Contrib Nephrol. 2013;181:152-162.
  195. Fervenza FC, Appel GB, Barbour SJ, et al. Rituximab or cyclosporine in the treatment of membranous nephropathy. N Engl J Med. 2019;381:36-46.
  196. Cattran DC, Appel GB, Hebert LA, et al. Cyclosporine in patients with steroid-resistant membranous nephropathy: a randomized trial. Kidney Int. 2001;59:1484-1490.
  197. Cattran DC, Greenwood C, Ritchie S, et al. A controlled trial of cyclosporine in patients with progressive membranous nephropathy. Canadian Glomerulonephritis Study Group. Kidney Int. 1995;47:1130-1135.
  198. Chen M, Li H, Li XY, et al. Tacrolimus combined with corticosteroids in treatment of nephrotic idiopathic membranous nephropathy: a multicenter randomized controlled trial. Am J Med Sci. 2010;339:233-238.
  199. He L, Peng Y, Liu H, et al. Treatment of idiopathic membranous nephropathy with combination of low-dose tacrolimus and corticosteroids. J Nephrol. 2013;26:564-571.
  200. Laurens W, Ruggenenti P, Perna A, et al. A randomised and controlled study to assess the effect of cyclosporin in nephrotic patients with membranous nephropathy and reduced renal function (cyclomen). J Nephrol. 1994;7:237-247.
  201. Praga M, Barrio V, Juarez GF, et al. Tacrolimus monotherapy in membranous nephropathy: a randomized controlled trial. Kidney Int. 2007;71:924-930.
  202. Ramachandran R, Hn HK, Kumar V, et al. Tacrolimus combined with corticosteroids versus modified Ponticelli regimen in treatment of idiopathic membranous nephropathy: randomized control trial. Nephrology (Carlton) 2016;21:139-146.
  203. Ramachandran R, Yadav AK, Kumar V, et al. Two-year follow-up study of membranous nephropathy treated with tacrolimus and corticosteroids versus cyclical corticosteroids and cyclophosphamide. Kidney Int Rep. 2017;2:610-616.
  204. Liang Q, Li H, Xie X, et al. The efficacy and safety of tacrolimus monotherapy in adult-onset nephrotic syndrome caused by idiopathic membranous nephropathy. Ren Fail. 2017;39:512-518.
  205. van den Brand JA, van Dijk PR, Hofstra JM, et al. Cancer risk after cyclophosphamide treatment in idiopathic membranous nephropathy. Clin J Am Soc Nephrol. 2014;9:1066-1073.
  206. van de Logt AE, Rijpma SR, Vink CH, et al. The bias between different albumin assays may affect clinical decision-making. Kidney Int. 2019;95:1514-1517.
  207. Medjeral-Thomas N, Ziaj S, Condon M, et al. Retrospective analysis of a novel regimen for the prevention of venous thromboembolism in nephrotic syndrome. Clin J Am Soc Nephrol. 2014;9:478-483.
  208. van der Watt G, Omar F, Brink A, et al. Laboratory investigation of the child with suspected renal disease. In: Avner E, Harmon W, Niaudet P, et al., eds. Pediatric Nephrology. 7th ed. Berlin, Heidelberg: Springer; 2016. p. 613-636.
  209. Noone DG, Iijima K, Parekh R. Idiopathic nephrotic syndrome in children. Lancet. 2018;392:61-74.
  210. Tune BM, Mendoza SA. Treatment of the idiopathic nephrotic syndrome: regimens and outcomes in children and adults. J Am Soc Nephrol. 1997;8:824-832.
  211. Basu B, Bhattacharyya S, Barua S, et al. Efficacy of body weight vs body surface area-based prednisolone regimen in nephrotic syndrome. Clin Exp Nephrol. 2020;24:622-629.
  212. Emma F, Montini G, Gargiulo A. Equations to estimate prednisone dose using body weight. Pediatr Nephrol. 2019;34:685-688.
  213. Feber J, Al-Matrafi J, Farhadi E, et al. Prednisone dosing per body weight or body surface area in children with nephrotic syndrome: Is it equivalent? Pediatr Nephrol. 2009;24:1027-1031.
  214. Raman V, Krishnamurthy S, Harichandrakumar KT. Body weight-based prednisolone versus body surface area-based prednisolone regimen for induction of remission in children with nephrotic syndrome: a randomized, open-label, equivalence clinical trial. Pediatr Nephrol. 2016;31:595-604.
  215. Ekka BK, Bagga A, Srivastava RN. Single- versus divided-dose prednisolone therapy for relapses of nephrotic syndrome. Pediatr Nephrol. 1997;11:597-599.
  216. Vivarelli M, Massella L, Ruggiero B, et al. Minimal change disease. Clin J Am Soc Nephrol. 2017;12:332-345.
  217. Sinha A, Saha A, Kumar M, et al. Extending initial prednisolone treatment in a randomized control trial from 3 to 6 months did not significantly influence the course of illness in children with steroid-sensitive nephrotic syndrome. Kidney Int. 2015;87:217-224.
  218. Teeninga N, Kist-van Holthe JE, van Rijswijk N, et al. Extending prednisolone treatment does not reduce relapses in childhood nephrotic syndrome. J Am Soc Nephrol. 2013;24:149-159.
  219. Yoshikawa N, Nakanishi K, Sako M, et al. A multicenter randomized trial indicates initial prednisolone treatment for childhood nephrotic syndrome for two months is not inferior to six-month treatment. Kidney Int. 2015;87:225-232.
  220. Hahn D, Samuel SM, Willis NS, et al. Corticosteroid therapy for nephrotic syndrome in children. Cochrane Database Syst Rev. 2020;8:CD001533.
  221. Webb NJA, Woolley RL, Lambe T, et al. Long term tapering versus standard prednisolone treatment for first episode of childhood nephrotic syndrome: phase III randomised controlled trial and economic evaluation. BMJ 2019;365:I1800.
  222. Bagga A, Hari P, Srivastava RN. Prolonged versus standard prednisolone therapy for initial episode of nephrotic syndrome. Pediatr Nephrol. 1999;13:824-827.
  223. Ehrich JH, Brodehl J. Long versus standard prednisone therapy for initial treatment of idiopathic nephrotic syndrome in children. Arbeitsgemeinschaft fur Padiatrische Nephrologie. Eur J Pediatr. 1993;152:357-361.
  224. Jayantha UK, ed. Comparison of ISKDC regime with a six month steroid regime in the treatment of steroid sensitive nephrotic syndrome [abstract FP2B]. Abstract presented at: 7th Asian Congress of Pacific Nephrology. November 1-4, 2000; Singapore.
  225. Ksiazek J, Wyszynska T. Short versus long initial prednisone treatment in steroid-sensitive nephrotic syndrome in children. Acta Paediatr. 1995;84:889-893.
  226. Moundekhel S, Khan GS, Afridi U. Management of nephrotic syndrome: ISKDC versus APN. Pakistan J Medical Health Sci. 2012;6:3.
  227. Norero C, Delucchi A, Lagos E, et al. [Initial therapy of primary nephrotic syndrome in children: evaluation in a period of 18 months of two prednisone treatment schedules. Chilean Co-operative Group of Study of Nephrotic Syndrome in Children]. Rev Med Chil. 1996;124:567-572. [in Spanish].
  228. Paul SK, Muinuddin G, Jahan S, et al. Long versus standard initial prednisolone therapy in children with idiopathic nephrotic syndrome. Mymensingh Med J 2014;23:261-267.
  229. Satomura K, Yamaoka K, Shima M, et al. Standard vs low initial dose of prednisolone therapy for first episodes of nephrotic syndrome in children [abstract P238]. Pediatr Nephrol. 2001;16:C117.
  230. Ueda N, Chihara M, Kawaguchi S, et al. Intermittent versus long-term tapering prednisolone for initial therapy in children with idiopathic nephrotic syndrome. J Pediatr. 1988;112:122-126.
  231. Nephrotic syndrome in children: a randomized trial comparing two prednisone regimens in steroid-responsive patients who relapse early. Report of the international study of kidney disease in children. J Pediatr. 1979;95:239-243.
  232. Tarshish P, Tobin JN, Bernstein J, et al. Prognostic significance of the early course of minimal change nephrotic syndrome: report of the International Study of Kidney Disease in Children. J Am Soc Nephrol. 1997;8:769-776.
  233. MacDonald NE, Wolfish N, McLaine P, et al. Role of respiratory viruses in exacerbations of primary nephrotic syndrome. J Pediatr. 1986;108:378-382.
  234. Aljebab F, Choonara I, Conroy S. Systematic review of the toxicity of long-course oral corticosteroids in children. PLoS One. 2017;12:e0170259.
  235. Ishikura K, Yoshikawa N, Nakazato H, et al. Morbidity in children with frequently relapsing nephrosis: 10-year follow-up of a randomized controlled trial. Pediatr Nephrol. 2015;30:459-468.
  236. Kyrieleis HA, Lowik MM, Pronk I, et al. Long-term outcome of biopsy-proven, frequently relapsing minimal-change nephrotic syndrome in children. Clin J Am Soc Nephrol. 2009;4:1593-1600.
  237. Lettgen B, Jeken C, Reiners C. Influence of steroid medication on bone mineral density in children with nephrotic syndrome. Pediatr Nephrol. 1994;8:667-670.
  238. Abeyagunawardena AS, Thalgahagoda RS, Dissanayake PV, et al. Short courses of daily prednisolone during upper respiratory tract infections reduce relapse frequency in childhood nephrotic syndrome. Pediatr Nephrol. 2017;32:1377-1382.
  239. Abeyagunawardena AS, Trompeter RS. Increasing the dose of prednisolone during viral infections reduces the risk of relapse in nephrotic syndrome: a randomised controlled trial. Arch Dis Child. 2008;93:226-228.
  240. Gulati A, Sinha A, Sreenivas V, et al. Daily corticosteroids reduce infection-associated relapses in frequently relapsing nephrotic syndrome: a randomized controlled trial. Clin J Am Soc Nephrol. 2011;6:63-69.
  241. Mattoo TK, Mahmoud MA. Increased maintenance corticosteroids during upper respiratory infection decrease the risk of relapse in nephrotic syndrome. Nephron. 2000;85:343-345.
  242. Gargiulo A, Massella L, Ruggiero B, et al. Results of the PROPINE randomized controlled study suggest tapering of prednisone treatment for relapses of steroid sensitive nephrotic syndrome is not necessary in children. Kidney Int. 2021;99:475-483.
  243. Kainth D, Hari P, Sinha A, et al. Short-duration prednisolone in children with nephrotic syndrome relapse: a noninferiority randomized controlled trial. Clin J Am Soc Nephrol. 2021;16:225-232.
  244. Trompeter RS, Lloyd BW, Hicks J, et al. Long-term outcome for children with minimal-change nephrotic syndrome. Lancet. 1985;1:368-370.
  245. Fakhouri F, Bocquet N, Taupin P, et al. Steroid-sensitive nephrotic syndrome: from childhood to adulthood. Am J Kidney Dis. 2003;41:550-557.
  246. Skrzypczyk P, Panczyk-Tomaszewska M, Roszkowska-Blaim M, et al. Long-term outcomes in idiopathic nephrotic syndrome: from childhood to adulthood. Clin Nephrol. 2014;81:166-173.
  247. Tan L, Li S, Yang H, et al. Efficacy and acceptability of immunosuppressive agents for pediatric frequently-relapsing and steroid-dependent nephrotic syndrome: a network meta-analysis of randomized controlled trials. Medicine (Baltimore) 2019;98:e15927.
  248. Prospective, controlled trial of cyclophosphamide therapy in children with nephrotic syndrome. Report of the International study of Kidney Disease in Children. Lancet. 1974;2:423-427.
  249. Abramowicz M, Barnett HL, Edelmann CM Jr, et al. Controlled trial of azathioprine in children with nephrotic syndrome. A report for the international study of kidney disease in children. Lancet. 1970;1:959-961.
  250. Alatas H, Wirya IG, Tambunan T, et al. Controlled trial of chlorambucil in frequently relapsing nephrotic syndrome in children (a preliminary report). J Med Assoc Thai. 1978;61(suppl 1):S222-S228.
  251. Barratt TM, Soothill JF. Controlled trial of cyclophosphamide in steroid-sensitive relapsing nephrotic syndrome of childhood. Lancet. 1970;2:479-482.
  252. Chiu J, McLaine PN, Drummond KN. A controlled prospective study of cyclophosphamide in relapsing, corticosteroid-responsive, minimal-lesion nephrotic syndrome in childhood. J Pediatr. 1973;82:607-613.
  253. Grupe WE, Makker SP, Ingelfinger JR. Chlorambucil treatment of frequently relapsing nephrotic syndrome. N Engl J Med. 1976;295:746-749.
  254. Sural S, Pahari DK, Mitra K, et al. Efficacy of levamisole compared to cyclophosphamide and steroid in frequently relapsing (FR) minimal change nephrotic syndrome (MCNS) [abstract]. J Am Soc Nephrol. 2001;12:126A.
  255. Larkins NG, Liu ID, Willis NS, et al. Non-corticosteroid immunosuppressive medications for steroid-sensitive nephrotic syndrome in children. Cochrane Database Syst Rev. 2020;4:CD002290.
  256. Levamisole for corticosteroid-dependent nephrotic syndrome in childhood. British Association for Paediatric Nephrology. Lancet. 1991;337:1555-1557.
  257. Abeyagunawardena AS, Trompeter RS. Efficacy of levamisole as a single agent in maintaining remission in steroid dependent nephrotic syndrome [abstract]. Pediatr Nephrol. 2006;21:1503.
  258. Al-Saran K, Mirza K, Al-Ghanam G, et al. Experience with levamisole in frequently relapsing, steroid-dependent nephrotic syndrome. Pediatr Nephrol. 2006;21:201-205.
  259. Dayal U, Dayal AK, Shastry JC, et al. Use of levamisole in maintaining remission in steroid-sensitive nephrotic syndrome in children. Nephron. 1994;66:408-412.
  260. Gruppen MP, Bouts AH, Jansen-van der Weide MC, et al. A randomized clinical trial indicates that levamisole increases the time to relapse in children with steroid-sensitive idiopathic nephrotic syndrome. Kidney Int. 2018;93:510-518.
  261. Rashid HU, Ahmed S, Fatima N, et al. Levamisole in the treatment of steroid dependent or frequent relapsing nephrotic syndrome in children. Bangladesh Renal J 1996;15:1.
  262. Weiss R, NY-NJ-Phila-Pediatric Nephrology Study Group. Randomized, double-blind, placebo (P) controlled trial of levamisole (L) for children (CH) with frequently relapsing/steroid dependant (FR/SD) nephrotic syndrome (NS) [abstract]. J Am Soc Nephrol. 1993;4:289.
  263. Sinha A, Puraswani M, Kalaivani M, et al. Efficacy and safety of mycophenolate mofetil versus levamisole in frequently relapsing nephrotic syndrome: an open-label randomized controlled trial. Kidney Int. 2019;95:210-218.
  264. Hoyer PF. Results of the nephrotic syndrome study VIII of the APN: new standard treatment versus standard treatment plus 8 weeks cyclosporin A [abstract]. J Am Soc Nephrol. 1999;10:104A.
  265. Hoyer PF, Brodeh J. Initial treatment of idiopathic nephrotic syndrome in children: prednisone versus prednisone plus cyclosporine A: a prospective, randomized trial. J Am Soc Nephrol. 2006;17:1151-1157.
  266. Anh YH, Kim SH, Han KH, et al. Efficacy and safety of rituximab in children with refractory nephrotic syndrome: a multicenter clinical trial [abstract O-39]. Pediatr Nephrol. 2013;28:1361.
  267. Boumediene A, Vachin P, Sendeyo K, et al. NEPHRUTIX: A randomized, double-blind, placebo vs rituximab-controlled trial assessing T-cell subset changes in minimal change nephrotic syndrome. J Autoimmun. 2018;88:91-102.
  268. Iijima K, Tsuchida N, Sako M. Multicenter double-blind, randomized, placebo-controlled trial of IDEC-C2B8 for the treatment of childhood-onset complicated nephrotic syndrome. Clinical study protocol Number: RCRNS-01. Version: 4.0. Available at: www.med.kobe-u.ac.jp/pediat/pdf/rcrn01.pdf.
  269. Ravani P, Magnasco A, Edefonti A, et al. Short-term effects of rituximab in children with steroid- and calcineurin-dependent nephrotic syndrome: a randomized controlled trial. Clin J Am Soc Nephrol. 2011;6:1308-1315.
  270. Ravani P, Ponticelli A, Siciliano C, et al. Rituximab is a safe and effective long-term treatment for children with steroid and calcineurin inhibitor-dependent idiopathic nephrotic syndrome. Kidney Int. 2013;84:1025-1033.
  271. Ravani P, Rossi R, Bonanni A, et al. Rituximab in children with steroid-dependent nephrotic syndrome: a multicenter, open-label, noninferiority, randomized controlled trial. J Am Soc Nephrol. 2015;26:2259-2266.
  272. Mishra OP, Basu B, Upadhyay SK, et al. Behavioural abnormalities in children with nephrotic syndrome. Nephrol Dial Transplant. 2010;25:2537-2541.
  273. Mitra S, Banerjee S. The impact of pediatric nephrotic syndrome on families. Pediatr Nephrol. 2011;26:1235-1240.
  274. Arbeitsgemeinschaft für Pädiatrische Nephrologie. Effect of cytotoxic drugs in frequently relapsing nephrotic syndrome with and without steroid dependence. N Engl J Med. 1982;306:451-454.
  275. Cammas B, Harambat J, Bertholet-Thomas A, et al. Long-term effects of cyclophosphamide therapy in steroid-dependent or frequently relapsing idiopathic nephrotic syndrome. Nephrol Dial Transplant. 2011;26:178-184.
  276. Azib S, Macher MA, Kwon T, et al. Cyclophosphamide in steroid-dependent nephrotic syndrome. Pediatr Nephrol. 2011;26:927-932.
  277. Zagury A, de Oliveira AL, de Moraes CA, et al. Long-term follow-up after cyclophosphamide therapy in steroid-dependent nephrotic syndrome. Pediatr Nephrol. 2011;26:915-920.
  278. Donia AF, Ammar HM, El-Agroudy Ael B, et al. Long-term results of two unconventional agents in steroid-dependent nephrotic children. Pediatr Nephrol. 2005;20:1420-1425.
  279. Ruggenenti P, Ruggiero B, Cravedi P, et al. Rituximab in steroid-dependent or frequently relapsing idiopathic nephrotic syndrome. J Am Soc Nephrol. 2014;25:850-863.
  280. Iijima K, Sako M, Nozu K, et al. Rituximab for childhood-onset, complicated, frequently relapsing nephrotic syndrome or steroid-dependent nephrotic syndrome: a multicentre, double-blind, randomised, placebo-controlled trial. Lancet. 2014;384:1273-1281.
  281. van den Brand J, Ruggenenti P, Chianca A, et al. Safety of rituximab compared with steroids and cyclophosphamide for idiopathic membranous nephropathy. J Am Soc Nephrol. 2017;28:2729-2737.
  282. Trautmann A, Vivarelli M, Samuel S, et al. IPNA clinical practice recommendations for the diagnosis and management of children with steroid-resistant nephrotic syndrome. Pediatr Nephrol. 2020;35:1529-1561.
  283. Trachtman H, Nelson P, Adler S, et al. DUET Study Group. DUET: A phase 2 study evaluating the efficacy and safety of sparsentan in patients with FSGS. J Am Soc Nephrol. 2018;29:2745-2754.
  284. Cattran DC, Appel GB, Hebert LA, et al. A randomized trial of cyclosporine in patients with steroid-resistant focal segmental glomerulosclerosis. North America Nephrotic Syndrome Study Group. Kidney Int. 1999;56:2220-2226.
  285. Garin EH, Orak JK, Hiott KL, et al. Cyclosporine therapy for steroid-resistant nephrotic syndrome. A controlled study. Am J Dis Child. 1988;142:985-988.
  286. Lieberman KV, Tejani A. A randomized double-blind placebo-controlled trial of cyclosporine in steroid-resistant idiopathic focal segmental glomerulosclerosis in children. J Am Soc Nephrol. 1996;7:56-63.
  287. Ponticelli C, Rizzoni G, Edefonti A, et al. A randomized trial of cyclosporine in steroid-resistant idiopathic nephrotic syndrome. Kidney Int. 1993;43:1377-1384.
  288. Trautmann A, Schnaidt S, Lipska-Zietkiewicz BS, et al. Long-term outcome of steroid-resistant nephrotic syndrome in children. J Am Soc Nephrol. 2017;28:3055-3065.
