KDIGO 2022 Clinical Practice Guideline For Diabetes Management in Chronic Kidney Disease
https://doi.org/10.28996/2618-9801-2023-2-141-221
Abstract
Keywords
References
1. Arnett D.K., Khera A., Blumenthal R.S. 2019 ACC/AHA guideline on the primary prevention of cardiovascular disease: part 1, lifestyle and behavioral factors. JAMA Cardiol. 2019; 4: 1043-1044
2. Levine G.N., Bates E.R., Bittl J.A., et al. 2016 ACC/AHA guideline focused update on duration of dual antiplatelet therapy in patients with coronary artery disease: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J Am Coll Cardiol. 2016; 68: 1082-1115
3. Jardine M.J., Ninomiya T., Perkovic V., et al. Aspirin is beneficial in hypertensive patients with chronic kidney disease: a post-hoc subgroup analysis of a randomized controlled trial. J Am Coll Cardiol. 2010; 56: 956-965
4. Perkovic V., Agarwal R., Fioretto P. et al. Management of patients with diabetes and CKD: conclusions from a “Kidney Disease: Improving Global Outcomes” (KDIGO) Controversies Conference. Kidney Int. 2016; 90: 1175-1183
5. Grundy S.M., Stone N.J., Bailey A.L., et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA guideline on the management of blood cholesterol: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation. 2019; 139: e1082-e1143
6. Rawshani A., Rawshani A., Franzen S., et al. Risk factors, mortality, and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med. 2018; 379: 633-644
7. Ueki K., Sasako T., Okazaki Y., et al. Multifactorial intervention has a significant effect on diabetic kidney disease in patients with type 2 diabetes. Kidney Int. 2021; 99: 256-266
8. Gaede P., Oellgaard J., Carstensen B., et al. Years of life gained by multifactorial intervention in patients with type 2 diabetes mellitus and microalbuminuria: 21 years follow-up on the Steno-2 randomised trial. Diabetologia. 2016; 59: 2298-2307
9. Gaede P., Vedel P., Larsen N., et al. Multifactorial intervention and cardiovascular disease in patients with type 2 diabetes. N Engl J Med. 2003; 348: 383-393
10. Breyer M.D., Susztak K. The next generation of therapeutics for chronic kidney disease. Nat Rev Drug Discov. 2016; 15: 568-588
11. Parving H.H., Lehnert H., Brochner-Mortensen J., et al. The effect of irbesartan on the development of diabetic nephropathy in patients with type 2 diabetes. N Engl J Med. 2001; 345: 870-878
12. Makino H., Haneda M., Babazono T., et al. Prevention of transition from incipient to overt nephropathy with telmisartan in patients with type 2 diabetes. Diabetes Care. 2007; 30: 1577-1578
13. Brenner B.M., Cooper M.E., de Zeeuw D., et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med. 2001; 345: 861-869
14. Keane W.F., Brenner B.M., de Zeeuw D., et al. The risk of developing end-stage renal disease in patients with type 2 diabetes and nephropathy: the RENAAL study. Kidney Int. 2003; 63: 1499-1507
15. Strippoli G.F., Bonifati C., Craig M., et al. Angiotensin converting enzyme inhibitors and angiotensin II receptor antagonists for preventing the progression of diabetic kidney disease. Cochrane Database Syst Rev. 2006; 6: CD006257
16. Ahmad J., Shafique S., Abidi S.M., et al. Effect of 5-year enalapril therapy on progression of microalbuminuria and glomerular structural changes in type 2 diabetic subjects. Diabetes Res Clin Pract. 2003; 60: 131-138
17. Ahmad J., Siddiqui M.A., Ahmad H. Effective postponement of diabetic nephropathy with enalapril in normotensive type 2 diabetic patients with microalbuminuria. Diabetes Care. 1997; 20: 1576-1581
18. Bakris G.L., Barnhill B.W., Sadler R. Treatment of arterial hypertension in diabetic humans: importance of therapeutic selection. Kidney Int. 1992; 41: 912-919
19. Bakris G.L., Slataper R., Vicknair N., et al. ACE inhibitor mediated reductions in renal size and microalbuminuria in normotensive, diabetic subjects. J Diabetes Complications. 1994; 8: 2-6
20. Bojestig M., Karlberg B.E., Lindstrom T., et al. Reduction of ACE activity is insufficient to decrease microalbuminuria in normotensive patients with type 2 diabetes. Diabetes Care. 2001; 24: 919-924
21. Capek M., Schnack C., Ludvik B., et al. Effects of captopril treatment versus placebo on renal function in type 2 diabetic patients with microalbuminuria: a long-term study. Clin Investig. 1994; 72: 961-966
22. Chase H.P., Garg S.K., Harris S., et al. Angiotensin-converting enzyme inhibitor treatment for young normotensive diabetic subjects: a two-year trial. Ann Ophthalmol. 1993; 25: 284-289
23. Cordonnier D.J., Pinel N., Barro C., et al. Expansion of cortical interstitium is limited by converting enzyme inhibition in type 2 diabetic patients with glomerulosclerosis. The Diabiopsies Group. J Am Soc Nephrol. 1999; 10: 1253-1263
24. Crepaldi G., Carta Q., Deferrari G., et al. Effects of lisinopril and nifedipine on the progression to overt albuminuria in IDDM patients with incipient nephropathy and normal blood pressure. The Italian Microalbuminuria Study Group in IDDM. Diabetes Care. 1998; 21: 104-110
25. Garg S., Chase H.P., Jackson W.E., et al. Renal and retinal changes after treatment with ramipril and pentoxifylline in subjects with IDDM. Ann Ophthalmol-Glaucoma. 1998; 30: 33-37
26. The EUCLID Study Group Randomised placebo-controlled trial of lisinopril in normotensive patients with insulin-dependent diabetes and normoalbuminuria or microalbuminuria. Lancet. 1997; 349: 1787-1792
27. Hansen K.W., Klein F., Christensen P.D., et al. Effects of captopril on ambulatory blood pressure, renal and cardiac function in microalbuminuric type 2 diabetic patients. Diabete Metab. 1994; 20: 485-493
28. Hommel E., Jensen B., Parving H. Long-term effect of captopril on kidney function in normotensive insulin dependent diabetic patients (iddm) with diabetic nephropathy [abstract]. J Am Soc Nephrol. 1995; 6: 450
29. Ito S., Kagawa T., Saiki T., et al. Efficacy and safety of imarikiren in patients with type 2 diabetes and microalbuminuria: a randomized, controlled trial. Clin J Am Soc Nephrol. 2019; 14: 354-363
30. Jerums G., Allen T.J., Campbell D.J., et al. Long-term comparison between perindopril and nifedipine in normotensive patients with type 2 diabetes and microalbuminuria. Am J Kidney Dis. 2001; 37: 890-899
31. Katayama S., Kikkawa R., Isogai S., et al. Effect of captopril or imidapril on the progression of diabetic nephropathy in Japanese with type 2 diabetes mellitus: a randomized controlled study (JAPAN-IDDM). Diabetes Res Clin Pract. 2002; 55: 113-121
32. Laffel L.M., McGill J.B., Gans D.J. The beneficial effect of angiotensin-converting enzyme inhibition with captopril on diabetic nephropathy in normotensive IDDM patients with microalbuminuria. North American Microalbuminuria Study Group. Am J Med. 1995; 99: 497-504
33. Lewis E.J., Hunsicker L.G., Bain R.P., et al. The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. The Collaborative Study Group. N Engl J Med. 1993; 329: 1456-1462
34. Lewis E.J., Hunsicker L.G., Clarke W.R. ,et al. Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N Engl J Med. 2001; 345: 851-860
35. Marre M., Leblanc H., Suarez L., et al. Converting enzyme inhibition and kidney function in normotensive diabetic patients with persistent microalbuminuria. Br Med J (Clin Res Ed). 1987; 294: 1448-1452
36. Marre M., Lievre M., Chatellier G., et al. Effects of low dose ramipril on cardiovascular and renal outcomes in patients with type 2 diabetes and raised excretion of urinary albumin: randomised, double blind, placebo-controlled trial (the DIABHYCAR study). BMJ. 2004; 328: 495
37. Maschio G., Alberti D., Janin G., et al. Effect of the angiotensin-converting-enzyme inhibitor benazepril on the progression of chronic renal insufficiency. The Angiotensin-Converting-Enzyme Inhibition in Progressive Renal Insufficiency Study Group. N Engl J Med. 1996; 334: 939-945
38. Mathiesen E.R., Hommel E., Giese J., et al. Efficacy of captopril in postponing nephropathy in normotensive insulin dependent diabetic patients with microalbuminuria. BMJ. 1991; 303: 81-87
39. Mauer M. Zinman B. Gardiner R. et al. Renal and retinal effects of enalapril and losartan in type 2 diabetes. N Engl J Med. 2009; 361: 40-51
40. Muirhead N., Feagana B.F., Mahona J., et al. The effects of valsartan and captopril on reducing microalbuminuria in patients with type 2 diabetes mellitus: a placebo-controlled trial. Curr Ther Res. 1999; 60: 650-660
