Идиопатическая инфантильная гиперкальциемия, тип 1: клинико-генетическaя характеристика российской когорты детей
https://doi.org/10.28996/2618-9801-2023-1-76-88
Аннотация
Об авторах
С. В. ПапижРоссия
М. В. Шумихина
Россия
А. Н. Тюльпаков
Россия
Л. С. Приходина
Россия
Список литературы
1. Lightwood R., Stapleton T. Idiopathic hypercalcaemia in infants. Lancet. 1953. 1; 265(6779):255-6. doi: 10.1016/s0140-6736(53)90187-1
2. Fanconi G. Chronic disorders of calcium and phosphate metabolism in children. Schweiz Med Wochenschr. 1951. 81(38):908-13.
3. Misselwitz J., Hesse V., Markestad T. Nephrocalcinosis, hypercalciuria and elevated serum levels of 1,25-dihydroxyvitamin D in children. Possible link to vitamin D toxicity. Acta Paediatr Scand. 1990. 79(6-7):637-643. doi: 10.1111/j.1651-2227.1990.tb11528.x
4. Schlingmann K.P, Kaufmann M., Weber S. et al. Mutations in CYP24A1 and idiopathic infantile hypercalcemia. N Engl J Med. 2011. 365(5):410-421. doi: 10.1056/NEJMoa1103864
5. Molin A,. Baudoin R., Kaufmann M. et al. CYP24A1 Mutations in a Cohort of Hypercalcemic Patients: Evidence for a Recessive Trait. J Clin Endocrinol Metab. 2015. 100(10):1343-52. doi: 10.1210/jc.2014-4387
6. Pronicka E., Ciara E., Halat P. et al. Biallelic mutations in CYP24A1 or SLC34A1 as a cause of infantile idiopathic hypercalcemia (IIH) with vitamin D hypersensitivity: molecular study of 11 historical IIH cases. J Appl Genet. 2017. 58(3):349-353. doi: 10.1007/s13353-017-0397-2
7. Cappellani D., Brancatella A., Morganti R. et al. Hypercalcemia due to CYP24A1 mutations: a systematic descriptive review. Eur J Endocrinol. 2021. 186(2):137-149. doi: 10.1530/EJE-21-0713
8. Pilz S., Theiler-Schwetz V., Pludowski P. et al. Hypercalcemia in Pregnancy Due to CYP24A1 Mutations: Case Report and Review of the Literature. Nutrients. 2022. 14(12):2518. doi: 10.3390/nu14122518
9. Meusburger E., Mündlein A., Zitt E. et al. Medullary nephrocalcinosis in an adult patient with idiopathic infantile hypercalcaemia and a novel CYP24A1 mutation. Clin Kidney J. 2013. 6(2):211-215. doi: 10.1093/ckj/sft008
10. Skalova S., Cerna L., Bayer M. et al. Intravenous pamidronate in the treatment of severe idiopathic infantile hypercalcemia. Iran J Kidney Dis. 2013. 7(2):160-164. PMID: 23485543
11. Tebben P.J., Milliner D.S., Horst R.L. et al. Hypercalcemia, hypercalciuria, and elevated calcitriol concentrations with autosomal dominant transmission due to CYP24A1 mutations: effects of ketoconazole therapy. J Clin Endocrinol Metab. 2012. 97(3):423-427. doi: 10.1210/jc.2011-1935
12. Kaufmann M., Gallagher J.C., Peacock M. et al. Clinical utility of simultaneous quantitation of 25-hydroxyvitamin D and 24,25-dihydroxyvitamin D by LC-MS/MS involving derivatization with DMEQ-TAD. J Clin Endocrinol Metab. 2014. 99(7):2567-2574. doi: 10.1210/jc.2013-4388
13. Тихонович Ю.В., Колодкина А.А., Куликова К.С. и др. Идиопатическая гиперкальциемия детей грудного возраста. Описание клинических случаев, обзор литературы. Проблемы эндокринологии. 2017. 63(1):51-57. doi: 10.14341/probl201763151-57