  289. Gipson DS, Trachtman H, Kaskel FJ, et al. Clinical trial of focal segmental glomerulosclerosis in children and young adults. Kidney Int. 2011;80:868-878.
  290. Li S, Yang H, Guo P, et al. Efficacy and safety of immunosuppressive medications for steroid-resistant nephrotic syndrome in children: a systematic review and network meta-analysis. Oncotarget. 2017;8:73050-73062.
  291. Magnasco A, Ravani P, Edefonti A, et al. Rituximab in children with resistant idiopathic nephrotic syndrome. J Am Soc Nephrol. 2012;23:1117-1124.
  292. Tarshish P, Tobin JN, Bernstein J, et al. Cyclophosphamide does not benefit patients with focal segmental glomerulosclerosis. A report of the International Study of Kidney Disease in Children. Pediatr Nephrol. 1996;10:590-593.
  293. Gulati A, Sinha A, Gupta A, et al. Treatment with tacrolimus and prednisolone is preferable to intravenous cyclophosphamide as the initial therapy for children with steroid-resistant nephrotic syndrome. Kidney Int. 2012;82:1130-1135.
  294. Plank C, Kalb V, Hinkes B, et al. Cyclosporin A is superior to cyclophosphamide in children with steroid-resistant nephrotic syndrome-a randomized controlled multicentre trial by the Arbeitsgemeinschaft fur Padiatrische Nephrologie. Pediatr Nephrol. 2008;23:1483-1493.
  295. Sinha A, Gupta A, Kalaivani M, et al. Mycophenolate mofetil is inferior to tacrolimus in sustaining remission in children with idiopathic steroid-resistant nephrotic syndrome. Kidney Int. 2017;92:248-257.
  296. Choudhry S, Bagga A, Hari P, et al. Efficacy and safety of tacrolimus versus cyclosporine in children with steroid-resistant nephrotic syndrome: a randomized controlled trial. Am J Kidney Dis. 2009;53:760-769.
  297. Liu ID, Willis NS, Craig JC, et al. Interventions for idiopathic steroid-resistant nephrotic syndrome in children. Cochrane Database Syst Rev. 2019:CD003594.
  298. Valverde S, Hernandez AM, Velasquez L, et al. Efficacy of prednisone-tacrolimus vs. prednisone-cyclosporine in steroid-resistant nephrotic syndrome [abstract 47]. Pediatr Nephrol. 2010;25:1804.
  299. Gellermann J, Stefanidis CJ, Mitsioni A, et al. Successful treatment of steroid-resistant nephrotic syndrome associated with WT1 mutations. Pediatr Nephrol. 2010;25:1285-1289.
  300. Hinkes B, Wiggins RC, Gbadegesin R, et al. Positional cloning uncovers mutations in PLCE1 responsible for a nephrotic syndrome variant that may be reversible. Nat Genet. 2006;38:1397-1405.
  301. Diomedi-Camassei F, Di Giandomenico S, Santorelli FM, et al. COQ2 nephropathy: a newly described inherited mitochondriopathy with primary renal involvement. J Am Soc Nephrol. 2007;18:2773-2780.
  302. Starr MC, Askenazi DJ, Goldstein SL, et al. Impact of processing methods on urinary biomarkers analysis in neonates. Pediatr Nephrol. 2018;33:181-186.
  303. Widmeier E, Yu S, Nag A, et al. ADCK4 deficiency destabilizes the coenzyme Q complex, which is rescued by 2,4-dihydroxybenzoic acid treatment. J Am Soc Nephrol. 2020;31:1191-1211.
  304. Gulati S, Sharma RK, Gulati K, et al. Longitudinal follow-up of bone mineral density in children with nephrotic syndrome and the role of calcium and vitamin D supplements. Nephrol Dial Transplant. 2005;20:1598-1603.
  305. Gruppen MP, Davin JC, Oosterveld MJ, et al. Prevention of steroid-induced low bone mineral density in children with renal diseases: a systematic review. Nephrol Dial Transplant. 2013;28:2099-2106.
  306. Cameron JS. The nephrotic syndrome and its complications. Am J Kidney Dis. 1987;10:157-171.
  307. Elie V, Fakhoury M, Deschenes G, et al. Physiopathology of idiopathic nephrotic syndrome: lessons from glucocorticoids and epigenetic perspectives. Pediatr Nephrol. 2012;27:1249-1256.
  308. Appel GB, Radhakrishnan J, D'Agati V. Secondary glomerular disease. In: Brenner BM, editor. Brenner & Rector's The Kidney. 10th ed. Philadelphia, PA: Elsevier; 2016. p. 1091-1160.
  309. Waldman M, Crew RJ, Valeri A, et al. Adult minimal-change disease: clinical characteristics, treatment, and outcomes. Clin J Am Soc Nephrol. 2007;2:445-453.
  310. Nolasco F, Cameron JS, Heywood EF, et al. Adult-onset minimal change nephrotic syndrome: a long-term follow-up. Kidney Int. 1986;29:1215-1223.
  311. Black DA, Rose G, Brewer DB. Controlled trial of prednisone in adult patients with the nephrotic syndrome. Br Med J 1970;3:421-426.
  312. Coggins CH. Adult minimal change nephropathy: experience of the collaborative study of glomerular disease. Trans Am Clin Climatol Assoc. 1986;97:18-26.
  313. Huang JJ, Hsu SC, Chen FF, et al. Adult-onset minimal change disease among Taiwanese: clinical features, therapeutic response, and prognosis. Am J Nephrol. 2001;21:28-34.
  314. Mahmoodi BK, ten Kate MK, Waanders F, et al. High absolute risks and predictors of venous and arterial thromboembolic events in patients with nephrotic syndrome: results from a large retrospective cohort study. Circulation. 2008;117:224-230.
  315. Radhakrishnan J, Appel AS, Valeri A, et al. The nephrotic syndrome, lipids, and risk factors for cardiovascular disease. Am J Kidney Dis. 1993;22:135-142.
  316. Maas RJ, Deegens JK, Beukhof JR, et al. The clinical course of minimal change nephrotic syndrome with onset in adulthood or late adolescence: a case series. Am J Kidney Dis. 2017;69:637-646.
  317. Korbet SM, Schwartz MM, Lewis EJ. Primary focal segmental glomerulosclerosis: clinical course and response to therapy. Am J Kidney Dis. 1994;23:773-783.
  318. Mak SK, Short CD, Mallick NP. Long-term outcome of adult-onset minimal-change nephropathy. Nephrol Dial Transplant. 1996;11:2192-2201.
  319. Tse KC, Lam MF, Yip PS, et al. Idiopathic minimal change nephrotic syndrome in older adults: steroid responsiveness and pattern of relapses. Nephrol Dial Transplant. 2003;18:1316-1320.
  320. Palmer SC, Nand K, Strippoli GF. Interventions for minimal change disease in adults with nephrotic syndrome. Cochrane Database Syst Rev. 2008:CD001537.
  321. Imbasciati E, Gusmano R, Edefonti A, et al. Controlled trial of methylprednisolone pulses and low dose oral prednisone for the minimal change nephrotic syndrome. Br Med J (Clin Res Ed) 1985;291:1305-1308.
  322. Yeung CK, Wong KL, Ng WL. Intravenous methylprednisolone pulse therapy in minimal change nephrotic syndrome. Aust N Z J Med. 1983;13:349-351.
  323. Hogan J, Radhakrishnan J. The treatment of minimal change disease in adults. J Am Soc Nephrol. 2013;24:702-711.
  324. Nair RB, Date A, Kirubakaran MG, et al. Minimal-change nephrotic syndrome in adults treated with alternate-day steroids. Nephron. 1987;47:209-210.
  325. Al-Khader AA, Lien JW, Aber GM. Cyclophosphamide alone in the treatment of adult patients with minimal change glomerulonephritis. Clin Nephrol. 1979;11:26-30.
  326. Cameron JS, Turner DR, Ogg CS, et al. The nephrotic syndrome in adults with 'minimal change' glomerular lesions. Q J Med. 1974;43:461-488.
  327. Uldall PR, Feest TG, Morley AR, et al. Cyclophosphamide therapy in adults with minimal-change nephrotic syndrome. Lancet. 1972;1:1250-1253.
  328. Matsumoto H, Nakao T, Okada T, et al. Favorable outcome of low-dose cyclosporine after pulse methylprednisolone in Japanese adult minimal-change nephrotic syndrome. Intern Med. 2004;43:668-673.
  329. Remy P, Audard V, Natella PA, et al. An open-label randomized controlled trial of low-dose corticosteroid plus enteric-coated mycophenolate sodium versus standard corticosteroid treatment for minimal change nephrotic syndrome in adults (MSN Study). Kidney Int. 2018;94:1217-1226.
  330. Medjeral-Thomas NR, Lawrence C, Condon M, et al. Randomized, controlled trial of tacrolimus and prednisolone monotherapy for adults with de novo minimal change disease: a multicenter, randomized, controlled trial. Clin J Am Soc Nephrol. 2020;15:209-218.
  331. Fenoglio R, Sciascia S, Beltrame G, et al. Rituximab as a front-line therapy for adult-onset minimal change disease with nephrotic syndrome. Oncotarget. 2018;9:28799-28804.
  332. Boumpas DT, Chrousos GP, Wilder RL, et al. Glucocorticoid therapy for immune-mediated diseases: basic and clinical correlates. Ann Intern Med. 1993;119:1198-1208.
  333. Nakayama M, Katafuchi R, Yanase T, et al. Steroid responsiveness and frequency of relapse in adult-onset minimal change nephrotic syndrome. Am J Kidney Dis. 2002;39:503-512.
  334. Eguchi A, Takei T, Yoshida T, et al. Combined cyclosporine and prednisolone therapy in adult patients with the first relapse of minimal-change nephrotic syndrome. Nephrol Dial Transplant. 2010;25:124-129.
  335. Li X, Li H, Chen J, et al. Tacrolimus as a steroid-sparing agent for adults with steroid-dependent minimal change nephrotic syndrome. Nephrol Dial Transplant. 2008;23:1919-1925.
  336. Ponticelli C, Edefonti A, Ghio L, et al. Cyclosporin versus cyclophosphamide for patients with steroid-dependent and frequently relapsing idiopathic nephrotic syndrome: a multicentre randomized controlled trial. Nephrol Dial Transplant. 1993;8:1326-1332.
  337. Guitard J, Hebral AL, Fakhouri F, et al. Rituximab for minimal-change nephrotic syndrome in adulthood: predictive factors for response, long-term outcomes and tolerance. Nephrol Dial Transplant. 2014;29:2084-2091.
  338. Iwabuchi Y, Moriyama T, Itabashi M, et al. Rituximab as a therapeutic option for steroid-sensitive minimal change nephrotic syndrome in adults. Contrib Nephrol. 2018;195:12-19.
  339. Munyentwali H, Bouachi K, Audard V, et al. Rituximab is an efficient and safe treatment in adults with steroid-dependent minimal change disease. Kidney Int. 2013;83:511-516.
  340. Lee HY, Kim HS, Kang CM, et al. The efficacy of cyclosporine A in adult nephrotic syndrome with minimal change disease and focal-segmental glomerulosclerosis: a multicenter study in Korea. Clin Nephrol. 1995;43:375-381.
  341. Meyrier A, Condamin MC, Broneer D. Treatment of adult idiopathic nephrotic syndrome with cyclosporin A: minimal-change disease and focal-segmental glomerulosclerosis. Collaborative Group of the French Society of Nephrology. Clin Nephrol. 1991;35(suppl 1):S37-S42.
  342. Day CJ, Cockwell P, Lipkin GW, et al. Mycophenolate mofetil in the treatment of resistant idiopathic nephrotic syndrome. Nephrol Dial Transplant. 2002;17:2011-2013.
  343. Sandoval D, Poveda R, Draibe J, et al. Efficacy of mycophenolate treatment in adults with steroid-dependent/frequently relapsing idiopathic nephrotic syndrome. Clin Kidney J 2017;10:632-638.
  344. Li X, Liu Z, Wang L, et al. Tacrolimus monotherapy after intravenous methylprednisolone in adults with minimal change nephrotic syndrome. J Am Soc Nephrol. 2017;28:1286-1295.
  345. Shirai S, Imai N, Sueki S, et al. Combined cyclosporine and prednisolone therapy using cyclosporine blood concentration monitoring for adult patients with new-onset minimal change nephrotic syndrome: a single-center pilot randomized trial. Clin Exp Nephrol. 2018;22:283-290.
  346. Miao L, Sun J, Yuan H, et al. Combined therapy of low-dose tacrolimus and prednisone in nephrotic syndrome with slight mesangial proliferation. Nephrology (Carlton) 2006;11:449-454.
  347. D'Agati VD, Fogo AB, Bruijn JA, et al. Pathologic classification of focal segmental glomerulosclerosis: a working proposal. Am J Kidney Dis. 2004;43:368-382.
  348. D'Agati VD, Alster JM, Jennette JC, et al. Association of histologic variants in FSGS clinical trial with presenting features and outcomes. Clin J Am Soc Nephrol. 2013;8:399-406.
  349. Deegens JK, Steenbergen EJ, Borm GF, et al. Pathological variants of focal segmental glomerulosclerosis in an adult Dutch population-epidemiology and outcome. Nephrol Dial Transplant. 2008;23:186-192.
  350. Thomas DB, Franceschini N, Hogan SL, et al. Clinical and pathologic characteristics of focal segmental glomerulosclerosis pathologic variants. Kidney Int. 2006;69:920-926.
  351. D'Agati V. The many masks of focal segmental glomerulosclerosis. Kidney Int. 1994;46:1223-1241.
  352. Deegens JK, Dijkman HB, Borm GF, et al. Podocyte foot process effacement as a diagnostic tool in focal segmental glomerulosclerosis. Kidney Int. 2008;74:1568-1576.
  353. Ishizuka K, Miura K, Hashimoto T, et al. Degree of foot process effacement in patients with genetic focal segmental glomerulosclerosis: a single-center analysis and review of the literature. Sci Rep. 2021;11:12008.
  354. Chun MJ, Korbet SM, Schwartz MM, et al. Focal segmental glomerulosclerosis in nephrotic adults: presentation, prognosis, and response to therapy of the histologic variants. J Am Soc Nephrol. 2004;15:2169-2177.
  355. Hommos MS, De Vriese AS, Alexander MP, et al. The incidence of primary vs secondary focal segmental glomerulosclerosis: a clinicopathologic study. Mayo Clin Proc. 2017;92:1772-1781.
  356. Praga M, Morales E, Herrero JC, et al. Absence of hypoalbuminemia despite massive proteinuria in focal segmental glomerulosclerosis secondary to hyperfiltration. Am J Kidney Dis. 1999;33:52-58.
  357. De Vriese AS, Sethi S, Nath KA, et al. Differentiating primary, genetic, and secondary FSGS in adults: a clinicopathologic approach. J Am Soc Nephrol. 2018;29:759-774.
  358. Santin S, Bullich G, Tazon-Vega B, et al. Clinical utility of genetic testing in children and adults with steroid-resistant nephrotic syndrome. Clin J Am Soc Nephrol. 2011;6:1139-1148.
  359. Brown EJ, Pollak MR, Barua M. Genetic testing for nephrotic syndrome and FSGS in the era of next-generation sequencing. Kidney Int. 2014;85:1030-1038.
  360. Uffing A, Perez-Saez MJ, Mazzali M, et al. Recurrence of FSGS after kidney transplantation in adults. Clin J Am Soc Nephrol. 2020;15:247-256.
  361. Felldin M, Norden G, Svalander C, et al. Focal segmental glomerulosclerosis in a kidney transplant population: hereditary and sporadic forms. Transpl Int. 1998;11:16-21.
  362. Jungraithmayr TC, Hofer K, Cochat P, et al. Screening for NPHS2 mutations may help predict FSGS recurrence after transplantation. J Am Soc Nephrol. 2011;22:579-585.
  363. Friedman DJ, Pollak MR. APOL1 nephropathy: from genetics to clinical applications. Clin J Am Soc Nephrol. 2021;16:294-303.
  364. Deegens JK, Steenbergen EJ, Wetzels JF. Review on diagnosis and treatment of focal segmental glomerulosclerosis. Neth J Med. 2008;66:3-12.
  365. Beaufils H, Alphonse JC, Guedon J, et al. Focal glomerulosclerosis: natural history and treatment. A report of 70 cases. Nephron. 1978;21:75-85.
  366. Cameron JS, Turner DR, Ogg CS, et al. The long-term prognosis of patients with focal segmental glomerulosclerosis. Clin Nephrol. 1978;10:213-218.
  367. Rydel JJ, Korbet SM, Borok RZ, et al. Focal segmental glomerular sclerosis in adults: presentation, course, and response to treatment. Am J Kidney Dis. 1995;25:534-542.
  368. Velosa JA, Holley KE, Torres VE, et al. Significance of proteinuria on the outcome of renal function in patients with focal segmental glomerulosclerosis. Mayo Clin Proc. 1983;58:568-577.
  369. Troyanov S, Wall CA, Miller JA, et al. Focal and segmental glomerulosclerosis: definition and relevance of a partial remission. J Am Soc Nephrol. 2005;16:1061-1068.
  370. Cattran DC, Rao P. Long-term outcome in children and adults with classic focal segmental glomerulosclerosis. Am J Kidney Dis. 1998;32:72-79.
  371. Korbet SM. Treatment of primary FSGS in adults. J Am Soc Nephrol. 2012;23:1769-1776.
  372. Banfi G, Moriggi M, Sabadini E, et al. The impact of prolonged immunosuppression on the outcome of idiopathic focal-segmental glomerulosclerosis with nephrotic syndrome in adults. A collaborative retrospective study. Clin Nephrol. 1991;36:53-59.
  373. Goumenos DS, Tsagalis G, El Nahas AM, et al. Immunosuppressive treatment of idiopathic focal segmental glomerulosclerosis: a five-year follow-up study. Nephron Clin Pract. 2006;104:c75-c82.
  374. Pei Y, Cattran D, Delmore T, et al. Evidence suggesting under-treatment in adults with idiopathic focal segmental glomerulosclerosis. Regional Glomerulonephritis Registry Study. Am J Med. 1987;82:938-944.
  375. Schwartz MM, Evans J, Bain R, et al. Focal segmental glomerulosclerosis: prognostic implications of the cellular lesion. J Am Soc Nephrol. 1999;10:1900-1907.
  376. Nagai R, Cattran DC, Pei Y. Steroid therapy and prognosis of focal segmental glomerulosclerosis in the elderly. Clin Nephrol. 1994;42:18-21.
  377. Jenis EH, Teichman S, Briggs WA, et al. Focal segmental glomerulosclerosis. Am J Med. 1974;57:695-705.
  378. Lim VS, Sibley R, Spargo B. Adult lipoid nephrosis: clinicopathological correlations. Ann Intern Med. 1974;81:314-320.
  379. Newman WJ, Tisher CC, McCoy RC, et al. Focal glomerular sclerosis: contrasting clinical patterns in children and adults. Medicine (Baltimore) 1976;55:67-87.
  380. Ponticelli C, Villa M, Banfi G, et al. Can prolonged treatment improve the prognosis in adults with focal segmental glomerulosclerosis? Am J Kidney Dis. 1999;34:618-625.
  381. Fujimoto S, Yamamoto Y, Hisanaga S, et al. Minimal change nephrotic syndrome in adults: response to corticosteroid therapy and frequency of relapse. Am J Kidney Dis. 1991;17:687-692.
  382. Korbet SM, Schwartz MM, Lewis EJ. Minimal-change glomerulopathy of adulthood. Am J Nephrol. 1988;8:291-297.
  383. Costello R, Patel R, Humphreys J, et al. Patient perceptions of glucocorticoid side effects: a cross-sectional survey of users in an online health community. BMJ Open. 2017;7:.
  384. Duncan N, Dhaygude A, Owen J, et al. Treatment of focal and segmental glomerulosclerosis in adults with tacrolimus monotherapy. Nephrol Dial Transplant. 2004;19:3062-3067.
  385. Velosa JA, Donadio Jr. JV, Holley KE. Focal sclerosing glomerulonephropathy: a clinicopathologic study. Mayo Clin Proc. 1975;50:121-133.
  386. Ramachandran R, Kumar V, Rathi M, et al. Tacrolimus therapy in adult-onset steroid-resistant nephrotic syndrome due to a focal segmental glomerulosclerosis single-center experience. Nephrol Dial Transplant. 2014;29:1918-1924.
  387. Segarra A, Vila J, Pou L, et al. Combined therapy of tacrolimus and corticosteroids in cyclosporin-resistant or -dependent idiopathic focal glomerulosclerosis: a preliminary uncontrolled study with prospective follow-up. Nephrol Dial Transplant. 2002;17:655-662.