41. Nankervis A., Nicholls K., Kilmartin G., et al. Effects of perindopril on renal histomorphometry in diabetic subjects with microalbuminuria: a 3-year placebo-controlled biopsy study. Metabolism. 1998; 47: 12-15
42. O'Hare P., Bilbous R., Mitchell T., et al. Low-dose ramipril reduces microalbuminuria in type 2 diabetic patients without hypertension: results of a randomized controlled trial. Diabetes Care. 2000; 23: 1823-1829
43. Parving H.H., Hommel E., Damkjaer Nielsen M., et al. Effect of captopril on blood pressure and kidney function in normotensive insulin-dependent diabetics with nephropathy. BMJ. 1989; 299: 533-536
44. Ravid M., Savin H., Jutrin I., et al. Long-term stabilizing effect of angiotensin-converting enzyme inhibition on plasma creatinine and on proteinuria in normotensive type II diabetic patients. Ann Intern Med. 1993; 118: 577-581
45. Romero R., Salinas I., Lucas A., et al. Renal function changes in microalbuminuric normotensive type II diabetic patients treated with angiotensin-converting enzyme inhibitors. Diabetes Care. 1993; 16: 597-600
46. Sano T., Kawamura T., Matsumae H., et al. Effects of long-term enalapril treatment on persistent micro-albuminuria in well-controlled hypertensive and normotensive NIDDM patients. Diabetes Care. 1994; 17: 420-424
47. Tong P.C., Ko G.T., Chan W.B., et al. The efficacy and tolerability of fosinopril in Chinese type 2 diabetic patients with moderate renal insufficiency. Diabetes Obes Metab. 2006; 8: 342-347
48. Phillips P.J., Phillipou G., Bowen K.M., et al. Diabetic microalbuminuria and cilazapril. Am J Med. 1993; 94: 58S-60S
49. Imai E., Chan J.C., Ito S., et al. Effects of olmesartan on renal and cardiovascular outcomes in type 2 diabetes with overt nephropathy: a multicentre, randomised, placebo-controlled study. Diabetologia. 2011; 54: 2978-298
50. Mehdi U.F., Adams-Huet B., Raskin P., et al. Addition of angiotensin receptor blockade or mineralocorticoid antagonism to maximal angiotensin-converting enzyme inhibition in diabetic nephropathy. J Am Soc Nephrol. 2009; 20: 2641-2650
51. Perrin N.E., Jaremko G.A., Berg U.B. The effects of candesartan on diabetes glomerulopathy: a double-blind, placebo-controlled trial. Pediatr Nephrol. 2008; 23: 947-954
52. Tan K.C., Chow W.S., Ai V.H., et al. Effects of angiotensin II receptor antagonist on endothelial vasomotor function and urinary albumin excretion in type 2 diabetic patients with microalbuminuria. Diabetes Metab Res Rev. 2002; 18: 71-76
53. Weil E.J., Fufaa, G. Jones L.I., et al. Effect of losartan on prevention and progression of early diabetic nephropathy in American Indians with type 2 diabetes. Diabetes. 2013; 62: 3224-3231
54. Makani H., Messerli F.H., Romero J., et al. Meta-analysis of randomized trials of angioedema as an adverse event of renin-angiotensin system inhibitors. Am J Cardiol. 2012; 110: 383-391
55. Coresh J., Heerspink H.J.L., Sang Y., et al. Change in albuminuria and subsequent risk of end-stage kidney disease: an individual participant-level consortium meta-analysis of observational studies. Lancet Diabetes Endocrinol. 2019; 7: 115-127
56. Heerspink H.J.L., Greene T., Tighiouart H., et al. Change in albuminuria as a surrogate endpoint for progression of kidney disease: a meta-analysis of treatment effects in randomised clinical trials. Lancet Diabetes Endocrinol. 2019; 7: 128-139
57. Overlack A. ACE inhibitor-induced cough and bronchospasm. Incidence, mechanisms and management. Drug Saf. 1996; 15: 72-78
58. World Health Organization The selection and use of essential medicines: report of the WHO Expert Committee, 2017 (including the 20th WHO model list of essential medicines and the 6th model list of essential medicines for children). https://apps.who.int/iris/handle/10665/259481 Date accessed: August 14, 2020
59. Haller H., Ito S., Izzo Jr. J.L., et al. Olmesartan for the delay or prevention of microalbuminuria in type 2 diabetes. N Engl J Med. 2011; 364: 907-917
60. Persson F., Lindhardt M., Rossing P., et al. Prevention of microalbuminuria using early intervention with renin-angiotensin system inhibitors in patients with type 2 diabetes: a systematic review. J Renin Angiotensin Aldosterone Syst. 2016; (17.1470320316652047)
61. Bakris G.L., Weir M.R. Angiotensin-converting enzyme inhibitor-associated elevations in serum creatinine: Is this a cause for concern? Arch Intern Med. 2000; 160: 685-693
62. Remuzzi G., Ruggenenti P., Perna A., et al. Continuum of renoprotection with losartan at all stages of type 2 diabetic nephropathy: a post hoc analysis of the RENAAL trial results. J Am Soc Nephrol. 2004; 15: 3117-3125
63. Schmidt M., Mansfield K.E., Bhaskaran K., et al. Serum creatinine elevation after renin-angiotensin system blockade and long term cardiorenal risks: cohort study. BMJ. 2017; 356: j791
64. Bullo M., Tschumi S., Bucher B.S., et al. Pregnancy outcome following exposure to angiotensin-converting enzyme inhibitors or angiotensin receptor antagonists: a systematic review. Hypertension. 2012; 60: 444-450
65. Hanssens M., Keirse M.J., Vankelecom F., et al. Fetal and neonatal effects of treatment with angiotensin-converting enzyme inhibitors in pregnancy. Obstet Gynecol. 1991; 78: 128-135
66. Shotan A., Widerhorn J., Hurst A., et al. Risks of angiotensin-converting enzyme inhibition during pregnancy: experimental and clinical evidence, potential mechanisms, and recommendations for use. Am J Med. 1994; 96: 451-456
67. Cooper W.O., Hernandez-Diaz S., Arbogast P.G., et al. Major congenital malformations after first-trimester exposure to ACE inhibitors. N Engl J Med. 2006; 354: 2443-2451
68. Bateman B.T., Patorno E., Desai R.J., et al. Angiotensin-converting enzyme inhibitors and the risk of congenital malformations. Obstet Gynecol. 2017; 129: 174-184
69. Reardon L.C., Macpherson D.S. Hyperkalemia in outpatients using angiotensin-converting enzyme inhibitors. How much should we worry? Arch Intern Med. 1998; 158: 26-32
70. Ahuja T.S. Freeman Jr., D. Mahnken J.D. et al. Predictors of the development of hyperkalemia in patients using angiotensin-converting enzyme inhibitors. Am J Nephrol. 2000; 20: 268-272
71. Palmer B.F. Managing hyperkalemia caused by inhibitors of the renin-angiotensin-aldosterone system. N Engl J Med. 2004; 351: 585-59
72. Linde C., Bakhai A., Furuland H., et al. Real-world associations of renin-angiotensin-aldosterone system inhibitor dose, hyperkalemia, and adverse clinical outcomes in a cohort of patients with new-onset chronic kidney disease or heart failure in the United Kingdom. J Am Heart Assoc. 2019; 8e012655
73. Singhania G., Ejaz A.A., McCullough P.A., et al. Continuation of chronic heart failure therapies during heart failure hospitalization-a review. Rev Cardiovasc Med. 2019; 20: 111-120
74. Clase C.M., Carrero J.J., Ellison D.H., et al. Potassium homeostasis and management of dyskalemia in kidney diseases: conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference. Kidney Int. 2020; 97: 42-61
75. Ray K., Dorman S., Watson R. Severe hyperkalaemia due to the concomitant use of salt substitutes and ACE inhibitors in hypertension: a potentially life threatening interaction. J Hum Hypertens. 1999; 13: 717-720
76. Mukete B.N., Rosendorff C. Effects of low-dose thiazide diuretics on fasting plasma glucose and serum potassium-a meta-analysis. J Am Soc Hypertens. 2013; 7: 454-466
77. Nilsson E., Gasparini A., Arnlov J., et al. Incidence and determinants of hyperkalemia and hypokalemia in a large healthcare system. Int J Cardiol. 2017; 245: 277-284
78. Roush G.C., Ernst M.E., Kostis J.B., et al. Head-to-head comparisons of hydrochlorothiazide with indapamide and chlorthalidone: antihypertensive and metabolic effects. Hypertension. 2015; 65: 1041-1046
79. Roush G.C., Sica D.A. Diuretics for hypertension: a review and update. Am J Hypertens. 2016; 29: 1130-1137
80. Savage P.J., Pressel S.L., Curb J.D., et al. Influence of long-term, low-dose, diuretic-based, antihypertensive therapy on glucose, lipid, uric acid, and potassium levels in older men and women with isolated systolic hypertension: The Systolic Hypertension in the Elderly Program. SHEP Cooperative Research Group. Arch Intern Med. 1998; 158: 741-751
81. Tannen R.L. Diuretic-induced hypokalemia. Kidney Int. 1985; 28: 988-1000
82. Wilmer W.A., Rovin B.H., Hebert C.J., et al. Management of glomerular proteinuria: a commentary. J Am Soc Nephrol. 2003; 14: 3217-3232