14. Садыкова Д.И., Макарова Т.П., Шакирова А.Р. и др. Идиопатическая инфантильная гиперкальциемия: семейный случай. Фарматека. 2022. 29(1):96-99. doi: https://dx.doi.org/10.18565/pharmateca.2022.1.96-99
15. Рожинская Л.Я., Пушкарева А.С., Мамедова Е.О. и др. Паратгормон-независимая гиперкальциемия и гиперкальциурия у пациента с нефролитиазом и нефрокальцинозом, обусловленные нарушением метаболизма витамина D вследствие дефекта гена CYP24A1. Остеопороз и остеопатии. 2021. 24(1):26-33. https://doi.org/10.14341/osteo12920
16. Matos V., van Melle G., Boulat O. et al. Urinary phosphate/creatinine, calcium/creatinine, and magnesium/creatinine ratios in a healthy pediatric population. J Pediatr. 1997. 131(2):252-7. doi: 10.1016/s0022-3476(97)70162-8
17. De Santo N.G., Di Iorio B., Capasso G. et al. Population based data on urinary excretion of calcium, magnesium, oxalate, phosphate and uric acid in children from Cimitile (southern Italy). Pediatr Nephrol. 1992. 6(2):149-57. doi: 10.1007/BF00866297
18. Prié D., Ravery V., Boccon-Gibod L. et al. Frequency of renal phosphate leak among patients with calcium nephrolithiasis. Kidney Int. 2001. 60(1):272-6. doi: 10.1046/j.1523-1755.2001.00796.x
19. Lockitch G., Halstead A.C., Albersheim S. et al. Age- and sex-specific pediatric reference intervals for biochemistry analytes as measured with the Ektachem-700 analyzer. Clin Chem. 1988. 34:1622-5. PMID: 3402068
20. Payne R.B. Renal tubular reabsorption of phosphate (TmP/GFR): indications and interpretation. Ann Clin Biochem. 1998. 35(Pt2):201-6. doi: 10.1177/000456329803500203
21. Manghat P., Sodi R., Swaminathan R. Phosphate homeostasis and disorders. Ann Clin Biochem. 2014. 51(Pt 6):631-56. doi: 10.1177/0004563214521399
22. Schwartz G.J., Work D.F. Measurement and estimation of GFR in children and adolescents. J. Am. Soc. Nephrol. 2009. 4(11):1832-643. doi: 10.2215/CJN.01640309
23. Hoppe B., Kemper M.J. Diagnostic examination of the child with urolithiasis or nephrocalcinosis. Pediatr Nephrol. 2010. 25(3):403-413. doi: 10.1007/s00467-008-1073-x
24. Dick P.T., Shuckett B.M., Tang B. et al. Observer reliability in grading nephrocalcinosis on ultrasound examinations in children. Pediatr Radiol. 1999. 29(1):68-72. doi: 10.1007/s002470050539
25. Adzhubei I.A., Schmidt S., Peshkin L. et al. A method and server for predicting damaging missense mutations. Nat. Methods 2010. 7(4):248-249. doi: 10.1038/nmeth0410-248
26. Ng P.C., Henikoff S. Predicting deleterious amino acid substitutions. Genome Res. 2001. 11(5):863-874. doi: 10.1101/gr.176601
27. Stenson P.D., Ball E.V., Mort M. et al. Human Gene Mutation Database (HGMD®): 2003 update. Hum. Mutat. 2003. 21(6):577-581. doi: 10.1002/humu.10212
28. Landrum M.J., Lee J.M., Benson M. et al. ClinVar: public archive of interpretations of clinically relevant variants. Nucleic Acids Res. 2016. 44(1):862-868. doi: 10.1093/nar/gkv1222
29. Aziz N., Bale S., Bick D. et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015; 17(5):405-24. doi: 10.1038/gim.2015.30
30. Рыжкова О.П., Кардымон О.Л., Прохорчук Е.Б. и др. Руководство по интерпретации данных последовательности ДНК человека, полученных методами массового параллельного секвенирования (MPS) (редакция 2018, версия 2). Медицинская генетика. 2019. 18(2):3-23. doi:10.25557/2073-7998.2019.02.3-23