  388. Braun N, Schmutzler F, Lange C, et al. Immunosuppressive treatment for focal segmental glomerulosclerosis in adults. Cochrane Database Syst Rev. 2008:CD003233.
  389. Bhaumik SK, Majumdar A, Barman SC. Comparison of pulse methylprednisolone vs cyclosporin based therapy in steroid resistant focal segmental glomerulosclerosis [abstract]. Indian J Nephrol. 2002;12.
  390. Melocoton TL, Kamil ES, Cohen AH, et al. Long-term cyclosporine A treatment of steroid-resistant and steroid-dependent nephrotic syndrome. Am J Kidney Dis. 1991;18:583-588.
  391. Ghiggeri GM, Catarsi P, Scolari F, et al. Cyclosporine in patients with steroid-resistant nephrotic syndrome: an open-label, nonrandomized, retrospective study. Clin Ther. 2004;26:1411-1418.
  392. Heering P, Braun N, Mullejans R, et al. Cyclosporine A and chlorambucil in the treatment of idiopathic focal segmental glomerulosclerosis. Am J Kidney Dis. 2004;43:10-18.
  393. El-Husseini A, El-Basuony F, Mahmoud I, et al. Long-term effects of cyclosporine in children with idiopathic nephrotic syndrome: a single-centre experience. Nephrol Dial Transplant. 2005;20:2433-2438.
  394. Canetta PA, Radhakrishnan J. Impact of the National Institutes of Health Focal Segmental Glomerulosclerosis (NIH FSGS) clinical trial on the treatment of steroid-resistant FSGS. Nephrol Dial Transplant. 2013;28:527-534.
  395. Glassock RJ, Alvarado A, Prosek J, et al. Staphylococcus-related glomerulonephritis and poststreptococcal glomerulonephritis: why defining "post" is important in understanding and treating infection-related glomerulonephritis. Am J Kidney Dis. 2015;65:826-832.
  396. Montseny JJ, Meyrier A, Kleinknecht D, et al. The current spectrum of infectious glomerulonephritis. Experience with 76 patients and review of the literature. Medicine (Baltimore) 1995;74:63-73.
  397. Iwata Y, Ohta S, Kawai K, et al. Shunt nephritis with positive titers for ANCA specific for proteinase 3. Am J Kidney Dis. 2004;43:e11-e16.
  398. Boils CL, Nasr SH, Walker PD, et al. Update on endocarditis-associated glomerulonephritis. Kidney Int. 2015;87:1241-1249.
  399. Griffin KA, Schwartz MM, Korbet SM. Pulmonary-renal syndrome of bacterial endocarditis mimicking Goodpasture's syndrome. Am J Kidney Dis. 1989;14:329-332.
  400. Nasr SH, D'Agati VD. IgA-dominant postinfectious glomerulonephritis: a new twist on an old disease. Nephron Clin Pract. 2011;119:c18-c25. discussion c26.
  401. Nasr SH, Fidler ME, Valeri AM, et al. Postinfectious glomerulonephritis in the elderly. J Am Soc Nephrol. 2011;22:187-195.
  402. Satoskar AA, Nadasdy G, Plaza JA, et al. Staphylococcus infection-associated glomerulonephritis mimicking IgA nephropathy. Clin J Am Soc Nephrol. 2006;1:1179-1186.
  403. Haas M, Racusen LC, Bagnasco SM. IgA-dominant postinfectious glomerulonephritis: a report of 13 cases with common ultrastructural features. Hum Pathol. 2008;39:1309-1316.
  404. Kapadia AS, Panda M, Fogo AB. Postinfectious glomerulonephritis: Is there a role for steroids? Indian J Nephrol. 2011;21:116-119.
  405. Okuyama S, Wakui H, Maki N, et al. Successful treatment of post-MRSA infection glomerulonephritis with steroid therapy. Clin Nephrol. 2008;70:344-347.
  406. Khalighi MA, Wang S, Henriksen KJ, et al. Revisiting post-infectious glomerulonephritis in the emerging era of C3 glomerulopathy. Clin Kidney J 2016;9:397-402.
  407. Chauvet S, Berthaud R, Devriese M, et al. Anti-factor B antibodies and acute postinfectious GN in children. J Am Soc Nephrol. 2020;31:829-840.
  408. Kidney Disease: Improving Global Outcomes (KDIGO) Hepatitis C Work Group. KDIGO 2018 clinical practice guideline for the prevention, diagnosis, evaluation, and treatment of hepatitis C in chronic kidney disease. Kidney Int Suppl. 2018;8:91-165.
  409. Kupin WL. Viral-associated GN: hepatitis B and other viral infections. Clin J Am Soc Nephrol. 2017;12:1529-1533.
  410. European Association for the Study of the Liver. EASL clinical practice guidelines: management of chronic hepatitis B. J Hepatol. 2009;50:227-242.
  411. Sorrell MF, Belongia EA, Costa J, et al. National Institutes of Health Consensus Development Conference statement: management of hepatitis B. Ann Intern Med. 2009;150:104-110.
  412. Hou JH, Zhu HX, Zhou ML, et al. Changes in the spectrum of kidney diseases: an analysis of 40,759 biopsy-proven cases from 2003 to 2014 in China. Kidney Dis (Basel) 2018;4:10-19.
  413. Raveendran N, Beniwal P, D'Souza AV, et al. Profile of glomerular diseases associated with hepatitis B and C: a single-center experience from India. Saudi J Kidney Dis Transpl. 2017;28:355-361.
  414. Lai KN, Li PK, Lui SF, et al. Membranous nephropathy related to hepatitis B virus in adults. N Engl J Med. 1991;324:1457-1463.
  415. Shah AS, Amarapurkar DN. Spectrum of hepatitis B and renal involvement. Liver Int. 2018;38:23-32.
  416. Zhou TB, Jiang ZP. Is there an association of hepatitis B virus infection with minimal change disease of nephrotic syndrome? A clinical observational report. Ren Fail. 2015;37:459-461.
  417. Dong HR, Wang YY, Cheng XH, et al. Retrospective study of phospholipase A2 receptor and IgG subclasses in glomerular deposits in Chinese patients with membranous nephropathy. PLoS One. 2016;11:.
  418. Xie Q, Li Y, Xue J, et al. Renal phospholipase A2 receptor in hepatitis B virus-associated membranous nephropathy. Am J Nephrol. 2015;41:345-353.
  419. De Virgilio A, Greco A, Magliulo G, et al. Polyarteritis nodosa: a contemporary overview. Autoimmun Rev. 2016;15:564-570.
  420. Mazzaro C, Dal Maso L, Urraro T, et al. Hepatitis B virus related cryoglobulinemic vasculitis: a multicentre open label study from the Gruppo Italiano di Studio delle Crioglobulinemie-GISC. Dig Liver Dis. 2016;48:780-784.
  421. European Association for the Study of the Liver. EASL 2017 clinical practice guidelines on the management of hepatitis B virus infection. J Hepatol. 2017;67:370-398.
  422. Perrillo RP, Gish R, Falck-Ytter YT. American Gastroenterological Association Institute technical review on prevention and treatment of hepatitis B virus reactivation during immunosuppressive drug therapy. Gastroenterology. 2015;148:221-244 e223.
  423. Makvandi M. Update on occult hepatitis B virus infection. World J Gastroenterol. 2016;22:8720-8734.
  424. Kong D, Wu D, Wang T, et al. Detection of viral antigens in renal tissue of glomerulonephritis patients without serological evidence of hepatitis B virus and hepatitis C virus infection. Int J Infect Dis. 2013;17:e535-e538.
  425. Jiang W, Liu T, Dong H, et al. Relationship between serum DNA replication, clinicopathological characteristics and prognosis of hepatitis B virus-associated glomerulonephritis with severe proteinuria by lamivudine plus adefovir dipivoxil combination therapy. Biomed Environ Sci. 2015;28:206-213.
  426. Tan Z, Fang J, Lu JH, et al. HBV serum and renal biopsy markers are associated with the clinicopathological characteristics of HBV-associated nephropathy. Int J Clin Exp Pathol. 2014;7:8150-8154.
  427. Lai KN, ed. Recent Advances in IgA Nephropathy. Singapore: World Scientific; 2009.
  428. Iida H, Izumino K, Asaka M, et al. IgA nephropathy and hepatitis B virus. IgA nephropathy unrelated to hepatitis B surface antigenemia. Nephron. 1990;54:18-20.
  429. Lai KN, Lai FM, Tam JS. IgA nephropathy associated with chronic hepatitis B virus infection in adults: the pathogenetic role of HBsAG. J Pathol. 1989;157:321-327.
  430. Roccatello D, Saadoun D, Ramos-Casals M, et al. Cryoglobulinaemia. Nat Rev Dis Primers. 2018;4:11.
  431. Elewa U, Sandri AM, Kim WR, et al. Treatment of hepatitis B virus-associated nephropathy. Nephron Clin Pract. 2011;119:c41-c49.
  432. Lin CY. Treatment of hepatitis B virus-associated membranous nephropathy with recombinant alpha-interferon. Kidney Int. 1995;47:225-230.
  433. Lisker-Melman M, Webb D, Di Bisceglie AM, et al. Glomerulonephritis caused by chronic hepatitis B virus infection: treatment with recombinant human alpha-interferon. Ann Intern Med. 1989;111:479-483.
  434. Fabrizi F, Dixit V, Martin P. Meta-analysis: anti-viral therapy of hepatitis B virus-associated glomerulonephritis. Aliment Pharmacol Ther. 2006;24:781-788.
  435. Yang Y, Ma YP, Chen DP, et al. A meta-analysis of antiviral therapy for hepatitis B virus-associated membranous nephropathy. PLoS One. 2016;11:e0160437.
  436. Yi Z, Jie YW, Nan Z. The efficacy of anti-viral therapy on hepatitis B virus-associated glomerulonephritis: a systematic review and meta-analysis. Ann Hepatol. 2011;10:165-173.
  437. Zhang Y, Zhou JH, Yin XL, et al. Treatment of hepatitis B virus-associated glomerulonephritis: a meta-analysis. World J Gastroenterol. 2010;16:770-777.
  438. Zheng XY, Wei RB, Tang L, et al. Meta-analysis of combined therapy for adult hepatitis B virus-associated glomerulonephritis. World J Gastroenterol. 2012;18:821-832.
  439. Fang J, Li W, Tan Z, et al. Comparison of prednisolone and lamivudine combined therapy with prednisolone monotherapy on carriers of hepatitis B virus with IgA nephropathy: a prospective cohort study. Int Urol Nephrol. 2014;46:49-56.
  440. Javaid MM, Khatri P, Subramanian S. Should antiviral monotherapy with nucleotide analogs be the primary treatment option for focal segmental glomerulosclerosis-related nephrotic syndrome in chronic hepatitis B infection? Saudi J Kidney Dis Transpl. 2018;29:714-718.
  441. Wang L, Ye Z, Liang H, et al. The combination of tacrolimus and entecavir improves the remission of HBV-associated glomerulonephritis without enhancing viral replication. Am J Transl Res. 2016;8:1593-1600.
  442. Piaserico S, Messina F, Russo FP. Managing psoriasis in patients with HBV or HCV infection: practical considerations. Am J Clin Dermatol. 2019;20:829-845.
  443. Shimura S, Watashi K, Fukano K, et al. Cyclosporin derivatives inhibit hepatitis B virus entry without interfering with NTCP transporter activity. J Hepatol. 2017;66:685-692.
  444. Yang Y, Ma L, Wang C, et al. Effectiveness of sulodexide might be associated with inhibition of complement system in hepatitis B virus-associated membranous nephropathy: an inspiration from a pilot trial. Eur J Intern Med. 2016;32:96-104.
  445. Tsai MS, Chen JH, Fang YW, et al. Membranous nephropathy induced by pegylated interferon alpha-2a therapy for chronic viral hepatitis B. Clin Nephrol. 2012;77:496-500.
  446. Berchtold L, Zanetta G, Dahan K, et al. Efficacy and safety of rituximab in hepatitis B virus-associated PLA2R-positive membranous nephropathy. Kidney Int Rep. 2018;3:486-491.
  447. Liu T, Yang S, Yue Z, et al. Clinical and pathological characteristics of 5 children with HBV surface antigen (HBsAg)-negative hepatitis B virus-associated glomerulonephritis. J Clin Virol. 2015;66:1-5.
  448. Swanepoel CR, Atta MG, D'Agati VD, et al. Kidney disease in the setting of HIV infection: conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference. Kidney Int. 2018;93:545-559.
  449. UNAIDS. Available at:. www.UNAIDS.org Published 2020. Accessed January 27, 2021.
  450. Ekrikpo UE, Kengne AP, Bello AK, et al. Chronic kidney disease in the global adult HIV-infected population: a systematic review and meta-analysis. PLoS One. 2018;13:e0195443.
  451. Lucas GM, Jing Y, Sulkowski M, et al. Hepatitis C viremia and the risk of chronic kidney disease in HIV-infected individuals. J Infect Dis. 2013;208:1240-1249.
  452. Shen TC, Huang KY, Chao CH, et al. The risk of chronic kidney disease in tuberculosis: a population-based cohort study. QJM 2015;108:397-403.
  453. Wen YK, Chen ML. Crescentic glomerulonephritis associated with miliary tuberculosis. Clin Nephrol. 2009;71:310-313.
  454. Kudose S, Santoriello D, Bomback AS, et al. The spectrum of kidney biopsy findings in HIV-infected patients in the modern era. Kidney Int. 2020;97:1006-1016.
  455. Atta MG, Estrella MM, Kuperman M, et al. HIV-associated nephropathy patients with and without apolipoprotein L1 gene variants have similar clinical and pathological characteristics. Kidney Int. 2012;82:338-343.
  456. Dummer PD, Limou S, Rosenberg AZ, et al. APOL1 kidney disease risk variants: an evolving landscape. Semin Nephrol. 2015;35:222-236.
  457. Ahmed S, Siddiqui RK, Siddiqui AK, et al. HIV associated thrombotic microangiopathy. Postgrad Med J 2002;78:520-525.
  458. Sarmiento M, Balcells ME, Ramirez P. Thrombotic microangiopathy as first manifestation of acute human immunodeficiency virus infection: a case report and review of the literature. J Med Case Rep. 2016;10:152.
  459. Mocroft A, Neuhaus J, Peters L, et al. Hepatitis B and C co-infection are independent predictors of progressive kidney disease in HIV-positive, antiretroviral-treated adults. PLoS One. 2012;7:.
  460. Yoo J, Baumstein D, Kuppachi S, et al. Diffuse infiltrative lymphocytosis syndrome presenting as reversible acute kidney injury associated with Gram-negative bacterial infection in patients with newly diagnosed HIV infection. Am J Kidney Dis. 2011;57:752-755.
  461. Atta MG, Estrella MM, Skorecki KL, et al. Association of APOL1 genotype with renal histology among black HIV-positive patients undergoing kidney biopsy. Clin J Am Soc Nephrol. 2016;11:262-270.
  462. Beckerman P, Bi-Karchin J, Park AS, et al. Transgenic expression of human APOL1 risk variants in podocytes induces kidney disease in mice. Nat Med. 2017;23:429-438.
  463. Fu Y, Zhu JY, Richman A, et al. APOL1-G1 in nephrocytes induces hypertrophy and accelerates cell death. J Am Soc Nephrol. 2017;28:1106-1116.
  464. Kruzel-Davila E, Shemer R, Ofir A, et al. APOL1-mediated cell injury involves disruption of conserved trafficking processes. J Am Soc Nephrol. 2017;28:1117-1130.
  465. Ma L, Chou JW, Snipes JA, et al. APOL1 renal-risk variants induce mitochondrial dysfunction. J Am Soc Nephrol. 2017;28:1093-1105.
  466. Palau L, Menez S, Rodriguez-Sanchez J, et al. HIV-associated nephropathy: links, risks and management. HIV AIDS (Auckl) 2018;10:73-81.
  467. Kasembeli AN, Duarte R, Ramsay M, et al. APOL1 risk variants are strongly associated with HIV-associated nephropathy in Black South Africans. J Am Soc Nephrol. 2015;26:2882-2890.
  468. Insight Start Study Group; , Lundgren JD, Babiker AG, et al. Initiation of antiretroviral therapy in early asymptomatic HIV infection. N Engl J Med. 2015;373:795-807.
  469. Temprano ANRS 12136. Study Group; , Danel C, Moh R, et al. A trial of early antiretrovirals and isoniazid preventive therapy in Africa. N Engl J Med. 2015;373:808-822.
  470. Szczech LA, Gupta SK, Habash R, et al. The clinical epidemiology and course of the spectrum of renal diseases associated with HIV infection. Kidney Int. 2004;66:1145-1152.
  471. Cohen SD, Kimmel PL. Immune complex renal disease and human immunodeficiency virus infection. Semin Nephrol. 2008;28:535-544.
  472. Booth JW, Hamzah L, Jose S, et al. Clinical characteristics and outcomes of HIV-associated immune complex kidney disease. Nephrol Dial Transplant. 2016;31:2099-2107.
  473. Fine DM, Perazella MA, Lucas GM, et al. Kidney biopsy in HIV: beyond HIV-associated nephropathy. Am J Kidney Dis. 2008;51:504-514.
  474. Gerntholtz TE, Goetsch SJ, Katz I. HIV-related nephropathy: a South African perspective. Kidney Int. 2006;69:1885-1891.
  475. Han TM, Naicker S, Ramdial PK, et al. A cross-sectional study of HIV-seropositive patients with varying degrees of proteinuria in South Africa. Kidney Int. 2006;69:2243-2250.
  476. Choi AI, Li Y, Parikh C, et al. Long-term clinical consequences of acute kidney injury in the HIV-infected. Kidney Int. 2010;78:478-485.
  477. World Health Organization. HIV/AIDS: consolidated guidelines on HIV prevention, diagnosis, treatment and care for key populations. Geneva: World Health Organization; 2014. Available at: https://www.who.int/publications/i/item/9789241507431. Accessed August 23, 2021.
  478. Yahaya I, Uthman OA, Uthman MM. Interventions for HIV-associated nephropathy. Cochrane Database Syst Rev. 2013:CD007183.
  479. Szczech LA, Hoover DR, Feldman JG, et al. Association between renal disease and outcomes among HIV-infected women receiving or not receiving antiretroviral therapy. Clin Infect Dis. 2004;39:1199-1206.
  480. Strategies for the Management of Antiretroviral Therapy Study Group, El-Sadr WM, Lundgren J, et al. CD4+ count-guided interruption of antiretroviral treatment. N Engl J Med. 2006;355:2283-2296.
  481. Kalayjian RC, Franceschini N, Gupta SK, et al. Suppression of HIV-1 replication by antiretroviral therapy improves renal function in persons with low CD4 cell counts and chronic kidney disease. AIDS 2008;22:481-487.
  482. Krawczyk CS, Holmberg SD, Moorman AC, et al. Factors associated with chronic renal failure in HIV-infected ambulatory patients. AIDS 2004;18:2171-2178.
  483. Gupta SK, Parker RA, Robbins GK, et al. The effects of highly active antiretroviral therapy on albuminuria in HIV-infected persons: results from a randomized trial. Nephrol Dial Transplant. 2005;20:2237-2242.
  484. Gupta SK, Smurzynski M, Franceschini N, et al. The effects of HIV type-1 viral suppression and non-viral factors on quantitative proteinuria in the highly active antiretroviral therapy era. Antivir Ther. 2009;14:543-549.
  485. Longenecker CT, Scherzer R, Bacchetti P, et al. HIV viremia and changes in kidney function. AIDS 2009;23:1089-1096.
  486. Ingulli E, Tejani A, Fikrig S, et al. Nephrotic syndrome associated with acquired immunodeficiency syndrome in children. J Pediatr. 1991;119:710-716.
  487. Babut-Gay ML, Echard M, Kleinknecht D, et al. Zidovudine and nephropathy with human immunodeficiency virus (HIV) infection. Ann Intern Med. 1989;111:856-857.
  488. Ifudu O, Rao TK, Tan CC, et al. Zidovudine is beneficial in human immunodeficiency virus-associated nephropathy. Am J Nephrol. 1995;15:217-221.
  489. Kirchner JT. Resolution of renal failure after initiation of HAART: 3 cases and a discussion of the literature. AIDS Read. 2002;12:103-105, 110-112.
  490. Szczech LA, Edwards LJ, Sanders LL, et al. Protease inhibitors are associated with a slowed progression of HIV-related renal diseases. Clin Nephrol. 2002;57:336-341.
  491. Smith MC, Austen JL, Carey JT, et al. Prednisone improves renal function and proteinuria in human immunodeficiency virus-associated nephropathy. Am J Med. 1996;101:41-48.
  492. Sury K, Perazella MA. The changing face of human immunodeficiency virus-mediated kidney disease. Adv Chronic Kidney Dis. 2019;26:185-197.