83. Bakris G.L., Pitt B., Weir M.R., et al. Effect of patiromer on serum potassium level in patients with hyperkalemia and diabetic kidney disease: the AMETHYST-DN randomized clinical trial. JAMA. 2015; 314: 151-161
84. Spinowitz B.S., Fishbane S., Pergola P.E., et al. Sodium zirconium cyclosilicate among individuals with hyperkalemia: a 12-month phase 3 study. Clin J Am Soc Nephrol. 2019; 14: 798-809
85. Fried L.F., Emanuele N., Zhang J.H., et al. Combined angiotensin inhibition for the treatment of diabetic nephropathy. N Engl J Med. 2013; 369: 1892-1903
86. Parving H.H., Brenner B.M., McMurray J.J., et al. Cardiorenal end points in a trial of aliskiren for type 2 diabetes. N Engl J Med. 2012; 367: 2204-2213
87. Neal B., Perkovic V., Mahaffey K.W., et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med. 2017; 377: 644-657
88. Perkovic V., de Zeeuw D., Mahaffey K.W., et al. Canagliflozin and renal outcomes in type 2 diabetes: results from the CANVAS Program randomised clinical trials. Lancet Diabetes Endocrinol. 2018; 6: 691-704
89. Wiviott S.D., Raz I., Bonaca M.P., et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2019; 380: 347-357
90. Zinman B., Wanner C., Lachin J.M., et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015; 373: 2117-212
91. Cannon C.P., Pratley R., Dagogo-Jack S., et al. Cardiovascular outcomes with ertugliflozin in type 2 diabetes. N Engl J Med. 2020; 383: 1425-1435
92. Zelniker T.A., Wiviott S.D., Raz I., et al. SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes in type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials. Lancet. 2019; 393: 31-39
93. Perkovic V. Jardine M.J. Neal B. et al. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N Engl J Med. 2019; 380: 2295-2306.Heerspink H.J.L. Stefansson B.V. Correa-Rotter R. et al. Dapagliflozin in patients with chronic kidney disease. N Engl J Med. 2020; 383: 1436-1446
94. Herrington W.G., Preiss D., Haynes R., et al. The potential for improving cardio-renal outcomes by sodium-glucose co-transporter-2 inhibition in people with chronic kidney disease: a rationale for the EMPA-KIDNEY study. Clin Kidney J. 2018; 11: 749-761
95. Bhatt D.L., Szarek M., Pitt B., et al. Sotagliflozin in patients with diabetes and chronic kidney disease. N Engl J Med. 2021; 384: 129-139
96. Neuen B.L., Young T., Heerspink H.J.L., et al. SGLT2 inhibitors for the prevention of kidney failure in patients with type 2 diabetes: a systematic review and meta-analysis. Lancet Diabetes Endocrinol. 2019; 7: 845-854
97. McGuire D.K., Shih W.J., Cosentino F., et al. Association of SGLT2 inhibitors with cardiovascular and kidney outcomes in patients with type 2 diabetes: a meta-analysis. JAMA Cardiol. 2021; 6: 148-158
98. Bhatia K., Jain V., Gupta K., et al. Prevention of heart failure events with sodium-glucose co-transporter 2 inhibitors across a spectrum of cardio-renal-metabolic risk. Eur J Heart Fail. 2021; 23: 1002-1008
99. McMurray J.J.V., Solomon S.D., Inzucchi S.E., et al. Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med. 2019; 381: 1995-200
100. Packer M., Anker S.D., Butler J., et al. Cardiovascular and renal outcomes with empagliflozin in heart failure. N Engl J Med. 2020; 383: 1413-1424
101. Anker S.D., Butler J., Filippatos G., et al. Empagliflozin in heart failure with a preserved ejection fraction. N Engl J Med. 2021; 385: 1451-1461
102. Bhatt D.L., Szarek M., Steg P.G., et al. Sotagliflozin in patients with diabetes and recent worsening heart failure. N Engl J Med. 2021; 384: 117-128
103. Vasilakou D., Karagiannis T., Athanasiadou E., et al. Sodium-glucose cotransporter 2 inhibitors for type 2 diabetes: a systematic review and meta-analysis. Ann Intern Med. 2013; 159: 262-274
104. Wanner C., Heerspink H.J.L., Zinman B., et al. Empagliflozin and kidney function decline in patients with type 2 diabetes: a slope analysis from the EMPA-REG OUTCOME trial. J Am Soc Nephrol. 2018; 29: 2755-2769
105. Wanner C., Lachin J.M. ,Inzucchi S.E., et al. Empagliflozin and clinical outcomes in patients with type 2 diabetes mellitus, established cardiovascular disease, and chronic kidney disease. Circulation. 2018; 137: 119-129
106. Kosiborod M., Cavender M.A., Fu A.Z., et al. Lower risk of heart failure and death in patients initiated on sodium-glucose cotransporter-2 inhibitors versus other glucose-lowering drugs: the CVD-REAL study (Comparative Effectiveness of Cardiovascular Outcomes in New Users of Sodium-Glucose Cotransporter-2 Inhibitors). Circulation. 2017; 136: 249-259
107. Zannad F., Ferreira J.P., Pocock S.J., et al. SGLT2 inhibitors in patients with heart failure with reduced ejection fraction: a meta-analysis of the EMPEROR-Reduced and DAPA-HF trials. Lancet. 2020; 396: 819-829
108. Jhund P.S., Solomon S.D., Docherty K.F., et al. Efficacy of dapagliflozin on renal function and outcomes in patients with heart failure with reduced ejection fraction: results of DAPA-HF. Circulation. 2021; 143: 298-309
109. Wanner C., Inzucchi S.E., Lachin J.M., et al. Empagliflozin and progression of kidney disease in type 2 diabetes. N Engl J Med. 2016; 375: 323-334
110. Heerspink H.J.L., Karasik A., Thuresson M., et al. Kidney outcomes associated with use of SGLT2 inhibitors in real-world clinical practice (CVD-REAL 3): a multinational observational cohort study. Lancet Diabetes Endocrinol. 2020; 8: 27-35
111. Williams S.M., Ahmed S.H. 1224-P: improving compliance with SGLT2 inhibitors by reducing the risk of genital mycotic infections: the outcomes of personal hygiene advice. Diabetes. 2019; 68 (1224-P)
112. Huang C.Y., Lee J.K. Sodium-glucose co-transporter-2 inhibitors and major adverse limb events: a trial-level meta-analysis including 51 713 individuals. Diabetes Obes Metab. 2020; 22: 2348-2355
113. Chang H.Y., Singh S., Mansour O. et al. Association between sodium-glucose cotransporter 2 inhibitors and lower extremity amputation among patients with type 2 diabetes. JAMA Intern Med. 2018; 178: 1190-1198
114. Fralick M., Kim S.C., Schneeweiss S., et al. Risk of amputation with canagliflozin across categories of age and cardiovascular risk in three US nationwide databases: cohort study. BMJ. 2020; 370: m2812
115. Barnett A.H., Mithal A., Manassie J., et al. Efficacy and safety of empagliflozin added to existing antidiabetes treatment in patients with type 2 diabetes and chronic kidney disease: a randomised, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol. 2014; 2: 369-384
116. Cherney D.Z.I., Zinman B., Inzucchi S.E., et al. Effects of empagliflozin on the urinary albumin-to-creatinine ratio in patients with type 2 diabetes and established cardiovascular disease: an exploratory analysis from the EMPA-REG OUTCOME randomised, placebo-controlled trial. Lancet Diabetes Endocrinol. 2017; 5: 610-621
117. Dekkers C.C.J., Wheeler D.C., Sjostrom C.D., et al. Effects of the sodium-glucose co-transporter 2 inhibitor dapagliflozin in patients with type 2 diabetes and stages 3b-4 chronic kidney disease. Nephrol Dial Transplant. 2018; 33: 2005-2011
118. Fioretto P., Del Prato S., Buse J.B., et al. Efficacy and safety of dapagliflozin in patients with type 2 diabetes and moderate renal impairment (chronic kidney disease stage 3A): The DERIVE Study. Diabetes Obes Metab. 2018; 20: 2532-2540
119. Grunberger G., Camp S., Johnson J., et al. Ertugliflozin in patients with stage 3 chronic kidney disease and type 2 diabetes mellitus: The VERTIS RENAL Randomized Study. Diabetes Ther. 2018; 9: 49-66
120. Haneda M., Seino Y., Inagaki N., et al. Influence of renal function on the 52-week efficacy and safety of the sodium glucose cotransporter 2 inhibitor luseogliflozin in Japanese patients with type 2 diabetes mellitus. Clin Ther. 2016; 38: 66-88.e20
121. Kaku K., Kiyosue A., Inoue S., et al. Efficacy and safety of dapagliflozin monotherapy in Japanese patients with type 2 diabetes inadequately controlled by diet and exercise. Diabetes Obes Metab. 2014; 16: 1102-1110
122. Kashiwagi A., Takahashi H., Ishikawa H., et al. A randomized, double-blind, placebo-controlled study on long-term efficacy and safety of ipragliflozin treatment in patients with type 2 diabetes mellitus and renal impairment: results of the long-term ASP1941 safety evaluation in patients with type 2 diabetes with renal impairment (LANTERN) study. Diabetes Obes Metab. 2015; 17: 152-160