31. Wang K., Li M., Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010. 38(16):164. doi: 10.1093/nar/gkq603
32. Gurevich E., Levi S., Borovitz Y. et al. Childhood Hypercalciuric Hypercalcemia With Elevated Vitamin D and Suppressed Parathyroid Hormone: Long-Term Follow Up. Front Pediatr. 2021. 9:752312. doi: 10.3389/fped.2021.752312
33. Colussi G., Ganon L., Penco S. et al. Chronic hypercalcaemia from inactivating mutations of vitamin D 24-hydroxylase (CYP24A1): implications for mineral metabolism changes in chronic renal failure. Nephrol Dial Transplant. 2014. 29(3):636-643. doi: 10.1093/ndt/gft460
34. Dinour D., Beckerman P., Ganon L. et al. Loss-of-function mutations of CYP24A1, the vitamin D 24-hydroxylase gene, cause long-standing hypercalciuric nephrolithiasis and nephrocalcinosis. J Urol. 2013. 190(2):552-557. doi: 10.1016/j.juro.2013.02.3188
35. Jobst-Schwan T., Pannes A., Schlingmann K.P. et al. Discordant Clinical Course of Vitamin-D-Hydroxylase (CYP24A1) Associated Hypercalcemia in Two Adult Brothers With Nephrocalcinosis. Kidney Blood Press Res. 2015. 40(5):443-51. doi: 10.1159/000368520
36. Quigley R. Developmental changes in renal function. Curr Opin Pediatr. 2012. 24(2):184-90. doi: 10.1097/MOP.0b013e32834fe863
37. Azer S.M., Vaughan L.E., Tebben P.J. et al. 24-Hydroxylase Deficiency Due to CYP24A1 Sequence Variants: Comparison With Other Vitamin D-mediated Hypercalcemia Disorders. J Endocr Soc. 2021. 5(9):bvab119. doi: 10.1210/jendso/bvab119
38. Dauber A., Nguyen T.T., Sochett E. et al. Genetic defect in CYP24A1, the vitamin D 24-hydroxylase gene, in a patient with severe infantile hypercalcemia. J Clin Endocrinol Metab. 2012. 97(2):268-74. doi: 10.1210/jc.2011-1972
39. Brenza H.L., DeLuca H.F. Regulation of 25-hydroxyvitamin D3 1alpha-hydroxylase gene expression by parathyroid hormone and 1,25-dihydroxyvitamin D3. Arch Biochem Biophys. 2000. 381(1):143-52. doi: 10.1006/abbi.2000.1970
40. Castanet M., Mallet E., Kottler M.L. Lightwood syndrome revisited with a novel mutation in CYP24 and vitamin D supplement recommendations. J Pediatr. 2013. 163(4):1208-10. doi: 10.1016/j.jpeds.2013.04.056
41. Nesterova G., Malicdan MC, Yasuda K. et al. 1,25-(OH)2D-24 Hydroxylase (CYP24A1) Deficiency as a Cause of Nephrolithiasis. Clin J Am Soc Nephrol. 2013. 8(4):649-57. doi: 10.2215/CJN.05360512
42. Schlingmann K.P. Vitamin D-dependent Hypercalcemia. Endocrinol Metab Clin North Am. 2021. 50(4):729-742. doi: 10.1016/j.ecl.2021.08.005
Рецензия
Для цитирования:
Папиж С.В., Шумихина М.В., Тюльпаков А.Н., Приходина Л.С. Идиопатическая инфантильная гиперкальциемия, тип 1: клинико-генетическaя характеристика российской когорты детей. Нефрология и диализ. 2023;25(1):76-88. https://doi.org/10.28996/2618-9801-2023-1-76-88
For citation:
Papizh S.V., Shumikhina M.V., Tiulpakov A.N., Prikhodina L.S. Idiopathic infantile hypercalcemia, type 1: clinical and genetic features of russian cohort of patients. Nephrology and Dialysis. 2023;25(1):76-88. (In Russ.) https://doi.org/10.28996/2618-9801-2023-1-76-88