  493. Barsoum RS. Schistosomiasis and the kidney. Semin Nephrol. 2003;23:34-41.
  494. Bezerrada G, Junior S, Duartea DB, et al. Schistosomiasis-associated kidney disease: a review. Asian Pac J Trop Dis. 2013;3:79-84.
  495. Barsoum RS, Sersawy G, Haddad S, et al. Hepatic macrophage function in schistosomal glomerulopathy. Nephrol Dial Transplant. 1988;3:612-616.
  496. Martinelli R, Pereira LJ, Brito E, et al. Renal involvement in prolonged Salmonella bacteremia: the role of schistosomal glomerulopathy. Rev Inst Med Trop Sao Paulo. 1992;34:193-198.
  497. Abdul-Fattah MM, Yossef SM, Ebraheem ME, et al. Schistosomal glomerulopathy: a putative role for commonly associated Salmonella infection. J Egypt Soc Parasitol. 1995;25:165-173.
  498. Hsiao A, Toy T, Seo HJ, et al. Interaction between Salmonella and schistosomiasis: a review. PLoS Pathog. 2016;12:e1005928.
  499. Martinelli R, Pereira LJ, Rocha H. The influence of anti-parasitic therapy on the course of the glomerulopathy associated with Schistosomiasis mansoni. Clin Nephrol. 1987;27:229-232.
  500. Ross AG, Bartley PB, Sleigh AC, et al. Schistosomiasis. N Engl J Med. 2002;346:1212-1220.
  501. Barsoum RS. Urinary schistosomiasis: review. J Adv Res. 2013;4:453-459.
  502. Pakasa NM, Nseka NM, Nyimi LM. Secondary collapsing glomerulopathy associated with Loa loa filariasis. Am J Kidney Dis. 1997;30:836-839.
  503. Ormerod AD, Petersen J, Hussey JK, et al. Immune complex glomerulonephritis and chronic anaerobic urinary infection-complications of filariasis. Postgrad Med J 1983;59:730-733.
  504. Pillay VK, Kirch E, Kurtzman NA. Glomerulopathy associated with filarial loiasis. JAMA 1973;225:179.
  505. Hall CL, Stephens L, Peat D, et al. Nephrotic syndrome due to loiasis following a tropical adventure holiday: a case report and review of the literature. Clin Nephrol. 2001;56:247-250.
  506. Dreyer G, Ottesen EA, Galdino E, et al. Renal abnormalities in microfilaremic patients with Bancroftian filariasis. Am J Trop Med Hyg. 1992;46:745-751.
  507. Langhammer J, Birk HW, Zahner H. Renal disease in lymphatic filariasis: evidence for tubular and glomerular disorders at various stages of the infection. Trop Med Int Health. 1997;2:875-884.
  508. Cruel T, Arborio M, Schill H, et al. [Nephropathy and filariasis from Loa loa. Apropos of 1 case of adverse reaction to a dose of ivermectin]. Bull Soc Pathol Exot. 1997;90:179-181. [in French].
  509. Ngu JL, Mate A, Leke R, et al. Proteinuria associated with diethylcarbamazine treatment of onchocerciasis [abstract]. Lancet. 1980:315.
  510. Abel L, Ioly V, Jeni P, et al. Apheresis in the management of loiasis with high microfilariaemia and renal disease. Br Med J (Clin Res Ed) 1986;292:24.
  511. World Health Organization. Lymphatic filariasis: treatment and prevention. Available at: https://www.who.int/health-topics/lymphatic-filariasis#tab=tab_3. Accessed August 23, 2021.
  512. Arogundade FA, Hassan MO, Omotoso BA, et al. Spectrum of kidney diseases in Africa: malaria, schistosomiasis, sickle cell disease, and toxins. Clin Nephrol. 2016;86:53-60.
  513. Silva GBDJ, Pinto JR, Barros EJG, et al. Kidney involvement in malaria: an update. Rev Inst Med Trop Sao Paulo. 2017;59:e53.
  514. Olowu WA, Ademola A, Ajite AB, et al. Childhood nephrotic syndrome in tropical Africa: then and now. Paediatr Int Child Health. 2017;37:259-268.
  515. Barsoum RS. Malarial nephropathies. Nephrol Dial Transplant. 1998;13:1588-1597.
  516. Eiam-Ong S. Malarial nephropathy. Semin Nephrol. 2003;23:21-33.
  517. Doe JY, Funk M, Mengel M, et al. Nephrotic syndrome in African children: lack of evidence for 'tropical nephrotic syndrome'? Nephrol Dial Transplant. 2006;21:672-676.
  518. Olowu WA, Adelusola KA, Adefehinti O, et al. Quartan malaria-associated childhood nephrotic syndrome: now a rare clinical entity in malaria endemic Nigeria. Nephrol Dial Transplant. 2010;25:794-801.
  519. Gomes AP, Vitoria RR, Costa AP, et al. Malaria grave por Plasmodium falciparum. [Severe Plasmodium falciparum malaria.]. Rev Bras Ter Intensiva. 2011;23:358-369. [in Portuguese].
  520. Naqvi R. Plasmodium Vivax causing acute kidney injury: a foe less addressed. Pak J Med Sci. 2015;31:1472-1475.
  521. Naqvi R, Akhtar F, Ahmed E, et al. Malarial acute kidney injury: 25 years experience from a center in an endemic region. Brit J Med Med Res. 2016;12:6.
  522. Shukla VS, Singh RG, Rathore SS, et al. Outcome of malaria-associated acute kidney injury: a prospective study from a single center. Ren Fail. 2013;35:801-805.
  523. World Health Organization. Malaria: overview of malaria treatment. Available at: https://www.who.int/activities/treating-malaria. Accessed January 27, 2021.
  524. Nosten F, McGready R, d'Alessandro U, et al. Antimalarial drugs in pregnancy: a review. Curr Drug Saf. 2006;1:1-15.
  525. Fervenza FC, Sethi S, Glassock RJ. Idiopathic membranoproliferative glomerulonephritis: Does it exist? Nephrol Dial Transplant. 2012;27:4288-4294.
  526. Sethi S, Fervenza FC. Membranoproliferative glomerulonephritis: pathogenetic heterogeneity and proposal for a new classification. Semin Nephrol. 2011;31:341-348.
  527. Sethi S, Fervenza FC. Membranoproliferative glomerulonephritis-a new look at an old entity. N Engl J Med. 2012;366:1119-1131.
  528. Lorenz EC, Sethi S, Leung N, et al. Recurrent membranoproliferative glomerulonephritis after kidney transplantation. Kidney Int. 2010;77:721-728.
  529. Leung N, Bridoux F, Batuman V, et al. The evaluation of monoclonal gammopathy of renal significance: a consensus report of the International Kidney and Monoclonal Gammopathy Research Group. Nat Rev Nephrol. 2019;15:45-59.
  530. Bhutani G, Nasr SH, Said SM, et al. Hematologic characteristics of proliferative glomerulonephritides with nonorganized monoclonal immunoglobulin deposits. Mayo Clin Proc. 2015;90:587-596.
  531. Bridoux F, Leung N, Hutchison CA, et al. Diagnosis of monoclonal gammopathy of renal significance. Kidney Int. 2015;87:698-711.
  532. Pickering MC, D'Agati VD, Nester CM, et al. C3 glomerulopathy: consensus report. Kidney Int. 2013;84:1079-1089.
  533. Servais A, Fremeaux-Bacchi V, Lequintrec M, et al. Primary glomerulonephritis with isolated C3 deposits: a new entity which shares common genetic risk factors with haemolytic uraemic syndrome. J Med Genet. 2007;44:193-199.
  534. Messias NC, Walker PD, Larsen CP. Paraffin immunofluorescence in the renal pathology laboratory: more than a salvage technique. Mod Pathol. 2015;28:854-860.
  535. Bomback AS, Santoriello D, Avasare RS, et al. C3 glomerulonephritis and dense deposit disease share a similar disease course in a large United States cohort of patients with C3 glomerulopathy. Kidney Int. 2018;93:977-985.
  536. Ravindran A, Fervenza FC, Smith RJH, et al. C3 glomerulopathy: ten years' experience at Mayo Clinic. Mayo Clin Proc. 2018;93:991-1008.
  537. Smith RJH, Appel GB, Blom AM, et al. C3 glomerulopathy-understanding a rare complement-driven renal disease. Nat Rev Nephrol. 2019;15:129-143.
  538. Sethi S, Quint PS, O'Seaghdha CM, et al. C4 glomerulopathy: a disease entity associated with C4d deposition. Am J Kidney Dis. 2016;67:949-953.
  539. Ruggenenti P, Daina E, Gennarini A, et al. C5 convertase blockade in membranoproliferative glomerulonephritis: a single-arm clinical trial. Am J Kidney Dis. 2019;74:224-238.
  540. Servais A, Noel LH, Roumenina LT, et al. Acquired and genetic complement abnormalities play a critical role in dense deposit disease and other C3 glomerulopathies. Kidney Int. 2012;82:454-464.
  541. Nasr SH, Valeri AM, Appel GB, et al. Dense deposit disease: clinicopathologic study of 32 pediatric and adult patients. Clin J Am Soc Nephrol. 2009;4:22-32.
  542. Angioi A, Fervenza FC, Sethi S, et al. Diagnosis of complement alternative pathway disorders. Kidney Int. 2016;89:278-288.
  543. Lu DF, McCarthy AM, Lanning LD, et al. A descriptive study of individuals with membranoproliferative glomerulonephritis. Nephrol Nurs J 2007;34:295-302.
  544. Chauvet S, Roumenina LT, Aucouturier P, et al. Both monoclonal and polyclonal immunoglobulin contingents mediate complement activation in monoclonal gammopathy associated-C3 glomerulopathy. Front Immunol. 2018;9:2260.
  545. Chauvet S, Fremeaux-Bacchi V, Petitprez F, et al. Treatment of B-cell disorder improves renal outcome of patients with monoclonal gammopathy-associated C3 glomerulopathy. Blood. 2017;129:1437-1447.
  546. Goodship TH, Cook HT, Fakhouri F, et al. Atypical hemolytic uremic syndrome and C3 glomerulopathy: conclusions from a "Kidney Disease: Improving Global Outcomes" (KDIGO) Controversies Conference. Kidney Int. 2017;91:539-551.
  547. Medjeral-Thomas NR, O'Shaughnessy MM, O'Regan JA, et al. C3 glomerulopathy: clinicopathologic features and predictors of outcome. Clin J Am Soc Nephrol. 2014;9:46-53.
  548. Rabasco C, Cavero T, Roman E, et al. Effectiveness of mycophenolate mofetil in C3 glomerulonephritis. Kidney Int. 2015;88:1153-1160.
  549. Avasare RS, Canetta PA, Bomback AS, et al. Mycophenolate mofetil in combination with steroids for treatment of C3 glomerulopathy: a case series. Clin J Am Soc Nephrol. 2018;13:406-413.
  550. Le Quintrec M, Lapeyraque AL, Lionet A, et al. Patterns of clinical response to eculizumab in patients with C3 glomerulopathy. Am J Kidney Dis. 2018;72:84-92.
  551. Jennette JC, Falk RJ, Bacon PA, et al. 2012 revised International Chapel Hill Consensus Conference nomenclature of vasculitides. Arthritis Rheumatol. 2013;65:1-11.
  552. Mohammad AJ, Mortensen KH, Babar J, et al. Pulmonary involvement in antineutrophil cytoplasmic antibodies (ANCA)-associated vasculitis: the influence of ANCA subtype. J Rheumatol. 2017;44:1458-1467.
  553. Damoiseaux J, Csernok E, Rasmussen N, et al. Detection of antineutrophil cytoplasmic antibodies (ANCAs): a multicentre European Vasculitis Study Group (EUVAS) evaluation of the value of indirect immunofluorescence (IIF) versus antigen-specific immunoassays. Ann Rheum Dis. 2017;76:647-653.
  554. Bossuyt X, Cohen Tervaert JW, Arimura Y, et al. Position paper: revised 2017 international consensus on testing of ANCAs in granulomatosis with polyangiitis and microscopic polyangiitis. Nat Rev Rheumatol. 2017;13:683-692.
  555. Aasarod K, Bostad L, Hammerstrom J, et al. Renal histopathology and clinical course in 94 patients with Wegener's granulomatosis. Nephrol Dial Transplant. 2001;16:953-960.
  556. Berden AE, Ferrario F, Hagen EC, et al. Histopathologic classification of ANCA-associated glomerulonephritis. J Am Soc Nephrol. 2010;21:1628-1636.
  557. Jennette JC, Falk RJ. Small-vessel vasculitis. N Engl J Med. 1997;337:1512-1523.
  558. Flossmann O, Berden A, de Groot K, et al. Long-term patient survival in ANCA-associated vasculitis. Ann Rheum Dis. 2011;70:488-494.
  559. Heijl C, Mohammad AJ, Westman K, et al. Long-term patient survival in a Swedish population-based cohort of patients with ANCA-associated vasculitis. RMD Open. 2017;3:.
  560. Mukhtyar C, Flossmann O, Hellmich B, et al. Outcomes from studies of antineutrophil cytoplasm antibody associated vasculitis: a systematic review by the European League Against Rheumatism Systemic Vasculitis Task Force. Ann Rheum Dis. 2008;67:1004-1010.
  561. Weiner M, Goh SM, Mohammad AJ, et al. Outcome and treatment of elderly patients with ANCA-associated vasculitis. Clin J Am Soc Nephrol. 2015;10:1128-1135.
  562. Brix SR, Noriega M, Tennstedt P, et al. Development and validation of a renal risk score in ANCA-associated glomerulonephritis. Kidney Int. 2018;94:1177-1188.
  563. Berden AE, Wester Trejo MAC, Bajema IM. Investigations in systemic vasculitis - the role of renal pathology. Best Pract Res Clin Rheumatol. 2018;32:83-93.
  564. Vandenbussche C, Bitton L, Bataille P, et al. Prognostic value of microscopic hematuria after induction of remission in antineutrophil cytoplasmic antibodies-associated vasculitis. Am J Nephrol. 2019;49:479-486.
  565. Walsh M, Flossmann O, Berden A, et al. Risk factors for relapse of antineutrophil cytoplasmic antibody-associated vasculitis. Arthritis Rheumatol. 2012;64:542-548.
  566. McClure ME, Wason J, Gopaluni S, et al. Evaluation of PR3-ANCA status after rituximab for ANCA-associated vasculitis. J Clin Rheumatol. 2019;25:217-223.
  567. Sanders JS, Huitma MG, Kallenberg CG, et al. Prediction of relapses in PR3-ANCA-associated vasculitis by assessing responses of ANCA titres to treatment. Rheumatology (Oxford) 2006;45:724-729.
  568. Tomasson G, Grayson PC, Mahr AD, et al. Value of ANCA measurements during remission to predict a relapse of ANCA-associated vasculitis--a meta-analysis. Rheumatology (Oxford) 2012;51:100-109.
  569. Jones RB, Tervaert JW, Hauser T, et al. Rituximab versus cyclophosphamide in ANCA-associated renal vasculitis. N Engl J Med. 2010;363:211-220.
  570. Stone JH, Merkel PA, Spiera R, et al. Rituximab versus cyclophosphamide for ANCA-associated vasculitis. N Engl J Med. 2010;363:221-232.
  571. Walters G, Willis NS, Craig JC. Interventions for renal vasculitis in adults. Cochrane Database Syst Rev. 2015:CD003232.
  572. Walters GD, Willis NS, Cooper TE, et al. Interventions for renal vasculitis in adults. Cochrane Database Syst Rev. 2020;1:CD003232.
  573. Unizony S, Villarreal M, Miloslavsky EM, et al. Clinical outcomes of treatment of anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis based on ANCA type. Ann Rheum Dis. 2016;75:1166-1169.
  574. de Groot K, Harper L, Jayne DR, et al. Pulse versus daily oral cyclophosphamide for induction of remission in antineutrophil cytoplasmic antibody-associated vasculitis: a randomized trial. Ann Intern Med. 2009;150:670-680.
  575. Han F, Liu G, Zhang X, et al. Effects of mycophenolate mofetil combined with corticosteroids for induction therapy of microscopic polyangiitis. Am J Nephrol. 2011;33:185-192.
  576. Hu W, Liu C, Xie H, et al. Mycophenolate mofetil versus cyclophosphamide for inducing remission of ANCA vasculitis with moderate renal involvement. Nephrol Dial Transplant. 2008;23:1307-1312.
  577. Jones RB, Hiemstra TF, Ballarin J, et al. Mycophenolate mofetil versus cyclophosphamide for remission induction in ANCA-associated vasculitis: a randomised, non-inferiority trial. Ann Rheum Dis. 2019;78:399-405.
  578. Tuin J, Stassen PM, Bogdan DI, et al. Mycophenolate mofetil versus cyclophosphamide for the induction of remission in nonlife-threatening relapses of antineutrophil cytoplasmic antibody-associated vasculitis: randomized, controlled trial. Clin J Am Soc Nephrol. 2019;14:1021-1028.
  579. De Groot K, Rasmussen N, Bacon PA, et al. Randomized trial of cyclophosphamide versus methotrexate for induction of remission in early systemic antineutrophil cytoplasmic antibody-associated vasculitis. Arthritis Rheumatol. 2005;52:2461-2469.
  580. Karras A, Pagnoux C, Haubitz M, et al. Randomised controlled trial of prolonged treatment in the remission phase of ANCA-associated vasculitis. Ann Rheum Dis. 2017;76:1662-1668.
  581. Yates M, Watts RA, Bajema IM, et al. EULAR/ERA-EDTA recommendations for the management of ANCA-associated vasculitis. Ann Rheum Dis. 2016;75:1583-1594.
  582. Walsh M, Merkel PA, Peh CA, et al. Plasma exchange and glucocorticoids in severe ANCA-associated vasculitis. N Engl J Med. 2020;382:622-631.
  583. Jayne DRW, Merkel PA, Schall TJ, et al. Avacopan for the treatment of ANCA-associated vasculitis. N Engl J Med. 2021;384:599-609.
  584. Adu D, Pall A, Luqmani RA, et al. Controlled trial of pulse versus continuous prednisolone and cyclophosphamide in the treatment of systemic vasculitis. QJM 1997;90:401-409.
  585. Guillevin L, Cordier JF, Lhote F, et al. A prospective, multicenter, randomized trial comparing steroids and pulse cyclophosphamide versus steroids and oral cyclophosphamide in the treatment of generalized Wegener's granulomatosis. Arthritis Rheumatol. 1997;40:2187-2198.
  586. Haubitz M, Schellong S, Gobel U, et al. Intravenous pulse administration of cyclophosphamide versus daily oral treatment in patients with antineutrophil cytoplasmic antibody-associated vasculitis and renal involvement: a prospective, randomized study. Arthritis Rheumatol. 1998;41:1835-1844.
  587. Pepper RJ, McAdoo SP, Moran SM, et al. A novel glucocorticoid-free maintenance regimen for anti-neutrophil cytoplasm antibody-associated vasculitis. Rheumatology (Oxford) 2019;58:260-268.
  588. McClure M, Gopaluni S, Jayne D, et al. B cell therapy in ANCA-associated vasculitis: current and emerging treatment options. Nat Rev Rheumatol. 2018;14:580-591.
  589. van Daalen EE, Rizzo R, Kronbichler A, et al. Effect of rituximab on malignancy risk in patients with ANCA-associated vasculitis. Ann Rheum Dis. 2017;76:1064-1069.
  590. Specks U, Merkel PA, Seo P, et al. Efficacy of remission-induction regimens for ANCA-associated vasculitis. N Engl J Med. 2013;369:417-427.
  591. Casal Moura M, Irazabal MV, Eirin A, et al. Efficacy of rituximab and plasma exchange in antineutrophil cytoplasmic antibody-associated vasculitis with severe kidney disease. J Am Soc Nephrol. 2020;31:2688-2704.
  592. Maritati F, Alberici F, Oliva E, et al. Methotrexate versus cyclophosphamide for remission maintenance in ANCA-associated vasculitis: a randomised trial. PLoS One. 2017;12:.
  593. US National Library of Medicine. Plasma exchange and glucocorticoids for treatment of anti-neutrophil cytoplasm antibody (ANCA) - associated vasculitis (PEXIVAS). Available at: https://clinicaltrials.gov/ct2/show/NCT00987389. Accessed August 23, 2021.
  594. Roberts DM, Jones RB, Smith RM, et al. Rituximab-associated hypogammaglobulinemia: incidence, predictors and outcomes in patients with multi-system autoimmune disease. J Autoimmun. 2015;57:60-65.