123. Kohan D.E., Fioretto P., Tang W., et al. Long-term study of patients with type 2 diabetes and moderate renal impairment shows that dapagliflozin reduces weight and blood pressure but does not improve glycemic control. Kidney Int. 2014; 85: 962-971
124. Mancia G. ,Cannon C.P., Tikkanen I., et al. Impact of empagliflozin on blood pressure in patients with type 2 diabetes mellitus and hypertension by background antihypertensive medication. Hypertension. 2016; 68: 1355-1364
125. Pollock C., Stefansson B., Reyner D., et al. Albuminuria-lowering effect of dapagliflozin alone and in combination with saxagliptin and effect of dapagliflozin and saxagliptin on glycaemic control in patients with type 2 diabetes and chronic kidney disease (DELIGHT): a randomised, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol. 2019; 7: 429-441
126. Pourshabanan P., Momeni A., Mahmoudnia L., et al. Effect of pioglitazone on decreasing of proteinuria in type 2 diabetic patients with nephropathy. Diabetes Metab Syndr. 2019; 13: 132-136
127. Yale J.F., Bakris G., Cariou B., et al. Efficacy and safety of canagliflozin in subjects with type 2 diabetes and chronic kidney disease. Diabetes Obes Metab. 2013; 15: 463-473
128. Lo C., Toyama T., Wang Y., et al. Insulin and glucose-lowering agents for treating people with diabetes and chronic kidney disease. Cochrane Database Syst Rev. 2018; 9: CD011798
129. Ikeda S., Takano Y., Schwab D., et al. Effect of renal impairment on the pharmacokinetics and pharmacodynamics of tofogliflozin (A SELECTIVE SGLT2 Inhibitor) in patients with type 2 diabetes mellitus. Drug Res (Stuttg). 2019; 69: 314-322
130. Kosiborod M.N., Esterline R., Furtado R.H.M., et al. Dapagliflozin in patients with cardiometabolic risk factors hospitalised with COVID-19 (DARE-19): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Diabetes Endocrinol. 2021; 9: 586-594
131. Nandula S.R., Kundu N., Awal H.B., et al. Role of canagliflozin on function of CD34+ve endothelial progenitor cells (EPC) in patients with type 2 diabetes. Cardiovasc Diabetol. 2021; 20: 44
132. Satirapoj B., Korkiatpitak P., Supasyndh O. Effect of sodium-glucose cotransporter 2 inhibitor on proximal tubular function and injury in patients with type 2 diabetes: a randomized controlled trial. Clin Kidney J. 2019; 12: 326-332
133. Tanaka M., Yamakage H., Inoue T., et al. Beneficial effects of ipragliflozin on the renal function and serum uric acid levels in Japanese patients with type 2 diabetes: a randomized, 12-week, open-label, active-controlled trial. Intern Med. 2020; 59: 601-609
134. Guyatt G.H., Oxman A.D., Kunz R., et al. GRADE guidelines 6. Rating the quality of evidence-imprecision. J Clin Epidemiol. 2011; 64: 1283-1293
135. Cai X., Shi L., Yang W., et al. Cost-effectiveness analysis of dapagliflozin treatment versus metformin treatment in Chinese population with type 2 diabetes. J Med Econ. 2019; 22: 336-343
136. Chin K.L., Ofori-Asenso R., Si S., et al. Cost-effectiveness of first-line versus delayed use of combination dapagliflozin and metformin in patients with type 2 diabetes. Sci Rep. 2019; 9: 3256
137. McEwan P., Morgan A.R. ,Boyce R., et al. The cost-effectiveness of dapagliflozin in treating high-risk patients with type 2 diabetes mellitus: an economic evaluation using data from the DECLARE-TIMI 58 trial. Diabetes Obes Metab. 2021; 23: 1020-1029
138. McEwan P., Bennett H., Khunti K., et al. Assessing the cost-effectiveness of sodium-glucose cotransporter-2 inhibitors in type 2 diabetes mellitus: a comprehensive economic evaluation using clinical trial and real-world evidence. Diabetes Obes Metab. 2020; 22: 2364-2374
139. Bakris G., Oshima M., Mahaffey K.W., et al. Effects of canagliflozin in patients with baseline eGFR №30 ml/min per 1.73m2: subgroup analysis of the randomized CREDENCE trial. Clin J Am Soc Nephrol. 2020; 15: 1705-1714
140. Chertow G.M., Vart P., Jongs N., et al. Effects of dapagliflozin in stage 4 chronic kidney disease. J Am Soc Nephrol. 2021; 32: 2352-2361
141. Das S.R., Everett B.M., Birtcher K.K., et al. 2018 ACC expert consensus decision pathway on novel therapies for cardiovascular risk reduction in patients with type 2 diabetes and atherosclerotic cardiovascular disease: a report of the American College of Cardiology Task Force on Expert Consensus Decision Pathways. J Am Coll Cardiol. 2018; 72: 3200-3224
142. Buse J.B., Wexler D.J., Tsapas A., et al. 2019 update to: management of hyperglycemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care. 2020; 43: 487-493
143. Cosentino F., Grant P.J., Aboyans V., et al. 2019 ESC guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD: The Task Force for Diabetes, Pre-diabetes, and Cardiovascular Diseases of the European Society of Cardiology (ESC) and the European Association for the Study of Diabetes (EASD). Eur Heart J. 2020; 41: 255-323
144. Draznin B., Aroda V.R., et al. American Diabetes Association Professional Practice Committee 11. Chronic kidney disease and risk management: standards of medical care in diabetes-2022. Diabetes Care. 2022; 45: S175-S18
145. American Diabetes Association Professional Practice Committee 10. Cardiovascular disease and risk management: standards of medical care in diabetes-2022. Diabetes Care. 2022; 45: S144-S17
146. Draznin B., Aroda V.R., et al. American Diabetes Association Professional Practice Committee 9. Pharmacologic approaches to glycemic treatment: standards of medical care in diabetes-2022. Diabetes Care. 2022; 45: S125-S143
147. Zoungas S., de Boer I.H. SGLT2 inhibitors in diabetic kidney disease. Clin J Am Soc Nephrol. 2021; 16: 631-633
148. Fulcher G., Matthews D.R., Perkovic V., et al. Efficacy and safety of canagliflozin used in conjunction with sulfonylurea in patients with type 2 diabetes mellitus: a randomized, controlled trial. Diabetes Ther. 2015; 6: 289-302
149. Neal B., Perkovic V., de Zeeuw D., et al. Efficacy and safety of canagliflozin, an inhibitor of sodium-glucose cotransporter 2, when used in conjunction with insulin therapy in patients with type 2 diabetes. Diabetes Care. 2015; 38: 403-411
150. Seidu S., Kunutsor S.K., Cos X., et al. SGLT2 inhibitors and renal outcomes in type 2 diabetes with or without renal impairment: a systematic review and meta-analysis. Prim Care Diabetes. 2018; 12: 265-283
151. Kraus B.J., Weir M.R., Bakris G.L., et al. Characterization and implications of the initial estimated glomerular filtration rate 'dip' upon sodium-glucose cotransporter-2 inhibition with empagliflozin in the EMPA-REG OUTCOME trial. Kidney Int. 2021; 99: 750-762
152. Oshima M., Jardine M.J., Agarwal R. et al. Insights from CREDENCE trial indicate an acute drop in estimated glomerular filtration rate during treatment with canagliflozin with implications for clinical practice. Kidney Int. 2021; 99: 999-1009
153. Staessen J., Lijnen P., Fagard R., et al. Rise in plasma concentration of aldosterone during long-term angiotensin II suppression. J Endocrinol. 1981; 91: 457-465
154. Kidney Disease: Improving Global Outcomes Diabetes Work Group KDIGO 2020 clinical practice guideline for diabetes management in chronic kidney disease. Kidney Int. 2020; 98: S1-S115
155. Pitt B., Pfeffer M.A., Assmann S.F., et al. Spironolactone for heart failure with preserved ejection fraction. N Engl J Med. 2014; 370: 1383-1392
156. Pitt B., Zannad F., Remme W.J., et al. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. N Engl J Med. 1999; 341: 709-717
157. Chung E.Y., Ruospo M., Natale P., et al. Aldosterone antagonists in addition to renin angiotensin system antagonists for preventing the progression of chronic kidney disease. Cochrane Database Syst Rev. 2020; 10: CD007004
158. Juurlink D.N., Mamdani M.M., Lee D.S., et al. Rates of hyperkalemia after publication of the Randomized Aldactone Evaluation Study. N Engl J Med. 2004; 351: 543-551
159. Agarwal R., Kolkhof P., Bakris G., et al. Steroidal and non-steroidal mineralocorticoid receptor antagonists in cardiorenal medicine. Eur Heart J. 2021; 42: 152-161
160. Ito S., Kashihara N., Shikata K., et al. Esaxerenone (CS-3150) in patients with type 2 diabetes and microalbuminuria (ESAX-DN): phase 3 randomized controlled clinical trial. Clin J Am Soc Nephrol. 2020; 15: 1715-1727
161. Bakris G.L., Agarwal R., Anker S.D., et al. Effect of finerenone on chronic kidney disease outcomes in type 2 diabetes. N Engl J Med. 2020; 383: 2219-2229