  595. Jayne DR, Gaskin G, Rasmussen N, et al. Randomized trial of plasma exchange or high-dosage methylprednisolone as adjunctive therapy for severe renal vasculitis. J Am Soc Nephrol. 2007;18:2180-2188.
  596. Cole E, Cattran D, Magil A, et al. A prospective randomized trial of plasma exchange as additive therapy in idiopathic crescentic glomerulonephritis. The Canadian Apheresis Study Group. Am J Kidney Dis. 1992;20:261-269.
  597. Glockner WM, Sieberth HG, Wichmann HE, et al. Plasma exchange and immunosuppression in rapidly progressive glomerulonephritis: a controlled, multi-center study. Clin Nephrol. 1988;29:1-8.
  598. Mauri JM, Gonzalez MT, Poveda R. Therapeutic plasma exchange in the treatment of rapidly progressive glomerulonephritis. Plasma Ther Transfus Tech. 1985;6:587-591.
  599. Rifle G, Chalopin JM, Zech P, et al. Treatment of idiopathic acute crescentic glomerulonephritis by immunodepression and plasma-exchanges. A prospective randomised study. Proc Eur Dial Transplant Assoc. 1981;18:493-502.
  600. Szpirt WM, Heaf JG, Petersen J. Plasma exchange for induction and cyclosporine A for maintenance of remission in Wegener's granulomatosis-a clinical randomized controlled trial. Nephrol Dial Transplant. 2011;26:206-213.
  601. Walsh M, Merkel PA, Peh CA, et al. Plasma exchange and glucocorticoid dosing in the treatment of anti-neutrophil cytoplasm antibody associated vasculitis (PEXIVAS): protocol for a randomized controlled trial. Trials. 2013;14:73.
  602. Levy JB, Hammad T, Coulthart A, et al. Clinical features and outcome of patients with both ANCA and anti-GBM antibodies. Kidney Int. 2004;66:1535-1540.
  603. Jayne D, Rasmussen N, Andrassy K, et al. A randomized trial of maintenance therapy for vasculitis associated with antineutrophil cytoplasmic autoantibodies. N Engl J Med. 2003;349:36-44.
  604. Hiemstra TF, Walsh M, Mahr A, et al. Mycophenolate mofetil vs azathioprine for remission maintenance in antineutrophil cytoplasmic antibody-associated vasculitis: a randomized controlled trial. JAMA 2010;304:2381-2388.
  605. Pagnoux C, Mahr A, Hamidou MA, et al. Azathioprine or methotrexate maintenance for ANCA-associated vasculitis. N Engl J Med. 2008;359:2790-2803.
  606. Sanders JS, de Joode AA, DeSevaux RG, et al. Extended versus standard azathioprine maintenance therapy in newly diagnosed proteinase-3 anti-neutrophil cytoplasmic antibody-associated vasculitis patients who remain cytoplasmic anti-neutrophil cytoplasmic antibody-positive after induction of remission: a randomized clinical trial. Nephrol Dial Transplant. 2016;31:1453-1459.
  607. Charles P, Terrier B, Perrodeau E, et al. Comparison of individually tailored versus fixed-schedule rituximab regimen to maintain ANCA-associated vasculitis remission: results of a multicentre, randomised controlled, phase III trial (MAINRITSAN2). Ann Rheum Dis. 2018;77:1143-1149.
  608. Smith RM, Jones RB, Specks U, et al. Rituximab as therapy to induce remission after relapse in ANCA-associated vasculitis. Ann Rheum Dis. 2020;79:1243-1249.
  609. Guillevin L, Pagnoux C, Karras A, et al. Rituximab versus azathioprine for maintenance in ANCA-associated vasculitis. N Engl J Med. 2014;371:1771-1780.
  610. Stegeman CA, Tervaert JW, de Jong PE, et al. Trimethoprim-sulfamethoxazole (co-trimoxazole) for the prevention of relapses of Wegener's granulomatosis. Dutch Co-Trimoxazole Wegener Study Group. N Engl J Med. 1996;335:16-20.
  611. Zycinska K, Wardyn KA, Zielonka TM, et al. Co-trimoxazole and prevention of relapses of PR3-ANCA positive vasculitis with pulmonary involvement. Eur J Med Res. 2009;14(suppl 4):S265-S267.
  612. Walsh M, Merkel PA, Mahr A, et al. Effects of duration of glucocorticoid therapy on relapse rate in antineutrophil cytoplasmic antibody-associated vasculitis: a meta-analysis. Arthritis Care Res (Hoboken) 2010;62:1166-1173.
  613. Pagnoux C, Hogan SL, Chin H, et al. Predictors of treatment resistance and relapse in antineutrophil cytoplasmic antibody-associated small-vessel vasculitis: comparison of two independent cohorts. Arthritis Rheumatol. 2008;58:2908-2918.
  614. Romeu M, Couchoud C, Delaroziere JC, et al. Survival of patients with ANCA-associated vasculitis on chronic dialysis: data from the French REIN registry from 2002 to 2011. QJM 2014;107:545-555.
  615. Pugnet G, Pagnoux C, Terrier B, et al. Rituximab versus azathioprine for ANCA-associated vasculitis maintenance therapy: impact on global disability and health-related quality of life. Clin Exp Rheumatol. 2016;34:S54-S59.
  616. Mukhtyar C, Lee R, Brown D, et al. Modification and validation of the Birmingham Vasculitis Activity Score (version 3). Ann Rheum Dis. 2009;68:1827-1832.
  617. Slot MC, Tervaert JW, Boomsma MM, et al. Positive classic antineutrophil cytoplasmic antibody (C-ANCA) titer at switch to azathioprine therapy associated with relapse in proteinase 3-related vasculitis. Arthritis Rheumatol. 2004;51:269-273.
  618. Smith R, Jayne D, Merkel P. A randomized, controlled trial of rituximab versus azathioprine after induction of remission with rituximab for patients with ANCA-associated vasculitis and relapsing disease [abstract]. Arthritis Rheumatol. 2019;71.
  619. Faurschou M, Sorensen IJ, Mellemkjaer L, et al. Malignancies in Wegener's granulomatosis: incidence and relation to cyclophosphamide therapy in a cohort of 293 patients. J Rheumatol. 2008;35:100-105.
  620. Geetha D, Eirin A, True K, et al. Renal transplantation in antineutrophil cytoplasmic antibody-associated vasculitis: a multicenter experience. Transplantation. 2011;91:1370-1375.
  621. Goceroglu A, Rahmattulla C, Berden AE, et al. The Dutch Transplantation in Vasculitis (DUTRAVAS) Study: outcome of renal transplantation in antineutrophil cytoplasmic antibody-associated glomerulonephritis. Transplantation. 2016;100:916-924.
  622. Alarcon GS, McGwin Jr. G, Petri M, et al. Baseline characteristics of a multiethnic lupus cohort: PROFILE. Lupus. 2002;11:95-101.
  623. Bastian HM, Roseman JM, McGwin Jr. G, et al. Systemic lupus erythematosus in three ethnic groups. XII. Risk factors for lupus nephritis after diagnosis. Lupus. 2002;11:152-160.
  624. Feldman CH, Hiraki LT, Liu J, et al. Epidemiology and sociodemographics of systemic lupus erythematosus and lupus nephritis among US adults with Medicaid coverage, 2000-2004. Arthritis Rheumatol. 2013;65:753-763.
  625. Pons-Estel BA, Catoggio LJ, Cardiel MH, et al. The GLADEL multinational Latin American prospective inception cohort of 1,214 patients with systemic lupus erythematosus: ethnic and disease heterogeneity among “Hispanics.”. Medicine (Baltimore) 2004;83:1-17.
  626. Mok CC, Kwok RC, Yip PS. Effect of renal disease on the standardized mortality ratio and life expectancy of patients with systemic lupus erythematosus. Arthritis Rheumatol. 2013;65:2154-2160.
  627. Sule S, Fivush B, Neu A, et al. Increased risk of death in pediatric and adult patients with ESRD secondary to lupus. Pediatr Nephrol. 2011;26:93-98.
  628. Yap DY, Tang CS, Ma MK, et al. Survival analysis and causes of mortality in patients with lupus nephritis. Nephrol Dial Transplant. 2012;27:3248-3254.
  629. Hiraki LT, Feldman CH, Liu J, et al. Prevalence, incidence, and demographics of systemic lupus erythematosus and lupus nephritis from 2000 to 2004 among children in the US Medicaid beneficiary population. Arthritis Rheumatol. 2012;64:2669-2676.
  630. Malvar A, Pirruccio P, Alberton V, et al. Histologic versus clinical remission in proliferative lupus nephritis. Nephrol Dial Transplant. 2017;32:1338-1344.
  631. Zickert A, Sundelin B, Svenungsson E, et al. Role of early repeated renal biopsies in lupus nephritis. Lupus Sci Med. 2014;1:.
  632. Appel GB, Contreras G, Dooley MA, et al. Mycophenolate mofetil versus cyclophosphamide for induction treatment of lupus nephritis. J Am Soc Nephrol. 2009;20:1103-1112.
  633. Austin 3rd HA, Klippel JH, Balow JE, et al. Therapy of lupus nephritis. Controlled trial of prednisone and cytotoxic drugs. N Engl J Med. 1986;314:614-619.
  634. Chan TM, Li FK, Tang CS, et al. Efficacy of mycophenolate mofetil in patients with diffuse proliferative lupus nephritis. Hong Kong-Guangzhou Nephrology Study Group. N Engl J Med. 2000;343:1156-1162.
  635. Chan TM, Tse KC, Tang CS, et al. Long-term study of mycophenolate mofetil as continuous induction and maintenance treatment for diffuse proliferative lupus nephritis. J Am Soc Nephrol. 2005;16:1076-1084.
  636. Dooley MA, Jayne D, Ginzler EM, et al. Mycophenolate versus azathioprine as maintenance therapy for lupus nephritis. N Engl J Med. 2011;365:1886-1895.
  637. Houssiau FA, Vasconcelos C, D'Cruz D, et al. Immunosuppressive therapy in lupus nephritis: the Euro-Lupus Nephritis Trial, a randomized trial of low-dose versus high-dose intravenous cyclophosphamide. Arthritis Rheumatol. 2002;46:2121-2131.
  638. Lewis EJ, Hunsicker LG, Lan SP, et al. A controlled trial of plasmapheresis therapy in severe lupus nephritis. The Lupus Nephritis Collaborative Study Group. N Engl J Med. 1992;326:1373-1379.
  639. Liu Z, Zhang H, Liu Z, et al. Multitarget therapy for induction treatment of lupus nephritis: a randomized trial. Ann Intern Med. 2015;162:18-26.
  640. Pollak VE, Pirani CL, Schwartz FD. The natural history of the renal manifestations of systemic lupus erythematosus. J Lab Clin Med. 1964;63:537-550.
  641. Bajema IM, Wilhelmus S, Alpers CE, et al. Revision of the International Society of Nephrology/Renal Pathology Society classification for lupus nephritis: clarification of definitions, and modified National Institutes of Health activity and chronicity indices. Kidney Int. 2018;93:789-796.
  642. Markowitz GS, D'Agati VD. The ISN/RPS 2003 classification of lupus nephritis: an assessment at 3 years. Kidney Int. 2007;71:491-495.
  643. Weening JJ, D'Agati VD, Schwartz MM, et al. The classification of glomerulonephritis in systemic lupus erythematosus revisited. J Am Soc Nephrol. 2004;15:241-250.
  644. Galindo-Izquierdo M, Rodriguez-Almaraz E, Pego-Reigosa JM, et al. Characterization of patients with lupus nephritis included in a large cohort from the Spanish Society of Rheumatology Registry of Patients with Systemic Lupus Erythematosus (RELESSER). Medicine (Baltimore) 2016;95:e2891.
  645. Pons-Estel GJ, Alarcon GS, Burgos PI, et al. Mestizos with systemic lupus erythematosus develop renal disease early while antimalarials retard its appearance: data from a Latin American cohort. Lupus. 2013;22:899-907.
  646. Kasitanon N, Fine DM, Haas M, et al. Hydroxychloroquine use predicts complete renal remission within 12 months among patients treated with mycophenolate mofetil therapy for membranous lupus nephritis. Lupus. 2006;15:366-370.
  647. Mejia-Vilet JM, Cordova-Sanchez BM, Uribe-Uribe NO, et al. Immunosuppressive treatment for pure membranous lupus nephropathy in a Hispanic population. Clin Rheumatol. 2016;35:2219-2227.
  648. Kaiser R, Cleveland CM, Criswell LA. Risk and protective factors for thrombosis in systemic lupus erythematosus: results from a large, multi-ethnic cohort. Ann Rheum Dis. 2009;68:238-241.
  649. Petri M. Use of hydroxychloroquine to prevent thrombosis in systemic lupus erythematosus and in antiphospholipid antibody-positive patients. Curr Rheumatol Rep. 2011;13:77-80.
  650. Ruiz-Irastorza G, Egurbide MV, Pijoan JI, et al. Effect of antimalarials on thrombosis and survival in patients with systemic lupus erythematosus. Lupus. 2006;15:577-583.
  651. Tektonidou MG, Laskari K, Panagiotakos DB, et al. Risk factors for thrombosis and primary thrombosis prevention in patients with systemic lupus erythematosus with or without antiphospholipid antibodies. Arthritis Rheumatol. 2009;61:29-36.
  652. Fessler BJ, Alarcon GS, McGwin Jr. G, et al. Systemic lupus erythematosus in three ethnic groups: XVI. Association of hydroxychloroquine use with reduced risk of damage accrual. Arthritis Rheumatol. 2005;52:1473-1480.
  653. Pakchotanon R, Gladman DD, Su J, et al. More consistent antimalarial intake in first 5 years of disease is associated with better prognosis in patients with systemic lupus erythematosus. J Rheumatol. 2018;45:90-94.
  654. Pokroy-Shapira E, Gelernter I, Molad Y. Evolution of chronic kidney disease in patients with systemic lupus erythematosus over a long-period follow-up: a single-center inception cohort study. Clin Rheumatol. 2014;33:649-657.
  655. Pons-Estel GJ, Alarcon GS, McGwin Jr. G, et al. Protective effect of hydroxychloroquine on renal damage in patients with lupus nephritis: LXV, data from a multiethnic US cohort. Arthritis Rheumatol. 2009;61:830-839.
  656. Shaharir SS, Ghafor AH, Said MS, et al. A descriptive study of the factors associated with damage in Malaysian patients with lupus nephritis. Lupus. 2014;23:436-442.
  657. Siso A, Ramos-Casals M, Bove A, et al. Previous antimalarial therapy in patients diagnosed with lupus nephritis: influence on outcomes and survival. Lupus. 2008;17:281-288.
  658. Hodis HN, Quismorio FP Jr, Wickham E, et al. The lipid, lipoprotein, and apolipoprotein effects of hydroxychloroquine in patients with systemic lupus erythematosus. J Rheumatol. 1993;20:661-665.
  659. Tam LS, Gladman DD, Hallett DC, et al. Effect of antimalarial agents on the fasting lipid profile in systemic lupus erythematosus. J Rheumatol. 2000;27:2142-2145.
  660. Lakshminarayanan S, Walsh S, Mohanraj M, et al. Factors associated with low bone mineral density in female patients with systemic lupus erythematosus. J Rheumatol. 2001;28:102-108.
  661. Eudy AM, Siega-Riz AM, Engel SM, et al. Effect of pregnancy on disease flares in patients with systemic lupus erythematosus. Ann Rheum Dis. 2018;77:855-860.
  662. Leroux M, Desveaux C, Parcevaux M, et al. Impact of hydroxychloroquine on preterm delivery and intrauterine growth restriction in pregnant women with systemic lupus erythematosus: a descriptive cohort study. Lupus. 2015;24:1384-1391.
  663. Liu E, Liu Z, Zhou Y. Feasibility of hydroxychloroquine adjuvant therapy in pregnant women with systemic lupus erythematosus. Biomed Res (India) 2018;29:980-983.
  664. Serre J, Buob D, Boffa JJ. Hydroxychloroquine-induced podocytopathy mimicking Fabry disease. BMJ Case Rep. 2019;12.
  665. Sperati CJ, Rosenberg AZ. Hydroxychloroquine-induced mimic of renal Fabry disease. Kidney Int. 2018;94:634.
  666. Canadian Hydroxychloroquine Study Group. A randomized study of the effect of withdrawing hydroxychloroquine sulfate in systemic lupus erythematosus. N Engl J Med. 1991;324:150-154.
  667. Ruiz-Irastorza G, Ramos-Casals M, Brito-Zeron P, et al. Clinical efficacy and side effects of antimalarials in systemic lupus erythematosus: a systematic review. Ann Rheum Dis. 2010;69:20-28.
  668. Feldman CH, Hiraki LT, Winkelmayer WC, et al. Serious infections among adult Medicaid beneficiaries with systemic lupus erythematosus and lupus nephritis. Arthritis Rheumatol. 2015;67:1577-1585.
  669. Zheng ZH, Zhang LJ, Liu WX, et al. Predictors of survival in Chinese patients with lupus nephritis. Lupus. 2012;21:1049-1056.
  670. Mohammad S, Clowse MEB, Eudy AM, et al. Examination of hydroxychloroquine use and hemolytic anemia in G6PDH-deficient patients. Arthritis Care Res (Hoboken) 2018;70:481-485.
  671. Cervera R, Khamashta MA, Font J, et al. Morbidity and mortality in systemic lupus erythematosus during a 10-year period: a comparison of early and late manifestations in a cohort of 1,000 patients. Medicine (Baltimore) 2003;82:299-308.
  672. Fors Nieves CE, Izmirly PM. Mortality in systemic lupus erythematosus: an updated review. Curr Rheumatol Rep. 2016;18:21.
  673. Tselios K, Gladman DD, Sheane BJ, et al. All-cause, cause-specific and age-specific standardised mortality ratios of patients with systemic lupus erythematosus in Ontario, Canada over 43 years (1971-2013). Ann Rheum Dis. 2019;78:802-806.
  674. Yurkovich M, Vostretsova K, Chen W, et al. Overall and cause-specific mortality in patients with systemic lupus erythematosus: a meta-analysis of observational studies. Arthritis Care Res (Hoboken) 2014;66:608-616.
  675. Steiman AJ, Gladman DD, Ibanez D, et al. Outcomes in patients with systemic lupus erythematosus with and without a prolonged serologically active clinically quiescent period. Arthritis Care Res (Hoboken) 2012;64:511-518.
  676. Thong KM, Chan TM. Infectious complications in lupus nephritis treatment: a systematic review and meta-analysis. Lupus. 2019;28:334-346.
  677. Petri M, Allbritton J. Antibiotic allergy in systemic lupus erythematosus: a case-control study. J Rheumatol. 1992;19:265-269.
  678. Vananuvat P, Suwannalai P, Sungkanuparph S, et al. Primary prophylaxis for Pneumocystis jirovecii pneumonia in patients with connective tissue diseases. Semin Arthritis Rheum. 2011;41:497-502.
  679. Suyama Y, Okada M, Rokutanda R, et al. Safety and efficacy of upfront graded administration of trimethoprim-sulfamethoxazole in systemic lupus erythematosus: a retrospective cohort study. Mod Rheumatol. 2016;26:557-561.
  680. Murdaca G, Orsi A, Spano F, et al. Vaccine-preventable infections in systemic lupus erythematosus. Hum Vaccin Immunother. 2016;12:632-643.
  681. Petri M, Kim MY, Kalunian KC, et al. Combined oral contraceptives in women with systemic lupus erythematosus. N Engl J Med. 2005;353:2550-2558.
  682. Blumenfeld Z, von Wolff M. GnRH-analogues and oral contraceptives for fertility preservation in women during chemotherapy. Hum Reprod Update. 2008;14:543-552.
  683. Angeli A, Guglielmi G, Dovio A, et al. High prevalence of asymptomatic vertebral fractures in post-menopausal women receiving chronic glucocorticoid therapy: a cross-sectional outpatient study. Bone. 2006;39:253-259.
  684. Curtis JR, Westfall AO, Allison J, et al. Population-based assessment of adverse events associated with long-term glucocorticoid use. Arthritis Rheumatol. 2006;55:420-426.
  685. Hansen KE, Kleker B, Safdar N, et al. A systematic review and meta-analysis of glucocorticoid-induced osteoporosis in children. Semin Arthritis Rheum. 2014;44:47-54.
  686. Center for Metabolic Bone Diseases. Fracture Risk Assessment Tool. Available at: https://www.sheffield.ac.uk/FRAX/. Accessed January 27, 2021.
  687. Buckley L, Guyatt G, Fink HA, et al. 2017. American College of Rheumatology guideline for the prevention and treatment of glucocorticoid-induced osteoporosis. Arthritis Rheumatol. 2017;69:1521-1537.
  688. Zhang Y, Milojevic D. Protecting bone health in pediatric rheumatic diseases: pharmacological considerations. Paediatr Drugs. 2017;19:193-211.
  689. Choi MY, Flood K, Bernatsky S, et al. A review on SLE and malignancy. Best Pract Res Clin Rheumatol. 2017;31:373-396.
  690. Goobie GC, Bernatsky S, Ramsey-Goldman R, et al. Malignancies in systemic lupus erythematosus: a 2015 update. Curr Opin Rheumatol. 2015;27:454-460.
  691. Tessier-Cloutier B, Clarke AE, Pineau CA, et al. What investigations are needed to optimally monitor for malignancies in SLE? Lupus. 2015;24:781-787.
  692. Gatto M, Agmon-Levin N, Soriano A, et al. Human papillomavirus vaccine and systemic lupus erythematosus. Clin Rheumatol. 2013;32:1301-1307.
  693. Pellegrino P, Carnovale C, Perrone V, et al. Human papillomavirus vaccine in patients with systemic lupus erythematosus. Epidemiology. 2014;25:155-156.
  694. Baldwin DS, Gluck MC, Lowenstein J, et al. Lupus nephritis. Clinical course as related to morphologic forms and their transitions. Am J Med. 1977;62:12-30.
  695. Hu W, Chen Y, Wang S, et al. Clinical-morphological features and outcomes of lupus podocytopathy. Clin J Am Soc Nephrol. 2016;11:585-592.
  696. Lewis EJ. Lupus podocytopathy. In: Lewis EJ, Schwartz MM, Korbet SM, Chan TM, eds. Lupus Nephritis. 2nd ed. Oxford, UK: Oxford University Press; 2010: p. 199-210.
  697. Oliva-Damaso N, Payan J, Oliva-Damaso E, et al. Lupus podocytopathy: an overview. Adv Chronic Kidney Dis. 2019;26:369-375.
  698. Gutierrez S, Petiti JP, De Paul AL, et al. Lupus-related podocytopathy. Could it be a new entity within the spectrum of lupus nephritis? Nefrologia. 2012;32:245-246.
  699. Han TS, Schwartz MM, Lewis EJ. Association of glomerular podocytopathy and nephrotic proteinuria in mesangial lupus nephritis. Lupus. 2006;15:71-75.
  700. Kraft SW, Schwartz MM, Korbet SM, et al. Glomerular podocytopathy in patients with systemic lupus erythematosus. J Am Soc Nephrol. 2005;16:175-179.
  701. Shea-Simonds P, Cairns TD, Roufosse C, et al. Lupus podocytopathy. Rheumatology (Oxford) 2009;48:1616-1618.
  702. Wang SF, Chen YH, Chen DQ, et al. Mesangial proliferative lupus nephritis with podocytopathy: a special entity of lupus nephritis. Lupus. 2018;27:303-311.
  703. Hu WX, Chen YH, Bao H, et al. Glucocorticoid with or without additional immunosuppressant therapy for patients with lupus podocytopathy: a retrospective single-center study. Lupus. 2015;24:1067-1075.
  704. Furie R, Rovin BH, Houssiau F, et al. Two-year, randomized, controlled trial of belimumab in lupus nephritis. N Engl J Med. 2020;383:1117-1128.
  705. Rovin BH, Teng YKO, Ginzler EM, et al. Efficacy and safety of voclosporin versus placebo for lupus nephritis (AURORA 1): a double-blind, randomised, multicentre, placebo-controlled, phase 3 trial. Lancet. 2021;397:2070-2080.
  706. Gladman DD, Urowitz MB, Rahman P, et al. Accrual of organ damage over time in patients with systemic lupus erythematosus. J Rheumatol. 2003;30:1955-1959.
  707. Donadio Jr. JV, Holley KE, Ferguson RH, et al. Treatment of diffuse proliferative lupus nephritis with prednisone and combined prednisone and cyclophosphamide. N Engl J Med. 1978;299:1151-1155.
  708. Gourley MF, Austin 3rd HA, Scott D, et al. Methylprednisolone and cyclophosphamide, alone or in combination, in patients with lupus nephritis. A randomized, controlled trial. Ann Intern Med. 1996;125:549-557.
  709. Illei GG, Austin HA, Crane M, et al. Combination therapy with pulse cyclophosphamide plus pulse methylprednisolone improves long-term renal outcome without adding toxicity in patients with lupus nephritis. Ann Intern Med. 2001;135:248-257.
  710. Steinberg AD, Kaltreider HB, Staples PJ, et al. Cyclophosphamide in lupus nephritis: a controlled trial. Ann Intern Med. 1971;75:165-171.
  711. Li X, Ren H, Zhang Q, et al. Mycophenolate mofetil or tacrolimus compared with intravenous cyclophosphamide in the induction treatment for active lupus nephritis. Nephrol Dial Transplant. 2012;27:1467-1472.
  712. Rathi M, Goyal A, Jaryal A, et al. Comparison of low-dose intravenous cyclophosphamide with oral mycophenolate mofetil in the treatment of lupus nephritis. Kidney Int. 2016;89:235-242.
  713. Ginzler EM, Dooley MA, Aranow C, et al. Mycophenolate mofetil or intravenous cyclophosphamide for lupus nephritis. N Engl J Med. 2005;353:2219-2228.
  714. Houssiau FA, Vasconcelos C, D'Cruz D, et al. The 10-year follow-up data of the Euro-Lupus Nephritis Trial comparing low-dose and high-dose intravenous cyclophosphamide. Ann Rheum Dis. 2010;69:61-64.
  715. Chan TM, Tse KC, Tang CS, et al. Long-term outcome of patients with diffuse proliferative lupus nephritis treated with prednisolone and oral cyclophosphamide followed by azathioprine. Lupus. 2005;14:265-272.
  716. Chen YE, Korbet SM, Katz RS, et al. Value of a complete or partial remission in severe lupus nephritis. Clin J Am Soc Nephrol. 2008;3:46-53.
  717. Dall'Era M, Cisternas MG, Smilek DE, et al. Predictors of long-term renal outcome in lupus nephritis trials: lessons learned from the Euro-Lupus Nephritis cohort. Arthritis Rheumatol. 2015;67:1305-1313.
  718. Yap DY, Ma MK, Mok MM, et al. Long-term data on corticosteroids and mycophenolate mofetil treatment in lupus nephritis. Rheumatology (Oxford) 2013;52:480-486.
  719. Boumpas DT, Austin HA 3rd, Vaughn EM, et al. Controlled trial of pulse methylprednisolone versus two regimens of pulse cyclophosphamide in severe lupus nephritis. Lancet. 1992;340:741-745.
  720. Sesso R, Monteiro M, Sato E, et al. A controlled trial of pulse cyclophosphamide versus pulse methylprednisolone in severe lupus nephritis. Lupus. 1994;3:107-112.
  721. Tunnicliffe DJ, Palmer SC, Henderson L, et al. Immunosuppressive treatment for proliferative lupus nephritis. Cochrane Database Syst Rev. 2018;6:CD002922.
  722. Mehra S, Usdadiya JB, Jain VK, et al. Comparing the efficacy of low-dose vs high-dose cyclophosphamide regimen as induction therapy in the treatment of proliferative lupus nephritis: a single center study. Rheumatol Int. 2018;38:557-568.
  723. Mitwalli AH, Al Wakeel JS, Hurraib S, et al. Comparison of high and low dose of cyclophosphamide in lupus nephritis patients: a long-term randomized controlled trial. Saudi J Kidney Dis Transpl. 2011;22:935-940.
  724. Sabry A, Abo-Zenah H, Medhat T, et al. A comparative study of two intensified pulse cyclophosphamide remission-inducing regimens for diffuse proliferative lupus nephritis: an Egyptian experience. Int Urol Nephrol. 2009;41:153-161.
  725. El-Shafey EM, Abdou SH, Shareef MM. Is mycophenolate mofetil superior to pulse intravenous cyclophosphamide for induction therapy of proliferative lupus nephritis in Egyptian patients? Clin Exp Nephrol. 2010;14:214-221.
  726. Mendonca S, Gupta D, Ali S, et al. Mycophenolate mofetil or cyclophosphamide in indian patients with lupus nephritis: Which is better? A single-center experience. Saudi J Kidney Dis Transpl. 2017;28:1069-1077.
  727. Ong LM, Hooi LS, Lim TO, et al. Randomized controlled trial of pulse intravenous cyclophosphamide versus mycophenolate mofetil in the induction therapy of proliferative lupus nephritis. Nephrology (Carlton) 2005;10:504-510.
  728. Sedhain A, Hada R, Agrawal RK, et al. Low dose mycophenolate mofetil versus cyclophosphamide in the induction therapy of lupus nephritis in Nepalese population: a randomized control trial. BMC Nephrol. 2018;19:175.
  729. Mohara A, Perez Velasco R, Praditsitthikorn N, et al. A cost-utility analysis of alternative drug regimens for newly diagnosed severe lupus nephritis patients in Thailand. Rheumatology (Oxford) 2014;53:138-144.
  730. Tse KC, Tang CS, Lam MF, et al. Cost comparison between mycophenolate mofetil and cyclophosphamide-azathioprine in the treatment of lupus nephritis. J Rheumatol. 2009;36:76-81.
  731. Wilson EC, Jayne DR, Dellow E, et al. The cost-effectiveness of mycophenolate mofetil as firstline therapy in active lupus nephritis. Rheumatology (Oxford) 2007;46:1096-1101.
  732. Meacock R, Dale N, Harrison MJ. The humanistic and economic burden of systemic lupus erythematosus : a systematic review. Pharmacoeconomics. 2013;31:49-61.
  733. Sahay M, Saivani Y, Ismal K, et al. Mycophenolate versus cyclophosphamide for lupus nephritis. Indian J Nephrol. 2018;28:35-40.
  734. Isenberg D, Appel GB, Contreras G, et al. Influence of race/ethnicity on response to lupus nephritis treatment: the ALMS study. Rheumatology (Oxford) 2010;49:128-140.
  735. Mejia-Vilet JM, Arreola-Guerra JM, Cordova-Sanchez BM, et al. Comparison of lupus nephritis induction treatments in a Hispanic population: a single-center cohort analysis. J Rheumatol. 2015;42:2082-2091.
  736. Zhang H, Liu Z, Zhou M, et al. Multitarget therapy for maintenance treatment of lupus nephritis. J Am Soc Nephrol. 2017;28:3671-3678.
  737. Rovin BH, Solomons N, Pendergraft WF 3rd, et al. A randomized, controlled double-blind study comparing the efficacy and safety of dose-ranging voclosporin with placebo in achieving remission in patients with active lupus nephritis. Kidney Int. 2019;95:219-231.
  738. Dall'Era M, Solomons N, Federico R, et al. Comparison of standard of care treatment with a low steroid and mycophenolate mofetil regimen for lupus nephritis in the ALMS and AURA studies. Lupus. 2019;28:591-596.
  739. Mina R, von Scheven E, Ardoin SP, et al. Consensus treatment plans for induction therapy of newly diagnosed proliferative lupus nephritis in juvenile systemic lupus erythematosus. Arthritis Care Res (Hoboken) 2012;64:375-383.
  740. Zeher M, Doria A, Lan J, et al. Efficacy and safety of enteric-coated mycophenolate sodium in combination with two glucocorticoid regimens for the treatment of active lupus nephritis. Lupus. 2011;20:1484-1493.
  741. Austin HA 3rd, Illei GG, Braun MJ, et al. Randomized, controlled trial of prednisone, cyclophosphamide, and cyclosporine in lupus membranous nephropathy. J Am Soc Nephrol. 2009;20:901-911.
  742. McKinley A, Park E, Spetie D, et al. Oral cyclophosphamide for lupus glomerulonephritis: an underused therapeutic option. Clin J Am Soc Nephrol. 2009;4:1754-1760.
  743. Mok CC, Ho CT, Chan KW, et al. Outcome and prognostic indicators of diffuse proliferative lupus glomerulonephritis treated with sequential oral cyclophosphamide and azathioprine. Arthritis Rheumatol. 2002;46:1003-1013.
  744. Yee CS, Crabtree N, Skan J, et al. Prevalence and predictors of fragility fractures in systemic lupus erythematosus. Ann Rheum Dis. 2005;64:111-113.
  745. ACCESS Trial Group. Treatment of lupus nephritis with abatacept: the Abatacept and Cyclophosphamide Combination Efficacy and Safety Study. Arthritis Rheumatol. 2014;66:3096-3104.
  746. Ciancio G, Miller J, Gonwa TA. Review of major clinical trials with mycophenolate mofetil in renal transplantation. Transplantation. 2005;80:S191-S200.
  747. Alexander S, Fleming DH, Mathew BS, et al. Pharmacokinetics of concentration-controlled mycophenolate mofetil in proliferative lupus nephritis: an observational cohort study. Ther Drug Monit. 2014;36:423-432.
  748. Kittanamongkolchai W, Rukrung C, Supasiri T, et al. Therapeutic drug monitoring of mycophenolate mofetil for the treatment of severely active lupus nephritis. Lupus. 2013;22:727-732.
  749. Lertdumrongluk P, Somparn P, Kittanamongkolchai W, et al. Pharmacokinetics of mycophenolic acid in severe lupus nephritis. Kidney Int. 2010;78:389-395.
  750. Neumann I, Fuhrmann H, Fang IF, et al. Association between mycophenolic acid 12-h trough levels and clinical endpoints in patients with autoimmune disease on mycophenolate mofetil. Nephrol Dial Transplant. 2008;23:3514-3520.
  751. van Gelder T, Berden JH, Berger SP. To TDM or not to TDM in lupus nephritis patients treated with MMF? Nephrol Dial Transplant. 2015;30:560-564.
  752. Rovin BH, Parikh SV, Hebert LA, et al. Lupus nephritis: induction therapy in severe lupus nephritis-should MMF be considered the drug of choice? Clin J Am Soc Nephrol. 2013;8:147-153.
  753. Sakai R, Kurasawa T, Nishi E, et al. Efficacy and safety of multitarget therapy with cyclophosphamide and tacrolimus for lupus nephritis: a prospective, single-arm, single-centre, open label pilot study in Japan. Lupus. 2018;27:273-282.
  754. Yang TH, Wu TH, Chang YL, et al. Cyclosporine for the treatment of lupus nephritis in patients with systemic lupus erythematosus. Clin Nephrol. 2018;89:277-285.
  755. Bao H, Liu ZH, Xie HL, et al. Successful treatment of class V+IV lupus nephritis with multitarget therapy. J Am Soc Nephrol. 2008;19:2001-2010.
  756. Busque S, Cantarovich M, Mulgaonkar S, et al. The PROMISE study: a phase 2b multicenter study of voclosporin (ISA247) versus tacrolimus in de novo kidney transplantation. Am J Transplant. 2011;11:2675-2684.
  757. Caster D, Solomon DH, Randhawa S, et al. AURORA phase 3 trial demonstrates voclosporin statistical superiority over standard of care in lupus nephritis. Dial Transplant. 2020;35.
  758. Rovin BH, Parikh SV, Huizinga B, et al. Management of lupus nephritis with voclosporin: an update from a pooled analysis of 534 patients [Abstract PO1917]. J Am Soc Nephrol. 2020;31:592.
  759. van Gelder T, Huizinga RB, Noukens J, et al. Use of therapeutic drug monitoring does not add clinical value for voclosporin in patients with lupus nephritis [Abstract PO1918]. J Am Soc Nephrol. 2020;31:592.
  760. Furie R, Nicholls K, Cheng TT, et al. Efficacy and safety of abatacept in lupus nephritis: a twelve-month, randomized, double-blind study. Arthritis Rheumatol. 2014;66:379-389.
  761. Mysler EF, Spindler AJ, Guzman R, et al. Efficacy and safety of ocrelizumab in active proliferative lupus nephritis: results from a randomized, double-blind, phase III study. Arthritis Rheumatol. 2013;65:2368-2379.
  762. Rovin BH, Furie R, Latinis K, et al. Efficacy and safety of rituximab in patients with active proliferative lupus nephritis: the Lupus Nephritis Assessment with Rituximab study. Arthritis Rheumatol. 2012;64:1215-1226.
  763. Rovin BH, Martinez A, Analia A, et al. A Phase 2 randomized controlled study of obinutuzumab with mycophenolate and corticosteroids in proliferative lupus nephritis [Abstract FR-OR136.]. J Am Soc Nephrol. 2019;30:B2.
  764. Wofsy D, Hillson JL, Diamond B. Abatacept for lupus nephritis: alternative definitions of complete response support conflicting conclusions. Arthritis Rheumatol. 2012;64:3660-3665.
  765. Gunnarsson I, Sundelin B, Jonsdottir T, et al. Histopathologic and clinical outcome of rituximab treatment in patients with cyclophosphamide-resistant proliferative lupus nephritis. Arthritis Rheumatol. 2007;56:1263-1272.
  766. Karim MY, Pisoni CN, Khamashta MA. Update on immunotherapy for systemic lupus erythematosus-what's hot and what's not!. Rheumatology (Oxford) 2009;48:332-341.
  767. Li EK, Tam LS, Zhu TY, et al. Is combination rituximab with cyclophosphamide better than rituximab alone in the treatment of lupus nephritis? Rheumatology (Oxford) 2009;48:892-898.
  768. Lu TY, Ng KP, Cambridge G, et al. A retrospective seven-year analysis of the use of B cell depletion therapy in systemic lupus erythematosus at University College London Hospital: the first fifty patients. Arthritis Rheumatol. 2009;61:482-487.
  769. Ramos-Casals M, Soto MJ, Cuadrado MJ, et al. Rituximab in systemic lupus erythematosus: a systematic review of off-label use in 188 cases. Lupus. 2009;18:767-776.
  770. Condon MB, Ashby D, Pepper RJ, et al. Prospective observational single-centre cohort study to evaluate the effectiveness of treating lupus nephritis with rituximab and mycophenolate mofetil but no oral steroids. Ann Rheum Dis. 2013;72:1280-1286.
  771. Dyadyk AI, Bagriy AE, Yarovaya NF, et al. Results of long-term randomised study of immunosuppressive treatment of patients with idiopathic membranous glomerulonephritis [abstract]. Nephrol Dial Transplant. 2001;16:A64.
  772. Grootscholten C, Ligtenberg G, Hagen EC, et al. Azathioprine/methylprednisolone versus cyclophosphamide in proliferative lupus nephritis. A randomized controlled trial. Kidney Int. 2006;70:732-742.
  773. Wang HY, Cui TG, Hou FF, et al. Induction treatment of proliferative lupus nephritis with leflunomide combined with prednisone: a prospective multi-centre observational study. Lupus. 2008;17:638-644.
  774. Zhang M, Qi C, Zha Y, et al. Leflunomide versus cyclophosphamide in the induction treatment of proliferative lupus nephritis in Chinese patients: a randomized trial. Clin Rheumatol. 2019;38:859-867.
  775. Clark WF, Lindsay RM, Cattran DC, et al. Monthly plasmapheresis for systemic lupus erythematosus with diffuse proliferative glomerulonephritis: a pilot study. Can Med Assoc J 1981;125:171-174.
  776. Doria A, Piccoli A, Vesco P, et al. Therapy of lupus nephritis. A two-year prospective study. Ann Med Interne (Paris) 1994;145:307-311.
  777. Wallace DJ, Goldfinger D, Pepkowitz SH, et al. Randomized controlled trial of pulse/synchronization cyclophosphamide/apheresis for proliferative lupus nephritis. J Clin Apher. 1998;13:163-166.
  778. Rovin BH, van Vollenhoven RF, Aranow C, et al. A multicenter, randomized, double-blind, placebo-controlled study to evaluate the efficacy and safety of treatment with sirukumab (CNTO 136) in patients with active lupus nephritis. Arthritis Rheumatol. 2016;68:2174-2183.
  779. Jayne D, Appel G, Chan TM, et al. LB0003: A randomized controlled study of laquinimod in active lupus nephritis patients in combination with standard of care. Ann Rheum Dis. 2013;72:A164.
  780. Mok CC, Lau CS, Wong RW. Risk factors for ovarian failure in patients with systemic lupus erythematosus receiving cyclophosphamide therapy. Arthritis Rheumatol. 1998;41:831-837.
  781. Radis CD, Kahl LE, Baker GL, et al. Effects of cyclophosphamide on the development of malignancy and on long-term survival of patients with rheumatoid arthritis. A 20-year followup study. Arthritis Rheumatol. 1995;38:1120-1127.
  782. Contreras G, Pardo V, Leclercq B, et al. Sequential therapies for proliferative lupus nephritis. N Engl J Med. 2004;350:971-980.
  783. Houssiau FA, D'Cruz D, Sangle S, et al. Azathioprine versus mycophenolate mofetil for long-term immunosuppression in lupus nephritis: results from the MAINTAIN Nephritis Trial. Ann Rheum Dis. 2010;69:2083-2089.