162. Agarwal R., Joseph A., Anker S., et al. Hyperkalemia risk with finerenone: results from the FIDELIO-DKD Trial. J Am Soc Nephrol. 2021; 33: 225-237
163. Pitt B., Filippatos G., Agarwal R., et al. Cardiovascular events with finerenone in kidney disease and type 2 diabetes. N Engl J Med. 2021; 385: 2252-2263
164. Agarwal R., Filippatos G., Pitt B., et al. Cardiovascular and kidney outcomes with finerenone in patients with type 2 diabetes and chronic kidney disease: the FIDELITY pooled analysis. Eur Heart J. 2021; 43: 1-12
165. Ito S., Shikata K., Nangaku M., et al. Efficacy and safety of esaxerenone (CS-3150) for the treatment of type 2 diabetes with microalbuminuria: a randomized, double-blind, placebo-controlled, phase ii trial. Clin J Am Soc Nephrol. 2019; 14: 1161-1172
166. Bakris G.L., Agarwal R., Chan J.C., et al. Effect of finerenone on albuminuria in patients with diabetic nephropathy: a randomized clinical trial. JAMA. 2015; 314: 884-894
167. Bolignano D., Palmer S.C., Navaneethan S.D., et al. Aldosterone antagonists for preventing the progression of chronic kidney disease. Cochrane Database Syst Rev. 2014; 4: CD007004
168. Chen Y., Liu P., Chen X., et al. Effects of different doses of irbesartan combined with spironolactone on urinary albumin excretion rate in elderly patients with early type 2 diabetic nephropathy. Am J Med Sci. 2018; 355: 418-424
169. Epstein M., Williams G.H., Weinberger M., et al. Selective aldosterone blockade with eplerenone reduces albuminuria in patients with type 2 diabetes. Clin J Am Soc Nephrol. 2006; 1: 940-951
170. Minakuchi H., Wakino S., Urai H., et al. The effect of aldosterone and aldosterone blockade on the progression of chronic kidney disease: a randomized placebo-controlled clinical trial. Sci Rep. 2020; 10 16626
171. Rossing K., Schjoedt K.J., Smidt U.M., et al. Beneficial effects of adding spironolactone to recommended antihypertensive treatment in diabetic nephropathy: a randomized, double-masked, cross-over study. Diabetes Care. 2005; 28: 2106-2112
172. Schjoedt K.J., Rossing K., Juhl T.R., et al. Beneficial impact of spironolactone on nephrotic range albuminuria in diabetic nephropathy. Kidney Int. 2006; 70: 536-542
173. van den Meiracker A.H., Baggen R.G., Pauli S., et al. Spironolactone in type 2 diabetic nephropathy: effects on proteinuria, blood pressure and renal function. J Hypertens. 2006; 24: 2285-2292
174. Wada T., Inagaki M., Yoshinari T., et al. Apararenone in patients with diabetic nephropathy: results of a randomized, double-blind, placebo-controlled phase 2 dose-response study and open-label extension study. Clin Exp Nephrol. 2021; 25: 120-130
175. Zelnick L.R., Weiss N.S., Kestenbaum B.R., et al. Diabetes and CKD in the United States population, 2009-2014. Clin J Am Soc Nephrol. 2017; 12: 1984-1990
176. Chiu N. Aggarwal R., Bakris G.L., et al. Generalizability of FIGARO-DKD and FIDELIO-DKD trial criteria to the US population eligible for finerenone. J Am Heart Assoc. 2022; 11e025079
177. Afkarian M., Zelnick L.R., Hall Y.N., et al. Clinical manifestations of kidney disease among US adults with diabetes, 1988-2014. JAMA. 2016; 316: 602-610
178. Xia J., Wang L., Ma Z., et al. Cigarette smoking and chronic kidney disease in the general population: a systematic review and meta-analysis of prospective cohort studies. Nephrol Dial Transplant. 2017; 32: 475-487
179. Jhee J.H., Joo Y.S., Kee Y.K., et al. Secondhand smoke and CKD. Clin J Am Soc Nephrol. 2019; 14: 515-522
180. Staplin N., Haynes R., Herrington W.G., et al. Smoking and adverse outcomes in patients with CKD: The Study of Heart and Renal Protection (SHARP). Am J Kidney Dis. 2016; 68: 371-380
181. Dinakar C., O'Connor G.T., The health effects of electronic cigarettes. N Engl J Med. 2016; 375: 1372-1381
182. Sawicki P.T., Muhlhauser I., Bender R., et al. Effects of smoking on blood pressure and proteinuria in patients with diabetic nephropathy. J Intern Med. 1996; 239: 345-352
183. Pan A., Wang Y., Talaei M., et al. Relation of smoking with total mortality and cardiovascular events among patients with diabetes mellitus: a meta-analysis and systematic review. Circulation. 2015; 132: 1795-1804
184. Formanek P., Salisbury-Afshar E., Afshar M. Helping patients with ESRD and earlier stages of CKD to quit smoking. Am J Kidney Dis. 2018; 72: 255-266
185. Kalkhoran S., Glantz S.A. E-cigarettes and smoking cessation in real-world and clinical settings: a systematic review and meta-analysis. Lancet Respir Med. 2016; 4: 116-128
186. Nakamura K., Nakagawa H., Murakami Y., et al. Smoking increases the risk of all-cause and cardiovascular mortality in patients with chronic kidney disease. Kidney Int. 2015; 88: 1144-1152
187. Stead L.F., Koilpillai P., Fanshawe T.R., et al. Combined pharmacotherapy and behavioural interventions for smoking cessation. Cochrane Database Syst Rev. 2016; 3: CD008286
188. de Boer IH, DCCT/EDIC Research Group Kidney disease and related findings in the diabetes control and complications trial/epidemiology of diabetes interventions and complications study. Diabetes Care. 2014; 37: 24-30
189. DCCT/EDIC Research Group Effect of intensive diabetes treatment on albuminuria in type 2 diabetes: long-term follow-up of the Diabetes Control and Complications Trial and Epidemiology of Diabetes Interventions and Complications Study. Lancet Diabetes Endocrinol. 2014; 2: 793-800
190. de Boer I.H., Sun W., et al. DCCT/EDIC Research Group Intensive diabetes therapy and glomerular filtration rate in type 1 diabetes. N Engl J Med. 2011; 365: 2366-2376
191. Zoungas S., Arima H., Gerstein H.C., et al. Effects of intensive glucose control on microvascular outcomes in patients with type 2 diabetes: a meta-analysis of individual participant data from randomised controlled trials. Lancet Diabetes Endocrinol. 2017; 5: 431-437
192. Zoungas S., Chalmers J., Ninomiya T., et al. Association of HbA1c levels with vascular complications and death in patients with type 2 diabetes: evidence of glycaemic thresholds. Diabetologia. 2012; 55: 636-643
193. National Glycated Hemoglobin Standardization Program (NGSP) Harmonizing hemoglobin A1c testing. http://ngsp.org/critsumm.asp Date accessed: August 14, 2020
194. College of American Pathologists (CAP) Hemoglobin A1c (5 Challenge) GH5-C 2019. CAP, 2019
195. Freedman B.I., Shihabi Z.K., Andries L., et al. Relationship between assays of glycemia in diabetic subjects with advanced chronic kidney disease. Am J Nephrol. 2010; 31: 375-379
196. Jung M., Warren B., Grams M., et al. Performance of non-traditional hyperglycemia biomarkers by chronic kidney disease status in older adults with diabetes: results from the Atherosclerosis Risk in Communities Study. J Diabetes. 2018; 10: 276-285
197. Danne T., Nimri R., Battelino T., et al. International consensus on use of continuous glucose monitoring. Diabetes Care. 2017; 40: 1631-1640
198. Neelofar K., Ahmad J. A comparative analysis of fructosamine with other risk factors for kidney dysfunction in diabetic patients with or without chronic kidney disease. Diabetes Metab Syndr. 2019; 13: 240-244
199. Williams M.E., Mittman N., Ma L., et al. The Glycemic Indices in Dialysis Evaluation (GIDE) Study: comparative measures of glycemic control in diabetic dialysis patients. Hemodial Int. 2015; 19: 562-571
200. Bai Y., Yang R., Song Y., et al. Serum 1,5-anhydroglucitol concentrations remain valid as a glycemic control marker in diabetes with earlier chronic kidney disease stages. Exp Clin Endocrinol Diabetes. 2019; 127: 220-225
201. Chen H.S., Wu T.E., Lin H.D., et al. Hemoglobin A1c and fructosamine for assessing glycemic control in diabetic patients with CKD stages 3 and 4. Am J Kidney Dis. 2010; 55: 867-874
202. Divani M., Georgianos P.I., Didangelos T., et al. Comparison of glycemic markers in chronic hemodialysis using continuous glucose monitoring. Am J Nephrol. 2018; 47: 21-29
203. Duan N., Zhu S.N., Li H.X., et al. Assessment of glycated albumin as a useful indicator for renal dysfunction in diabetic and nondiabetic population. Clin Lab. 2017; 63: 1129-1137
204. Freedman B.I., Shenoy R.N., Planer J.A., et al. Comparison of glycated albumin and hemoglobin A1c concentrations in diabetic subjects on peritoneal and hemodialysis. Perit Dial Int. 2010; 30: 72-79
205. Fukami K., Shibata R., Nakayama H., et al. Serum albumin-adjusted glycated albumin reflects glycemic excursion in diabetic patients with severe chronic kidney disease not treated with dialysis. J Diabetes Complications. 2015; 29: 913-917