  784. Kaballo BG, Ahmed AE, Nur MM, et al. Mycophenolate mofetil versus azathioprine for maintenance treatment of lupus nephritis. Saudi J Kidney Dis Transpl. 2016;27:717-725.
  785. Aragon E, Resontoc LP, Chan YH, et al. Long-term outcomes with multi-targeted immunosuppressive protocol in children with severe proliferative lupus nephritis. Lupus. 2016;25:399-406.
  786. Kasitanon N, Boripatkosol P, Louthrenoo W. Response to combination of mycophenolate mofetil, cyclosporin A and corticosteroid treatment in lupus nephritis patients with persistent proteinuria. Int J Rheum Dis. 2018;21:200-207.
  787. Choi CB, Won S, Bae SC. Outcomes of multitarget therapy using mycophenolate mofetil and tacrolimus for refractory or relapsing lupus nephritis. Lupus. 2018;27:1007-1011.
  788. Karasawa K, Uchida K, Kodama M, et al. Long-term effects of tacrolimus for maintenance therapy of lupus nephritis: a 5-year retrospective study at a single center. Rheumatol Int. 2018;38:2271-2277.
  789. Yap DY, Ma MK, Mok MM, et al. Long-term data on tacrolimus treatment in lupus nephritis. Rheumatology (Oxford) 2014;53:2232-2237.
  790. Yumura W, Suganuma S, Uchida K, et al. Effects of long-term treatment with mizoribine in patients with proliferative lupus nephritis. Clin Nephrol. 2005;64:28-34.
  791. Zavada J, Sinikka Pesickova S, Rysava R, et al. Extended follow-up of the CYCLOFA-LUNE trial comparing two sequential induction and maintenance treatment regimens for proliferative lupus nephritis based either on cyclophosphamide or on cyclosporine A. Lupus. 2014;23:69-74.
  792. Nee R, Rivera I, Little DJ, et al. Cost-utility analysis of mycophenolate mofetil versus azathioprine based regimens for maintenance therapy of proliferative lupus nephritis. Int J Nephrol. 2015;2015:917567.
  793. Yap DYH, Tang C, Ma MKM, et al. Longterm data on disease flares in patients with proliferative lupus nephritis in recent years. J Rheumatol. 2017;44:1375-1383.
  794. Ruiz-Arruza I, Lozano J, Cabezas-Rodriguez I, et al. Restrictive use of oral glucocorticoids in systemic lupus erythematosus and prevention of damage without worsening long-term disease control: an observational study. Arthritis Care Res (Hoboken) 2018;70:582-591.
  795. Mathian A, Pha M, Haroche J, et al. Withdrawal of low-dose prednisone in SLE patients with a clinically quiescent disease for more than 1 year: a randomised clinical trial. Ann Rheum Dis. 2020;79:339-346.
  796. Yap DYH, Kwan LPY, Ma MKM, et al. Preemptive immunosuppressive treatment for asymptomatic serological reactivation may reduce renal flares in patients with lupus nephritis: a cohort study. Nephrol Dial Transplant. 2019;34:467-473.
  797. Tanaka H, Watanabe S, Aizawa-Yashiro T, et al. Long-term tacrolimus-based immunosuppressive treatment for young patients with lupus nephritis: a prospective study in daily clinical practice. Nephron Clin Pract. 2012;121:c165-c173.
  798. Chen W, Liu Q, Chen W, et al. Outcomes of maintenance therapy with tacrolimus versus azathioprine for active lupus nephritis: a multicenter randomized clinical trial. Lupus. 2012;21:944-952.
  799. Cortes-Hernandez J, Torres-Salido MT, Medrano AS, et al. Long-term outcomes-mycophenolate mofetil treatment for lupus nephritis with addition of tacrolimus for resistant cases. Nephrol Dial Transplant. 2010;25:3939-3948.
  800. Tse KC, Lam MF, Tang SC, et al. A pilot study on tacrolimus treatment in membranous or quiescent lupus nephritis with proteinuria resistant to angiotensin inhibition or blockade. Lupus. 2007;16:46-51.
  801. Uchino A, Tsukamoto H, Nakashima H, et al. Tacrolimus is effective for lupus nephritis patients with persistent proteinuria. Clin Exp Rheumatol. 2010;28:6-12.
  802. Sugiyama S. Long-term therapy of mizoribine on lupus nephritis in joint multi-center study. J Cliin Ther Med. 1996;12:215-219.
  803. Takeuchi T, Okada K, Yoshida H, et al. Post-marketing surveillance study of the long-term use of mizoribine for the treatment of lupus nephritis: 2-year results. Mod Rheumatol. 2018;28:85-94.
  804. Yap DYH, Tam CH, Yung S, et al. Pharmacokinetics and pharmacogenomics of mycophenolic acid and its clinical correlations in maintenance immunosuppression for lupus nephritis. Nephrol Dial Transplant. 2018;35:810-818.
  805. Moroni G, Longhi S, Giglio E, et al. What happens after complete withdrawal of therapy in patients with lupus nephritis. Clin Exp Rheumatol. 2013;31:S75-S81.
  806. Alvarado AS, Malvar A, Lococo B, et al. The value of repeat kidney biopsy in quiescent Argentinian lupus nephritis patients. Lupus. 2014;23:840-847.
  807. De Rosa M, Azzato F, Toblli JE, et al. A prospective observational cohort study highlights kidney biopsy findings of lupus nephritis patients in remission who flare following withdrawal of maintenance therapy. Kidney Int. 2018;94:788-794.
  808. Malvar A, Alberton V, Lococo B, et al. Kidney biopsy-based management of maintenance immunosuppression is safe and may ameliorate flare rate in lupus nephritis. Kidney Int. 2020;97:156-162.
  809. Appel GB, Cohen DJ, Pirani CL, et al. Long-term follow-up of patients with lupus nephritis. A study based on the classification of the World Health Organization. Am J Med. 1987;83:877-885.
  810. Mercadal L, Montcel ST, Nochy D, et al. Factors affecting outcome and prognosis in membranous lupus nephropathy. Nephrol Dial Transplant. 2002;17:1771-1778.
  811. Mok CC. Membranous nephropathy in systemic lupus erythematosus: a therapeutic enigma. Nat Rev Nephrol. 2009;5:212-220.
  812. Mok CC, Ying KY, Yim CW, et al. Very long-term outcome of pure lupus membranous nephropathy treated with glucocorticoid and azathioprine. Lupus. 2009;18:1091-1095.
  813. Radhakrishnan J, Moutzouris DA, Ginzler EM, et al. Mycophenolate mofetil and intravenous cyclophosphamide are similar as induction therapy for class V lupus nephritis. Kidney Int. 2010;77:152-160.
  814. Chan TM, Li FK, Hao WK, et al. Treatment of membranous lupus nephritis with nephrotic syndrome by sequential immunosuppression. Lupus. 1999;8:545-551.
  815. Cramer 2nd CH, Mills M, Valentini RP, et al. Clinical presentation and outcome in a cohort of paediatric patients with membranous lupus nephritis. Nephrol Dial Transplant. 2007;22:3495-3500.
  816. Borba EF, Guedes LK, Christmann RB, et al. Mycophenolate mofetil is effective in reducing lupus glomerulonephritis proteinuria. Rheumatol Int. 2006;26:1078-1083.
  817. Mok CC, Ying KY, Yim CW, et al. Tacrolimus versus mycophenolate mofetil for induction therapy of lupus nephritis: a randomised controlled trial and long-term follow-up. Ann Rheum Dis. 2016;75:30-36.
  818. Spetie DN, Tang Y, Rovin BH, et al. Mycophenolate therapy of SLE membranous nephropathy. Kidney Int. 2004;66:2411-2415.
  819. Chen W, Tang X, Liu Q, et al. Short-term outcomes of induction therapy with tacrolimus versus cyclophosphamide for active lupus nephritis: a multicenter randomized clinical trial. Am J Kidney Dis. 2011;57:235-244.
  820. Szeto CC, Kwan BC, Lai FM, et al. Tacrolimus for the treatment of systemic lupus erythematosus with pure class V nephritis. Rheumatology (Oxford) 2008;47:1678-1681.
  821. Yap DY, Yu X, Chen XM, et al. Pilot 24 month study to compare mycophenolate mofetil and tacrolimus in the treatment of membranous lupus nephritis with nephrotic syndrome. Nephrology (Carlton) 2012;17:352-357.
  822. Chavarot N, Verhelst D, Pardon A, et al. Rituximab alone as induction therapy for membranous lupus nephritis: a multicenter retrospective study. Medicine (Baltimore) 2017;96:.
  823. Houssiau FA, Vasconcelos C, D'Cruz D, et al. Early response to immunosuppressive therapy predicts good renal outcome in lupus nephritis: lessons from long-term followup of patients in the Euro-Lupus Nephritis Trial. Arthritis Rheumatol. 2004;50:3934-3940.
  824. Korbet SM, Lewis EJ, Collaborative Study Group. Severe lupus nephritis: the predictive value of a ≥ 50% reduction in proteinuria at 6 months. Nephrol Dial Transplant. 2013;28:2313-2318.
  825. Korbet SM, Lewis EJ, Schwartz MM, et al. Factors predictive of outcome in severe lupus nephritis. Lupus Nephritis Collaborative Study Group. Am J Kidney Dis. 2000;35:904-914.
  826. Tamirou F, D'Cruz D, Sangle S, et al. Long-term follow-up of the MAINTAIN Nephritis Trial, comparing azathioprine and mycophenolate mofetil as maintenance therapy of lupus nephritis. Ann Rheum Dis. 2016;75:526-531.
  827. Tamirou F, Lauwerys BR, Dall'Era M, et al. A proteinuria cut-off level of 0.7 g/day after 12 months of treatment best predicts long-term renal outcome in lupus nephritis: data from the MAINTAIN Nephritis Trial. Lupus Sci Med. 2015;2:e000123.
  828. Ugolini-Lopes MR, Seguro LPC, Castro MXF, et al. Early proteinuria response: a valid real-life situation predictor of long-term lupus renal outcome in an ethnically diverse group with severe biopsy-proven nephritis? Lupus Sci Med. 2017;4:e000213.
  829. Ioannidis JP, Boki KA, Katsorida ME, et al. Remission, relapse, and re-remission of proliferative lupus nephritis treated with cyclophosphamide. Kidney Int. 2000;57:258-264.
  830. Touma Z, Urowitz MB, Ibanez D, et al. Time to recovery from proteinuria in patients with lupus nephritis receiving standard treatment. J Rheumatol. 2014;41:688-697.
  831. Dall'Era M, Stone D, Levesque V, et al. Identification of biomarkers that predict response to treatment of lupus nephritis with mycophenolate mofetil or pulse cyclophosphamide. Arthritis Care Res (Hoboken) 2011;63:351-357.
  832. Bruce IN, Gladman DD, Urowitz MB. Factors associated with refractory renal disease in patients with systemic lupus erythematosus: the role of patient nonadherence. Arthritis Care Res. 2000;13:406-408.
  833. Costedoat-Chalumeau N, Pouchot J, Guettrot-Imbert G, et al. Adherence to treatment in systemic lupus erythematosus patients. Best Pract Res Clin Rheumatol. 2013;27:329-340.
  834. Marengo MF, Waimann CA, de Achaval S, et al. Measuring therapeutic adherence in systemic lupus erythematosus with electronic monitoring. Lupus. 2012;21:1158-1165.
  835. Petri M, Perez-Gutthann S, Longenecker JC, et al. Morbidity of systemic lupus erythematosus: role of race and socioeconomic status. Am J Med. 1991;91:345-353.
  836. Rivera F, Merida E, Illescas ML, et al. Mycophenolate in refractory and relapsing lupus nephritis. Am J Nephrol. 2014;40:105-112.
  837. Bang SY, Lee CK, Kang YM, et al. Multicenter retrospective analysis of the effectiveness and safety of rituximab in korean patients with refractory systemic lupus erythematosus. Autoimmune Dis. 2012:565039.
  838. Contis A, Vanquaethem H, Truchetet ME, et al. Analysis of the effectiveness and safety of rituximab in patients with refractory lupus nephritis: a chart review. Clin Rheumatol. 2016;35:517-522.
  839. Diaz-Lagares C, Croca S, Sangle S, et al. Efficacy of rituximab in 164 patients with biopsy-proven lupus nephritis: pooled data from European cohorts. Autoimmun Rev. 2012;11:357-364.
  840. Garcia-Carrasco M, Mendoza-Pinto C, Sandoval-Cruz M, et al. Anti-CD20 therapy in patients with refractory systemic lupus erythematosus: a longitudinal analysis of 52. Hispanic patients. Lupus. 2010;19:213-219.
  841. Iaccarino L, Bartoloni E, Carli L, et al. Efficacy and safety of off-label use of rituximab in refractory lupus: data from the Italian Multicentre Registry. Clin Exp Rheumatol. 2015;33:449-456.
  842. Iwata S, Saito K, Hirata S, et al. Efficacy and safety of anti-CD20 antibody rituximab for patients with refractory systemic lupus erythematosus. Lupus. 2018;27:802-811.
  843. Koike R, Harigai M, Atsumi T, et al. Japan College of Rheumatology 2009 guidelines for the use of tocilizumab, a humanized anti-interleukin-6 receptor monoclonal antibody, in rheumatoid arthritis. Mod Rheumatol. 2009;19:351-357.
  844. Kotagiri P, Martin A, Hughes P, et al. Single-dose rituximab in refractory lupus nephritis. Intern Med J 2016;46:899-901.
  845. Melander C, Sallee M, Trolliet P, et al. Rituximab in severe lupus nephritis: early B-cell depletion affects long-term renal outcome. Clin J Am Soc Nephrol. 2009;4:579-587.
  846. Tanaka Y, Takeuchi T, Miyasaka N, et al. Efficacy and safety of rituximab in Japanese patients with systemic lupus erythematosus and lupus nephritis who are refractory to conventional therapy. Mod Rheumatol. 2016;26:80-86.
  847. Vigna-Perez M, Hernandez-Castro B, Paredes-Saharopulos O, et al. Clinical and immunological effects of Rituximab in patients with lupus nephritis refractory to conventional therapy: a pilot study. Arthritis Res Ther. 2006;8:R83.
  848. Weidenbusch M, Rommele C, Schrottle A, et al. Beyond the LUNAR trial. Efficacy of rituximab in refractory lupus nephritis. Nephrol Dial Transplant. 2013;28:106-111.
  849. Alshaiki F, Obaid E, Almuallim A, et al. Outcomes of rituximab therapy in refractory lupus: a meta-analysis. Eur J Rheumatol. 2018;5:118-126.
  850. Fei Y, Wu Q, Zhang W, et al. Low-dose tacrolimus in treating lupus nephritis refractory to cyclophosphamide: a prospective cohort study. Clin Exp Rheumatol. 2013;31:62-68.
  851. Jesus D, Rodrigues M, da Silva JAP, et al. Multitarget therapy of mycophenolate mofetil and cyclosporine A for induction treatment of refractory lupus nephritis. Lupus. 2018;27:1358-1362.
  852. Mok CC, To CH, Yu KL, et al. Combined low-dose mycophenolate mofetil and tacrolimus for lupus nephritis with suboptimal response to standard therapy: a 12-month prospective study. Lupus. 2013;22:1135-1141.
  853. Ogawa H, Kameda H, Amano K, et al. Efficacy and safety of cyclosporine A in patients with refractory systemic lupus erythematosus in a daily clinical practice. Lupus. 2010;19:162-169.
  854. Sheikholeslami M, Hajialilo M, Rasi Hashemi SS, et al. Low dose cyclosporine A in the treatment of resistant proliferative lupus nephritis. Mod Rheumatol. 2018;28:523-529.
  855. Arriens C, Chen S, Karp DR, et al. Prognostic significance of repeat biopsy in lupus nephritis: Histopathologic worsening and a short time between biopsies is associated with significantly increased risk for end stage renal disease and death. Clin Immunol. 2017;185:3-9.
  856. Moroni G, Quaglini S, Gallelli B, et al. The long-term outcome of 93 patients with proliferative lupus nephritis. Nephrol Dial Transplant. 2007;22:2531-2539.
  857. Mosca M, Bencivelli W, Neri R, et al. Renal flares in 91. SLE patients with diffuse proliferative glomerulonephritis. Kidney Int. 2002;61:1502-1509.
  858. Parikh SV, Nagaraja HN, Hebert L, et al. Renal flare as a predictor of incident and progressive CKD in patients with lupus nephritis. Clin J Am Soc Nephrol. 2014;9:279-284.
  859. Morris HK, Canetta PA, Appel GB. Impact of the ALMS and MAINTAIN trials on the management of lupus nephritis. Nephrol Dial Transplant. 2013;28:1371-1376.
  860. Hanaoka H, Iida H, Kiyokawa T, et al. Early achievement of deep remission predicts low incidence of renal flare in lupus nephritis class III or IV. Arthritis Res Ther. 2018;20:86.
  861. Mejia-Vilet JM, Parikh SV, Song H, et al. Immune gene expression in kidney biopsies of lupus nephritis patients at diagnosis and at renal flare. Nephrol Dial Transplant. 2019;34:1197-1206.
  862. Ioannidis JP, Katsifis GE, Tzioufas AG, et al. Predictors of sustained amenorrhea from pulsed intravenous cyclophosphamide in premenopausal women with systemic lupus erythematosus. J Rheumatol. 2002;29:2129-2135.
  863. Katsifis GE, Tzioufas AG. Ovarian failure in systemic lupus erythematosus patients treated with pulsed intravenous cyclophosphamide. Lupus. 2004;13:673-678.
  864. Parikh SV, Alvarado A, Malvar A, et al. The kidney biopsy in lupus nephritis: past, present, and future. Semin Nephrol. 2015;35:465-477.
  865. Bootsma H, Spronk P, Derksen R, et al. Prevention of relapses in systemic lupus erythematosus. Lancet. 1995;345:1595-1599.
  866. Tseng CE, Buyon JP, Kim M, et al. The effect of moderate-dose corticosteroids in preventing severe flares in patients with serologically active, but clinically stable, systemic lupus erythematosus: findings of a prospective, randomized, double-blind, placebo-controlled trial. Arthritis Rheumatol. 2006;54:3623-3632.
  867. Bendapudi PK, Hurwitz S, Fry A, et al. Derivation and external validation of the PLASMIC score for rapid assessment of adults with thrombotic microangiopathies: a cohort study. Lancet Haematol. 2017;4:e157-e164.
  868. George JN, Nester CM. Syndromes of thrombotic microangiopathy. N Engl J Med. 2014;371:654-666.
  869. Brocklebank V, Wood KM, Kavanagh D. Thrombotic microangiopathy and the kidney. Clin J Am Soc Nephrol. 2018;13:300-317.
  870. Johnson S, Stojanovic J, Ariceta G, et al. An audit analysis of a guideline for the investigation and initial therapy of diarrhea negative (atypical) hemolytic uremic syndrome. Pediatr Nephrol. 2014;29:1967-1978.
  871. Loirat C, Fakhouri F, Ariceta G, et al. An international consensus approach to the management of atypical hemolytic uremic syndrome in children. Pediatr Nephrol. 2016;31:15-39.
  872. Scully M, Hunt BJ, Benjamin S, et al. Guidelines on the diagnosis and management of thrombotic thrombocytopenic purpura and other thrombotic microangiopathies. Br J Haematol. 2012;158:323-335.
  873. Rock GA, Shumak KH, Buskard NA, et al. Comparison of plasma exchange with plasma infusion in the treatment of thrombotic thrombocytopenic purpura. Canadian Apheresis Study Group. N Engl J Med. 1991;325:393-397.
  874. von Baeyer H. Plasmapheresis in thrombotic microangiopathy-associated syndromes: review of outcome data derived from clinical trials and open studies. Ther Apher. 2002;6:320-328.
  875. Allford SL, Hunt BJ, Rose P, et al. Guidelines on the diagnosis and management of the thrombotic microangiopathic haemolytic anaemias. Br J Haematol. 2003;120:556-573.
  876. Bell WR, Braine HG, Ness PM, et al. Improved survival in thrombotic thrombocytopenic purpura-hemolytic uremic syndrome. Clinical experience in 108 patients. N Engl J Med. 1991;325:398-403.
  877. Westwood JP, Thomas M, Alwan F, et al. Rituximab prophylaxis to prevent thrombotic thrombocytopenic purpura relapse: outcome and evaluation of dosing regimens. Blood Adv. 2017;1:1159-1166.
  878. Froissart A, Buffet M, Veyradier A, et al. Efficacy and safety of first-line rituximab in severe, acquired thrombotic thrombocytopenic purpura with a suboptimal response to plasma exchange. Experience of the French Thrombotic Microangiopathies Reference Center. Crit Care Med. 2012;40:104-111.
  879. Scully M, Cohen H, Cavenagh J, et al. Remission in acute refractory and relapsing thrombotic thrombocytopenic purpura following rituximab is associated with a reduction in IgG antibodies to ADAMTS-13. Br J Haematol. 2007;136:451-461.
  880. Scully M, McDonald V, Cavenagh J, et al. A phase 2 study of the safety and efficacy of rituximab with plasma exchange in acute acquired thrombotic thrombocytopenic purpura. Blood. 2011;118:1746-1753.
  881. Peyvandi F, Scully M, Kremer Hovinga JA, et al. Caplacizumab for acquired thrombotic thrombocytopenic purpura. N Engl J Med. 2016;374:511-522.
  882. Scully M, Cataland SR, Peyvandi F, et al. Caplacizumab treatment for acquired thrombotic thrombocytopenic purpura. N Engl J Med. 2019;380:335-346.
  883. Tektonidou MG. Antiphospholipid syndrome nephropathy: from pathogenesis to treatment. Front Immunol. 2018;9:1181.
  884. Sciascia S, Yazdany J, Dall'Era M, et al. Anticoagulation in patients with concomitant lupus nephritis and thrombotic microangiopathy: a multicentre cohort study. Ann Rheum Dis. 2019;78:1004-1006.
  885. Dufrost V, Risse J, Reshetnyak T, et al. Increased risk of thrombosis in antiphospholipid syndrome patients treated with direct oral anticoagulants. Results from an international patient-level data meta-analysis. Autoimmun Rev. 2018;17:1011-1021.
  886. Pengo V, Denas G, Zoppellaro G, et al. Rivaroxaban vs warfarin in high-risk patients with antiphospholipid syndrome. Blood. 2018;132:1365-1371.
  887. Kazzaz NM, McCune WJ, Knight JS. Treatment of catastrophic antiphospholipid syndrome. Curr Opin Rheumatol. 2016;28:218-227.
  888. Bucciarelli S, Espinosa G, Cervera R, et al. Mortality in the catastrophic antiphospholipid syndrome: causes of death and prognostic factors in a series of 250 patients. Arthritis Rheumatol. 2006;54:2568-2576.
  889. Dioszegi A, Tarr T, Nagy-Vincze M, et al. Microthrombotic renal involvement in an SLE patient with concomitant catastrophic antiphospholipid syndrome: the beneficial effect of rituximab treatment. Lupus. 2018;27:1552-1558.
  890. Rymarz A, Niemczyk S. The complex treatment including rituximab in the Management of Catastrophic Antiphospholid Syndrome with renal involvement. BMC Nephrol. 2018;19:132.
  891. Guillot M, Rafat C, Buob D, et al. Eculizumab for catastrophic antiphospholipid syndrome-a case report and literature review. Rheumatology (Oxford) 2018;57:2055-2057.
  892. Ruffatti A, Tarzia V, Fedrigo M, et al. Evidence of complement activation in the thrombotic small vessels of a patient with catastrophic antiphospholipid syndrome treated with eculizumab. Autoimmun Rev. 2019;18:561-563.
  893. Tinti MG, Carnevale V, Inglese M, et al. Eculizumab in refractory catastrophic antiphospholipid syndrome: a case report and systematic review of the literature. Clin Exp Med. 2019;19:281-288.
  894. Legendre CM, Licht C, Muus P, et al. Terminal complement inhibitor eculizumab in atypical hemolytic-uremic syndrome. N Engl J Med. 2013;368:2169-2181.
  895. Licht C, Greenbaum LA, Muus P, et al. Efficacy and safety of eculizumab in atypical hemolytic uremic syndrome from 2-year extensions of phase 2 studies. Kidney Int. 2015;87:1061-1073.
  896. Wijnsma KL, Duineveld C, Wetzels JFM, et al. Eculizumab in atypical hemolytic uremic syndrome: strategies toward restrictive use. Pediatr Nephrol. 2019;34:2261-2277.
  897. Cavero T, Rabasco C, Lopez A, et al. Eculizumab in secondary atypical haemolytic uraemic syndrome. Nephrol Dial Transplant. 2017;32:466-474.
  898. Cao M, Leite BN, Ferreiro T, et al. Eculizumab modifies outcomes in adults with atypical hemolytic uremic syndrome with acute kidney injury. Am J Nephrol. 2018;48:225-233.
  899. de Holanda MI, Porto LC, Wagner T, et al. Use of eculizumab in a systemic lupus erythemathosus patient presenting thrombotic microangiopathy and heterozygous deletion in CFHR1-CFHR3. A case report and systematic review. Clin Rheumatol. 2017;36:2859-2867.
  900. Kello N, Khoury LE, Marder G, et al. Secondary thrombotic microangiopathy in systemic lupus erythematosus and antiphospholipid syndrome, the role of complement and use of eculizumab: case series and review of literature. Semin Arthritis Rheum. 2019;49:74-83.
  901. Caprioli J, Noris M, Brioschi S, et al. Genetics of HUS: the impact of MCP, CFH, and IF mutations on clinical presentation, response to treatment, and outcome. Blood. 2006;108:1267-1279.
  902. Loirat C, Sonsino E, Hinglais N, et al. Treatment of the childhood haemolytic uraemic syndrome with plasma. A multicentre randomized controlled trial. The French Society of Paediatric Nephrology. Pediatr Nephrol. 1988;2:279-285.
  903. Ariceta G, Besbas N, Johnson S, et al. Guideline for the investigation and initial therapy of diarrhea-negative hemolytic uremic syndrome. Pediatr Nephrol. 2009;24:687-696.
  904. Kaplan BS, Ruebner RL, Spinale JM, et al. Current treatment of atypical hemolytic uremic syndrome. Intractable Rare Dis Res. 2014;3:34-45.
  905. Reid VL, Mullan A, Erwig LP. Rapid recovery of membrane cofactor protein (MCP; CD46) associated atypical haemolytic uraemic syndrome with plasma exchange. BMJ Case Rep. 2013;bcr2013200980.
  906. Sengul Samanci N, Ayer M, Ergen A, et al. An effective treatment of atypical hemolytic uremic syndrome with plasma exchange and eculizumab: a case report. Transfus Apher Sci. 2015;52:314-316.
  907. Buyon JP, Kim MY, Guerra MM, et al. Kidney outcomes and risk factors for nephritis (flare/de novo) in a multiethnic cohort of pregnant patients with lupus. Clin J Am Soc Nephrol. 2017;12:940-946.
  908. Clowse ME, Jamison M, Myers E, et al. A national study of the complications of lupus in pregnancy. Am J Obstet Gynecol. 2008;199. 127.e1-6.
  909. Andreoli L, Bertsias GK, Agmon-Levin N, et al. EULAR recommendations for women's health and the management of family planning, assisted reproduction, pregnancy and menopause in patients with systemic lupus erythematosus and/or antiphospholipid syndrome. Ann Rheum Dis. 2017;76:476-485.
  910. Kroese SJ, de Hair MJH, Limper M, et al. Hydroxychloroquine use in lupus patients during pregnancy is associated with longer pregnancy duration in preterm births. J Immunol Res. 2017:2810202.
  911. Meher S, Duley L, Hunter K, et al. Antiplatelet therapy before or after 16 weeks' gestation for preventing preeclampsia: an individual participant data meta-analysis. Am J Obstet Gynecol. 2017;216:121-128.e2.
  912. Xu TT, Zhou F, Deng CY, et al. Low-dose aspirin for preventing preeclampsia and its complications: a meta-analysis. J Clin Hypertens (Greenwich) 2015;17:567-573.
  913. Remmers EF, Plenge RM, Lee AT, et al. STAT4 and the risk of rheumatoid arthritis and systemic lupus erythematosus. N Engl J Med. 2007;357:977-986.
  914. Silva CA, Avcin T, Brunner HI. Taxonomy for systemic lupus erythematosus with onset before adulthood. Arthritis Care Res (Hoboken) 2012;64:1787-1793.
  915. Wenderfer SE, Ruth NM, Brunner HI. Advances in the care of children with lupus nephritis. Pediatr Res. 2017;81:406-414.
  916. Chandar J, Gomez-Marin O, del Pozo R, et al. Role of routine urinalysis in asymptomatic pediatric patients. Clin Pediatr (Phila) 2005;44:43-48.
  917. Sebestyen JF, Alon US. The teenager with asymptomatic proteinuria: think orthostatic first. Clin Pediatr (Phila) 2011;50:179-182.
  918. Contreras G, Pagan J, Chokshi R, et al. Comparison of mortality of ESRD patients with lupus by initial dialysis modality. Clin J Am Soc Nephrol. 2014;9:1949-1956.
  919. Levy B, Couchoud C, Rougier JP, et al. Outcome of patients with systemic lupus erythematosus on chronic dialysis: an observational study of incident patients of the French National Registry 2002-2012. Lupus. 2015;24:1111-1121.
  920. Mejia-Vilet JM, Tejeda-Maldonado J, Correa-Rotter R. Comment on “Clinical Practice Guidelines for the Treatment of Systemic Lupus Erythematosus by the Mexican College of Rheumatology”. Reumatol Clin. (Engl Ed) 2020;16:433-434.
  921. O'Shaughnessy MM, Liu S, Montez-Rath ME, et al. Kidney transplantation outcomes across GN subtypes in the United States. J Am Soc Nephrol. 2017;28:632-644.
  922. Park ES, Ahn SS, Jung SM, et al. Renal outcome after kidney-transplantation in Korean patients with lupus nephritis. Lupus. 2018;27:461-467.
  923. Jorge A, Wallace ZS, Lu N, et al. Renal transplantation and survival among patients with lupus nephritis: a cohort study. Ann Intern Med. 2019;170:240-247.
  924. Goldfarb-Rumyantzev A, Hurdle JF, Scandling J, et al. Duration of end-stage renal disease and kidney transplant outcome. Nephrol Dial Transplant. 2005;20:167-175.
  925. Plantinga LC, Patzer RE, Drenkard C, et al. Association of time to kidney transplantation with graft failure among U.S. patients with end-stage renal disease due to lupus nephritis. Arthritis Care Res (Hoboken) 2015;67:571-581.
  926. Cheigh JS, Kim H, Stenzel KH, et al. Systemic lupus erythematosus in patients with end-stage renal disease: long-term follow-up on the prognosis of patients and the evolution of lupus activity. Am J Kidney Dis. 1990;16:189-195.
  927. Contreras G, Mattiazzi A, Guerra G, et al. Recurrence of lupus nephritis after kidney transplantation. J Am Soc Nephrol. 2010;21:1200-1207.
  928. Pham PT, Pham PC. Graft loss due to recurrent lupus nephritis in living-related kidney donation. Clin J Am Soc Nephrol. 2011;6:2296-2299.
  929. Ponticelli C, Moroni G, Glassock RJ. Recurrence of secondary glomerular disease after renal transplantation. Clin J Am Soc Nephrol. 2011;6:1214-1221.
  930. Bataille S, Burtey S, Decourt A, et al. [Antiphospholipids antibodies and hemodialysis: a frequent association linked to arteriovenous fistula thrombosis]. Nephrol Ther. 2015;11:27-33. [in French].
  931. Morales JM, Serrano M, Martinez-Flores JA, et al. Antiphospholipid syndrome and renal allograft thrombosis. Transplantation. 2019;103:481-486.
  932. Wagenknecht DR, Fastenau DR, Torry RJ, et al. Risk of early renal allograft failure is increased for patients with antiphospholipid antibodies. Transpl Int. 2000;13(suppl 1):S78-S81.
  933. Jennette JC. Rapidly progressive crescentic glomerulonephritis. Kidney Int. 2003;63:1164-1177.
  934. McAdoo SP, Pusey CD. Anti-glomerular basement membrane disease. Clin J Am Soc Nephrol. 2017;12:1162-1172.
  935. Wilson CB, Dixon FJ. Anti-glomerular basement membrane antibody-induced glomerulonephritis. Kidney Int. 1973;3:74-89.
  936. Savage CO, Pusey CD, Bowman C, et al. Antiglomerular basement membrane antibody mediated disease in the British Isles 1980-4. Br Med J (Clin Res Ed) 1986;292:301-304.
  937. Benoit FL, Rulon DB, Theil GB, et al. Goodpasture's syndrome: a clinicopathologic entity. Am J Med. 1964;37:424-444.
  938. McAdoo SP, Tanna A, Hruskova Z, et al. Patients double-seropositive for ANCA and anti-GBM antibodies have varied renal survival, frequency of relapse, and outcomes compared to single-seropositive patients. Kidney Int. 2017;92:693-702.
  939. Salama AD, Dougan T, Levy JB, et al. Goodpasture's disease in the absence of circulating anti-glomerular basement membrane antibodies as detected by standard techniques. Am J Kidney Dis. 2002;39:1162-1167.
  940. Marques C, Carvelli J, Biard L, et al. Prognostic factors in anti-glomerular basement membrane disease: a multicenter study of 119 patients. Front Immunol. 2019;10:1665.
  941. van Daalen EE, Jennette JC, McAdoo SP, et al. Predicting outcome in patients with anti-GBM glomerulonephritis. Clin J Am Soc Nephrol. 2018;13:63-72.
  942. Johnson JP, Moore Jr. J, Austin 3rd HA, et al. Therapy of anti-glomerular basement membrane antibody disease: analysis of prognostic significance of clinical, pathologic and treatment factors. Medicine (Baltimore) 1985;64:219-227.
  943. Alchi B, Griffiths M, Sivalingam M, et al. Predictors of renal and patient outcomes in anti-GBM disease: clinicopathologic analysis of a two-centre cohort. Nephrol Dial Transplant. 2015;30:814-821.
  944. Li FK, Tse KC, Lam MF, et al. Incidence and outcome of antiglomerular basement membrane disease in Chinese. Nephrology (Carlton) 2004;9:100-104.
  945. Donaghy M, Rees AJ. Cigarette smoking and lung haemorrhage in glomerulonephritis caused by autoantibodies to glomerular basement membrane. Lancet. 1983;2:1390-1393.
  946. Lazor R, Bigay-Game L, Cottin V, et al. Alveolar hemorrhage in anti-basement membrane antibody disease: a series of 28 cases. Medicine (Baltimore) 2007;86:181-193.
  947. Lockwood CM, Boulton-Jones JM, Lowenthal RM, et al. Recovery from Goodpasture's syndrome after immunosuppressive treatment and plasmapheresis. Br Med J 1975;2:252-254.
  948. Kaplan AA, Appel GB, Pusey CE, et al. Anti-GBM (Goodpasture) disease: treatment and prognosis. UpToDate: evidence-based clinical decision support. Available at: www.uptodate.com. Accessed September 7, 2021.
  949. Kluth DC, Rees AJ. Anti-glomerular basement membrane disease. J Am Soc Nephrol. 1999;10:2446-2453.
  950. Flores JC, Taube D, Savage CO, et al. Clinical and immunological evolution of oligoanuric anti-GBM nephritis treated by haemodialysis. Lancet. 1986;1:5-8.
  951. Levy JB, Turner AN, Rees AJ, et al. Long-term outcome of anti-glomerular basement membrane antibody disease treated with plasma exchange and immunosuppression. Ann Intern Med. 2001;134:1033-1042.
  952. Jefferson JA. Complications of immunosuppression in glomerular disease. Clin J Am Soc Nephrol. 2018;13:1264-1275.
  953. Schmaldienst S, Mullner M, Goldammer A, et al. Intravenous immunoglobulin application following immunoadsorption: benefit or risk in patients with autoimmune diseases? Rheumatology (Oxford) 2001;40:513-521.
  954. Borza DB, Chedid MF, Colon S, et al. Recurrent Goodpasture's disease secondary to a monoclonal IgA1-kappa antibody autoreactive with the alpha1/alpha2 chains of type IV collagen. Am J Kidney Dis. 2005;45:397-406.
  955. Huart A, Josse AG, Chauveau D, et al. Outcomes of patients with Goodpasture syndrome: a nationwide cohort-based study from the French Society of Hemapheresis. J Autoimmun. 2016;73:24-29.
  956. Levy JB, Lachmann RH, Pusey CD. Recurrent Goodpasture's disease. Am J Kidney Dis. 1996;27:573-578.
  957. Mehler PS, Brunvand MW, Hutt MP, et al. Chronic recurrent Goodpasture's syndrome. Am J Med. 1987;82:833-835.
  958. Gu B, Magil AB, Barbour SJ. Frequently relapsing anti-glomerular basement membrane antibody disease with changing clinical phenotype and antibody characteristics over time. Clin Kidney J 2016;9:661-664.
  959. Liu P, Waheed S, Boujelbane L, et al. Multiple recurrences of anti-glomerular basement membrane disease with variable antibody detection: Can the laboratory be trusted? Clin Kidney J 2016;9:657-660.
  960. Touzot M, Poisson J, Faguer S, et al. Rituximab in anti-GBM disease: a retrospective study of 8 patients. J Autoimmun. 2015;60:74-79.
  961. Heitz M, Carron PL, Clavarino G, et al. Use of rituximab as an induction therapy in anti-glomerular basement-membrane disease. BMC Nephrol. 2018;19:241.
  962. Garcia-Canton C, Toledo A, Palomar R, et al. Goodpasture's syndrome treated with mycophenolate mofetil. Nephrol Dial Transplant. 2000;15:920-922.
  963. Kiykim AA, Horoz M, Gok E. Successful treatment of resistant antiglomerular basement membrane antibody positivity with mycophenolic acid. Intern Med. 2010;49:577-580.
  964. Mori M, Nwaogwugwu U, Akers GR, et al. Anti-glomerular basement membrane disease treated with mycophenolate mofetil, corticosteroids, and plasmapheresis. Clin Nephrol. 2013;80:67-71.
  965. Olivier M, Watson H, Lee D, et al. Monotypic IgG1-kappa atypical anti-glomerular basement membrane nephritis: a case report. Case Rep Nephrol Dial. 2019;9:8-14.
  966. Soveri I, Molne J, Uhlin F, et al. The IgG-degrading enzyme of Streptococcus pyogenes causes rapid clearance of anti-glomerular basement membrane antibodies in patients with refractory anti-glomerular basement membrane disease. Kidney Int. 2019;96:1234-1238.
  967. Biesenbach P, Kain R, Derfler K, et al. Long-term outcome of anti-glomerular basement membrane antibody disease treated with immunoadsorption. PLoS One. 2014;9:e103568.
  968. Tang W, McDonald SP, Hawley CM, et al. Anti-glomerular basement membrane antibody disease is an uncommon cause of end-stage renal disease. Kidney Int. 2013;83:503-510.
  969. Choy BY, Chan TM, Lai KN. Recurrent glomerulonephritis after kidney transplantation. Am J Transplant. 2006;6:2535-2542.
  970. Kashtan CE. Renal transplantation in patients with Alport syndrome. Pediatr Transplant. 2006;10:651-657.
  971. Kidney Disease: Improving Global Outcomes (KDIGO) Glomerulonephritis Work Group. KDIGO clinical practice guideline for glomerulonephritis. Kidney Int Suppl. 2012;2:139-274.
  972. Institute of Medicine (IOM). Committee on Standards for Developing Trustworthy Clinical Practice Guidelines. In: Graham R, Mancher M, Miller Wolman D, et al., ed. Clinical Practice Guidelines We Can Trust. Washington, DC: National Academies Press; 2011.
  973. Brouwers MC, Kho ME, Browman GP, et al. AGREE II: advancing guideline development, reporting and evaluation in health care. J Clin Epidemiol. 2010;63:1308-1311.
  974. Higgins JPT, Thomas J, Chandler J, ed. Cochrane Handbook for Systematic Reviews of Interventions. Chichester, UK: Wiley; 2019.
  975. Guyatt GH, Oxman AD, Kunz R, et al. GRADE guidelines 6. Rating the quality of evidence--imprecision. J Clin Epidemiol. 2011;64:1283-1293.
  976. Higgins JP, Altman DG, Gotzsche PC, et al. The Cochrane Collaboration's tool for assessing risk of bias in randomised trials. BMJ 2011;343:d5928.
  977. Higgins JPT, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ 2003;327:557-560.
  978. Guyatt GH, Oxman AD, Schunemann HJ, et al. GRADE guidelines: a new series of articles in the Journal of Clinical Epidemiology. J Clin Epidemiol. 2011;64:380-382.
  979. Brunetti M, Shemilt I, Pregno S, et al. GRADE guidelines: 10. Considering resource use and rating the quality of economic evidence. J Clin Epidemiol. 2013;66:140-150.

Другие статьи по теме


Навигация по статьям
Разделы журнала
Наиболее читаемые статьи
Журнал "Нефрология и диализ"