206. Harada K., Sumida K., Yamaguchi Y., et al. Relationship between the accuracy of glycemic markers and the chronic kidney disease stage in patients with type 2 diabetes mellitus. Clin Nephrol. 2014; 82: 107-114
207. Hasslacher C., Kulozik F. Effect of renal function on serum concentration of 1,5-anhydroglucitol in type 2 diabetic patients in chronic kidney disease stages I-III: a comparative study with HbA1c and glycated albumin. J Diabetes. 2016; 8: 712-719
208. Hayashi A., Takano K., Masaki T., et al. Distinct biomarker roles for HbA1c and glycated albumin in patients with type 2 diabetes on hemodialysis. J Diabetes Complications. 2016; 30: 1494-1499
209. Okada T., Nakao T., Matsumoto H., et al. Influence of proteinuria on glycated albumin values in diabetic patients with chronic kidney disease. Intern Med. 2011; 50: 23-29
210. Raghav A. Ahmad J., Noor S. et al. Glycated albumin and the risk of chronic kidney disease in subjects with type 2 diabetes: a study in North Indian population. Diabetes Metab Syndr. 2018; 12: 381-385
211. Jung H.S., Kim H.I., Kim M.J., et al. Analysis of hemodialysis-associated hypoglycemia in patients with type 2 diabetes using a continuous glucose monitoring system. Diabetes Technol Ther. 2010; 12: 801-807
212. Konya J., Ng J.M., Cox H., et al. Use of complementary markers in assessing glycaemic control in people with diabetic kidney disease undergoing iron or erythropoietin treatment. Diabet Med. 2013; 30: 1250-1254
213. Lee S.Y., Chen Y.C., Tsai I.C., et al. Glycosylated hemoglobin and albumin-corrected fructosamine are good indicators for glycemic control in peritoneal dialysis patients. PLoS One. 2013; 8e57762
214. Lo C., Lui M., Ranasinha S., et al. Defining the relationship between average glucose and HbA1c in patients with type 2 diabetes and chronic kidney disease. Diabetes Res Clin Pract. 2014; 104: 84-91
215. Mirani M., Berra C., Finazzi S., et al. Inter-day glycemic variability assessed by continuous glucose monitoring in insulin-treated type 2 diabetes patients on hemodialysis. Diabetes Technol Ther. 2010; 12: 749-753
216. Ng J.M., Cooke M., Bhandari S., et al. The effect of iron and erythropoietin treatment on the A1C of patients with diabetes and chronic kidney disease. Diabetes Care. 2010; 33: 2310-2313
217. Ogawa T., Murakawa M., Matsuda A., et al. Endogenous factors modified by hemodialysis may interfere with the accuracy of blood glucose-measuring device. Hemodial Int. 2012; 16: 266-273
218. Qayyum A., Chowdhury T.A., Oei E.L., et al. Use of continuous glucose monitoring in patients with diabetes mellitus on peritoneal dialysis: correlation with glycated hemoglobin and detection of high incidence of unaware hypoglycemia. Blood Purif. 2016; 41: 18-24
219. Riveline J.P., Teynie J., Belmouaz S., et al. Glycaemic control in type 2 diabetic patients on chronic haemodialysis: use of a continuous glucose monitoring system. Nephrol Dial Transplant. 2009; 24: 2866-2871
220. Vos F.E., Schollum J.B., Coulter C.V., et al. Assessment of markers of glycaemic control in diabetic patients with chronic kidney disease using continuous glucose monitoring. Nephrology (Carlton). 2012; 17: 182-188
221. Whiting P. Rutjes A.W.,, Reitsma J.B., et al. The development of QUADAS: a tool for the quality assessment of studies of diagnostic accuracy included in systematic reviews. BMC Med Res Methodol. 2003; 3: 25
222. Cho S.J., Roman G., Yeboah F., et al. The road to advanced glycation end products: a mechanistic perspective. Curr Med Chem. 2007; 14: 1653-1671
223. Little R.R., Rohlfing C.L., Tennill A.L., et al. Measurement of Hba(1C) in patients with chronic renal failure. Clin Chim Acta. 2013; 418: 73-76
224. Tarim O., Kucukerdogan A., Gunay U., et al. Effects of iron deficiency anemia on hemoglobin A1c in type 2 diabetes mellitus. Pediatr Int. 1999; 41: 357-362
225. Draznin B., Aroda V.R., et al. American Diabetes Association Professional Practice Committee 6. Glycemic targets: standards of medical care in diabetes-2022. Diabetes Care. 2022; 45: S83-S96
226. Peacock T.P., Shihabi Z.K., Bleyer A.J., et al. Comparison of glycated albumin and hemoglobin A1c levels in diabetic subjects on hemodialysis. Kidney Int. 2008; 73: 1062-1068
227. Zelnick L.R., Batacchi Z.O., Dighe A., et al. Continuous glucose monitoring and use of alternative markers to assess glycemia in chronic kidney disease. Diabetes Care. 2020; 43: 2379-2387
228. Battelino T., Danne T., Bergenstal R.M., et al. Clinical targets for continuous glucose monitoring data interpretation: recommendations from the international consensus on time in range. Diabetes Care. 2019; 42: 1593-1603
229. Bergenstal R.M., Beck R.W., Close K.L., et al. Glucose management indicator (GMI): a new term for estimating A1C from continuous glucose monitoring. Diabetes Care. 2018; 41: 2275-2280
230. Kidney Disease Outcomes Quality Initiative (KDOQI) KDOQI clinical practice guidelines and clinical practice recommendations for diabetes and chronic kidney disease. Am J Kidney Dis. 2007; 49: S12-S15
231. Ciavarella A., Vannini P., Flammini M., et al. Effect of long-term near-normoglycemia on the progression of diabetic nephropathy. Diabete Metab. 1985; 11: 3-8
232. Dahl-Jorgensen K. Near-normoglycemia and late diabetic complications. The Oslo Study. Acta Endocrinol Suppl (Copenh). 1987; 284: 1-38
233. de Boer I.H., Gao X., Cleary P.A., et al. Albuminuria changes and cardiovascular and renal outcomes in type 2 diabetes: The DCCT/EDIC Study. Clin J Am Soc Nephrol. 2016; 11: 1969-1977
234. Feldt-Rasmussen B., Mathiesen E.R., Deckert T. Effect of two years of strict metabolic control on progression of incipient nephropathy in insulin-dependent diabetes. Lancet. 1986; 2: 1300-1304
235. Steno Study Group Effect of 6 months of strict metabolic control on eye and kidney function in insulin-dependent diabetics with background retinopathy. Steno study group. Lancet. 1982; 1: 121-124
236. The Diabetes Control and Complications (DCCT) Research Group Effect of intensive therapy on the development and progression of diabetic nephropathy in the Diabetes Control and Complications Trial. The Diabetes Control and Complications (DCCT) Research Group. Kidney Int. 1995; 47: 1703-1720
237. Reichard P., Britz A., Cars I., et al. The Stockholm Diabetes Intervention Study (SDIS): 18 months' results. Acta Med Scand. 1988; 224: 115-122
238. Abraira C., Emanuele N., Colwell J., et al. Glycemic control and complications in type II diabetes. Design of a feasibility trial. VA CS Group (CSDM). Diabetes Care. 1992; 15: 1560-1571
239. Gerstein H.C., Miller M.E., et al. Action to Control Cardiovascular Risk in Diabetes Study Group Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med. 2008; 358: 2545-2559
240. Crasto W., Morrison A.E., Gray L.J., et al. The Microalbuminuria Education Medication and Optimisation (MEMO) Study: 4 years follow-up of multifactorial intervention in high-risk individuals with type 2 diabetes. Diabet Med. 2019; 37: 286-297
241. Duckworth W., Abraira C., Moritz T., et al. Glucose control and vascular complications in veterans with type 2 diabetes. N Engl J Med. 2009; 360: 129-139
242. Gaede P., Vedel P,. Parving H.H., et al. Intensified multifactorial intervention in patients with type 2 diabetes mellitus and microalbuminuria: the Steno type 2 randomised study. Lancet. 1999; 353: 617-622
243. Patel A. MacMahon S., et al. ADVANCE Collaborative Group Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med. 2008; 358: 2560-2572
244. UK Prospective Diabetes Study (UKPDS) Group Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet. 1998; 352: 854-865
245. UK Prospective Diabetes Study (UKPDS) Group Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group. Lancet. 1998; 352: 837-853
246. Scopus (18846) Currie C.J., Peters J.R., Tynan A., et al. Survival as a function of HbA1c in people with type 2 diabetes: a retrospective cohort study. Lancet. 2010; 375: 481-489
247. Holman R.R., Paul S.K., Bethel M.A., et al. 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med. 2008; 359: 1577-1589
248. Nathan D.M., Cleary P.A., Backlund J.Y., et al. Intensive diabetes treatment and cardiovascular disease in patients with type 2 diabetes. N Engl J Med. 2005; 353: 2643-2653
249. Ruospo M., Saglimbene V.M., Palmer S.C. et al. Glucose targets for preventing diabetic kidney disease and its progression. Cochrane Database Syst Rev. 2017; 6: CD010137
250. Abraira C., Colwell J.A., Nuttall F.Q., et al. Veterans Affairs Cooperative Study on Glycemic Control and Complications in Type II Diabetes (VA CSDM). Results of the feasibility trial. Veterans Affairs Cooperative Study in Type II Diabetes. Diabetes Care. 1995; 18: 1113-1123
251. Crasto W., Jarvis J., Khunti K., et al. Multifactorial intervention in individuals with type 2 diabetes and microalbuminuria: the Microalbuminuria Education and Medication Optimisation (MEMO) Study. Diabetes Res Clin Pract. 2011; 93: 328-336
252. Reichard P., Nilsson B.Y., Rosenqvist U. The effect of long-term intensified insulin treatment on the development of microvascular complications of diabetes mellitus. N Engl J Med. 1993; 329: 304-309
253. Ohkubo Y., Kishikawa H., Araki E., et al. Intensive insulin therapy prevents the progression of diabetic microvascular complications in Japanese patients with non-insulin-dependent diabetes mellitus: a randomized prospective 6-year study. Diabetes Res Clin Pract. 1995; 28: 103-117
254. Mottl A.K., Buse J.B., Ismail-Beigi F., et al. Long-term effects of intensive glycemic and blood pressure control and fenofibrate use on kidney outcomes. Clin J Am Soc Nephrol. 2018; 13: 1693-1702
255. Nathan D.M., Genuth S., et al. Diabetes Control and Complications Research Group The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med. 1993; 329: 977-986
256. Beck R.W., Riddlesworth T., Ruedy K., et al. Effect of continuous glucose monitoring on glycemic control in adults with type 2 diabetes using insulin injections: The DIAMOND Randomized Clinical Trial. JAMA. 2017; 317: 371-378
257. Lind M., Polonsky W., Hirsch I.B., et al. Continuous glucose monitoring vs conventional therapy for glycemic control in adults with type 2 diabetes treated with multiple daily insulin injections: The GOLD Randomized Clinical Trial. JAMA. 2017; 317: 379-387
258. Beck R.W., Bergenstal R.M., Riddlesworth T.D., et al. Validation of time in range as an outcome measure for diabetes clinical trials. Diabetes Care. 2019; 42: 400-405
259. Brown S.A., Kovatchev B.P., Raghinaru D., et al. Six-month randomized, multicenter trial of closed-loop control in type 2 diabetes. N Engl J Med. 2019; 381: 1707-1717
260. Bach K.E., Kelly J.T., Palmer S.C., et al. Healthy dietary patterns and incidence of CKD: a meta-analysis of cohort studies. Clin J Am Soc Nephrol. 2019; 14: 1441-1449
261. Klahr S., Buerkert J., Purkerson M.L. Role of dietary factors in the progression of chronic renal disease. Kidney Int. 1983; 24: 579-587
262. Joint WHO/FAO/UNU Expert Consultation Protein and Amino Acid Requirements in Human Nutrition. World Health Organization Technical Report Series, 2007
263. Hahn D., Hodson E.M., Fouque D. Low protein diets for non-diabetic adults with chronic kidney disease. Cochrane Database Syst Rev. 2018; 10: CD001892
264. Brouhard B.H., LaGrone L. Effect of dietary protein restriction on functional renal reserve in diabetic nephropathy. Am J Med. 1990; 89: 427-431
265. Ciavarella A., Di Mizio G., Stefoni S., et al. Reduced albuminuria after dietary protein restriction in insulin-dependent diabetic patients with clinical nephropathy. Diabetes Care. 1987; 10: 407-413
266. Dullaart R.P., Beusekamp B.J., Meijer S., et al. Long-term effects of protein-restricted diet on albuminuria and renal function in IDDM patients without clinical nephropathy and hypertension. Diabetes Care. 1993; 16: 483-492
267. Dussol B., Iovanna C. Raccah D., et al. A randomized trial of low-protein diet in type 2 and in type 2 diabetes mellitus patients with incipient and overt nephropathy. J Ren Nutr. 2005; 15: 398-406
268. Hansen H.P., Tauber-Lassen E., Jensen B.R., et al. Effect of dietary protein restriction on prognosis in patients with diabetic nephropathy. Kidney Int. 2002; 62: 220-228
269. Jesudason D.R., Pedersen E., Clifton P.M. Weight-loss diets in people with type 2 diabetes and renal disease: a randomized controlled trial of the effect of different dietary protein amounts. Am J Clin Nutr. 2013; 98: 494-501
270. Koya D., Haneda M., Inomata S., et al. Long-term effect of modification of dietary protein intake on the progression of diabetic nephropathy: a randomised controlled trial. Diabetologia. 2009; 52: 2037-2045
271. Meloni C., Morosetti M., Suraci C., et al. Severe dietary protein restriction in overt diabetic nephropathy: benefits or risks? J Ren Nutr. 2002; 12: 96-101
272. Meng Y., Bai H., Yu Q., et al. High-resistant starch, low-protein flour intervention on patients with early type 2 diabetic nephropathy: a randomized trial. J Ren Nutr. 2019; 29: 386-393
273. Raal F.J., Kalk W.J., Lawson M., et al. Effect of moderate dietary protein restriction on the progression of overt diabetic nephropathy: a 6-mo prospective study. Am J Clin Nutr. 1994; 60: 579-585
274. Velazquez Lopez L., Sil Acosta M.J., Goycochea Robles M.V., et al. Effect of protein restriction diet on renal function and metabolic control in patients with type 2 diabetes: a randomized clinical trial. Nutr Hosp. 2008; 23: 141-147
275. Zeller K. Whittaker E. Sullivan L. et al. Effect of restricting dietary protein on the progression of renal failure in patients with insulin-dependent diabetes mellitus. N Engl J Med. 1991; 324: 78-84
276. Evert A.B., Dennison M., Gardner C.D., et al. Nutrition therapy for adults with diabetes or prediabetes: a consensus report. Diabetes Care. 2019; 42: 731-754
277. Hostetter T.H., Meyer T.W., Rennke H.G., et al. Chronic effects of dietary protein in the rat with intact and reduced renal mass. Kidney Int. 1986; 30: 509-517
278. Yusuf S., Joseph P., Rangarajan S., et al. Modifiable risk factors, cardiovascular disease, and mortality in 155 722 individuals from 21 high-income, middle-income, and low-income countries (PURE): a prospective cohort study. Lancet. 2019; 10226: 795-808
279. Chen X., Wei G., Jalili T., et al. The associations of plant protein intake with all-cause mortality in CKD. Am J Kidney Dis. 2016; 67: 423-430
280. Haring B., Selvin E., Liang M., et al. Dietary protein sources and risk for incident chronic kidney disease: results from the Atherosclerosis Risk in Communities (ARIC) Study. J Ren Nutr. 2017; 27: 233-242
281. Lew Q.J., Jafar T.H., Koh H.W., et al. Red meat intake and risk of ESRD. J Am Soc Nephrol. 2017; 28: 304-312
282. Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int Suppl. 2013; 3: 1-150
283. Ikizler T.A., Burrowes J.D., Byham-Gray L.D., et al. KDOQI clinical practice guidelines for nutrition in CKD: 2020 update. Am J Kidney Dis. 2019; 76: S1-S107
284. Bergstrom J. Nutrition and mortality in hemodialysis. J Am Soc Nephrol. 1995; 6: 1329-1341
285. Blumenkrantz M.J., Gahl G.M., Kopple J.D., et al. Protein losses during peritoneal dialysis. Kidney Int. 1981; 19: 593-602
286. Mozaffarian D., Fahimi S., Singh G.M., et al. Global sodium consumption and death from cardiovascular causes. N Engl J Med. 2014; 371: 624-634
287. Juraschek S.P., Miller 3rd E.R., Weaver C.M., et al. Effects of sodium reduction and the DASH diet in relation to baseline blood pressure. J Am Coll Cardiol. 2017; 70: 2841-2848
288. Academies of Sciences, Engineering, and Medicine; Health and Medicine Division; Food and Nutrition Board; Committee to Review the Dietary Reference Intakes for Sodium and Potassium; Oria M, Harrison M, Stallings VA, eds. Dietary reference intakes for sodium and potassium. Accessed August 14, 2020. https://doi.org/10.17226/25353
289. De'Oliveira J.M., Price D.A., Fisher N.D., et al. Autonomy of the renin system in type II diabetes mellitus: dietary sodium and renal hemodynamic responses to ACE inhibition. Kidney Int. 1997; 52: 771-777
290. Dodson P.M., Beevers M., Hallworth R., et al. Sodium restriction and blood pressure in hypertensive type II diabetics: randomised blind controlled and crossover studies of moderate sodium restriction and sodium supplementation. BMJ. 1989; 298: 227-230
291. Ekinci E.I., Thomas G., Thomas D., et al. Effects of salt supplementation on the albuminuric response to telmisartan with or without hydrochlorothiazide therapy in hypertensive patients with type 2 diabetes are modulated by habitual dietary salt intake. Diabetes Care. 2009; 32: 1398-1403
292. Houlihan C.A., Allen T.J., Baxter A.L., et al. A low-sodium diet potentiates the effects of losartan in type 2 diabetes. Diabetes Care. 2002; 25: 663-671
293. Imanishi M., Yoshioka K., Okumura M., et al. Sodium sensitivity related to albuminuria appearing before hypertension in type 2 diabetic patients. Diabetes Care. 2001; 24: 111-116
294. Kwakernaak A.J., Krikken J.A., Binnenmars S.H., et al. Effects of sodium restriction and hydrochlorothiazide on RAAS blockade efficacy in diabetic nephropathy: a randomised clinical trial. Lancet Diabetes Endocrinol. 2014; 2: 385-395
295. Lopes de Faria J.B., Friedman R., de Cosmo S., et al. Renal functional response to protein loading in type 2 (insulin-dependent) diabetic patients on normal or high salt intake. Nephron. 1997; 76: 411-417
296. Luik P.T., Hoogenberg K., Van Der Kleij F.G., et al. Short-term moderate sodium restriction induces relative hyperfiltration in normotensive normoalbuminuric type I diabetes mellitus. Diabetologia. 2002; 45: 535-541
297. Miller J.A. Sympathetic vasoconstrictive responses to high- and low-sodium diets in diabetic and normal subjects. Am J Physiol. 1995; 269: R380-R383
298. Miller J.A. Renal responses to sodium restriction in patients with early diabetes mellitus. J Am Soc Nephrol. 1997; 8: 749-755
299. Muhlhauser I., Prange K., Sawicki P.T., et al. Effects of dietary sodium on blood pressure in IDDM patients with nephropathy. Diabetologia. 1996; 39: 212-219
300. Petrie J.R., Morris A.D., Minamisawa K., et al. Dietary sodium restriction impairs insulin sensitivity in noninsulin-dependent diabetes mellitus. J Clin Endocrinol Metab. 1998; 83: 1552-1557
301. Suckling R.J., He F.J., Macgregor G.A. Altered dietary salt intake for preventing and treating diabetic kidney disease. Cochrane Database Syst Rev. 2010; 12: CD006763
302. Trevisan R., Bruttomesso D., Vedovato M., et al. Enhanced responsiveness of blood pressure to sodium intake and to angiotensin II is associated with insulin resistance in IDDM patients with microalbuminuria. Diabetes. 1998; 47: 1347-1353
303. Vedovato M., Lepore G., Coracina A., et al. Effect of sodium intake on blood pressure and albuminuria in Type 2 diabetic patients: the role of insulin resistance. Diabetologia. 2004; 47: 300-303
304. Yoshioka K., Imanishi M., Konishi Y., et al. Glomerular charge and size selectivity assessed by changes in salt intake in type 2 diabetic patients. Diabetes Care. 1998; 21: 482-486
305. GBD 2017 Diet Collaborators Health effects of dietary risks in 195 countries, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2019; 393: 1958-1972
306. Malta D., Petersen K.S., Johnson C., et al. High sodium intake increases blood pressure and risk of kidney disease. From the Science of Salt: a regularly updated systematic review of salt and health outcomes (August 2016 to March 2017). J Clin Hypertens (Greenwich). 2018; 20: 1654-1665
307. World Health Organization Guideline: sodium intake for adults and children, 2012. https://apps.who.int/iris/bitstream/handle/10665/77985/9789241504836_eng.pdf?sequence=1 Date accessed: August 14, 2020
308. Powers M.A., Bardsley J., Cypress M., et al. Diabetes self-management education and support in type 2 diabetes: a joint position statement of the American Diabetes Association, the American Association of Diabetes Educators, and the Academy of Nutrition and Dietetics. Clin Diabetes. 2016; 34: 70-80
309. Thomas M.C., Moran J., Forsblom C., et al. The association between dietary sodium intake, ESRD, and all-cause mortality in patients with type 2 diabetes. Diabetes Care. 2011; 34: 861-866
310. Zelle D.M., Klaassen G., van Adrichem E., et al. Physical inactivity: a risk factor and target for intervention in renal care. Nat Rev Nephrol. 2017; 13: 152-168
311. Navaneethan S.D., Kirwan J.P., Arrigain S., et al. Overweight, obesity and intentional weight loss in chronic kidney disease: NHANES 1999-2006. Int J Obes (Lond). 2012; 36: 1585-1590
312. Beddhu S., Wei G., Marcus R.L., et al. Light-intensity physical activities and mortality in the United States general population and CKD subpopulation. Clin J Am Soc Nephrol. 2015; 10: 1145-1153
313. Pandey A., Garg S., Khunger M., et al. Dose-response relationship between physical activity and risk of heart failure: a meta-analysis. Circulation. 2015; 132: 1786-1794
314. Sattelmair J., Pertman J., Ding E.L., et al. Dose response between physical activity and risk of coronary heart disease: a meta-analysis. Circulation. 2011; 124: 789-795
315. Lyden K., Boucher R., Wei G., et al. Targeting sedentary behavior in CKD: a pilot and feasibility randomized controlled trial. Clin J Am Soc Nephrol. 2021; 16: 717-726
316. Beetham K.S., Krishnasamy R., Stanton T., et al. Effect of a 3-year lifestyle intervention in patients with chronic kidney disease: a randomized clinical trial. J Am Soc Nephrol. 2022; 33: 431-441
317. Fletcher G.F., Landolfo C., Niebauer J., et al. Reprint of: promoting physical activity and exercise: JACC Health Promotion Series. J Am Coll Cardiol. 2018; 72: 3053-3070
318. Kelly J.T., Su G. Zhang, et al. Modifiable lifestyle factors for primary prevention of CKD: a systematic review and meta-analysis. J Am Soc Nephrol. 2021; 32: 239-253
319. Tran J., Ayers E., Verghese J., et al. Gait abnormalities and the risk of falls in CKD. Clin J Am Soc Nephrol. 2019; 14: 983-993
320. Fried L.F., Lee J.S., Shlipak M., et al. Chronic kidney disease and functional limitation in older people: health, aging and body composition study. J Am Geriatr Soc. 2006; 54: 750-756
321. Roshanravan B., Robinson-Cohen C., Patel K.V., et al. Association between physical performance and all-cause mortality in CKD. J Am Soc Nephrol. 2013; 24: 822-830
322. Schrauben S.J., Hsu J.Y., Amaral S., et al. Effect of kidney function on relationships between lifestyle behaviors and mortality or cardiovascular outcomes: a pooled cohort analysis. J Am Soc Nephrol. 2021; 32: 663-675
323. Johansen K.L., Painter P. Exercise in individuals with CKD. Am J Kidney Dis. 2012; 59: 126-134
324. Heiwe S., Jacobson S.H. Exercise training in adults with chronic kidney disease. Cochrane Database Syst Rev. 2011; 10: CD003236
325. Leehey D.J., Moinuddin I., Bast J.P., et al. Aerobic exercise in obese diabetic patients with chronic kidney disease: a randomized and controlled pilot study. Cardiovasc Diabetol. 2009; 8: 62
326. Ekelund U., Steene-Johannessen J., Brown W.J., et al. Does physical activity attenuate, or even eliminate, the detrimental association of sitting time with mortality? A harmonised meta-analysis of data from more than 1 million men and women. Lancet. 2016; 388: 1302-1310
327. Guthold R., Stevens G.A., Riley L.M., et al. Worldwide trends in insufficient physical activity from 2001 to 2016: a pooled analysis of 358 population-based surveys with 1.9 million participants. Lancet Glob Health. 2018; 6: e1077-e1086
328. Biswas A., Oh P.I., Faulkner G.E., et al. Sedentary time and its association with risk for disease incidence, mortality, and hospitalization in adults: a systematic review and meta-analysis. Ann Intern Med. 2015; 162: 123-132
329. Agarwal R., Light R.P. Physical activity and hemodynamic reactivity in chronic kidney disease. Clin J Am Soc Nephrol. 2008; 3: 1660-1668
330. Bowlby W., Zelnick L.R., Henry C., et al. Physical activity and metabolic health in chronic kidney disease: a cross-sectional study. BMC Nephrol. 2016; 17: 187
331. Kosmadakis G.C., John S.G. ,Clapp E.L., et al. Benefits of regular walking exercise in advanced pre-dialysis chronic kidney disease. Nephrol Dial Transplant. 2012; 27: 997-1004
332. Robinson E.S., Fisher N.D., Forman J.P., et al. Physical activity and albuminuria. Am J Epidemiol. 2010; 171: 515-521
333. Beddhu S., Baird B.C., Zitterkoph J., et al. Physical activity and mortality in chronic kidney disease (NHANES III). Clin J Am Soc Nephrol. 2009; 4: 1901-1906
334. Look AHEAD Research Group Effect of a long-term behavioral weight loss intervention on nephropathy in overweight or obese adults with type 2 diabetes: a secondary analysis of the Look AHEAD randomised clinical trial. Lancet Diabetes Endocrinol. 2014; 2: 801-809
335. Manfredini F., Mallamaci F., D'Arrigo G., et al. Exercise in patients on dialysis: a multicenter, randomized clinical trial. J Am Soc Nephrol. 2017; 28: 1259-1268
336. Clarkson M.J., Bennett P.N., Fraser S.F., et al. Exercise interventions for improving objective physical function in patients with end-stage kidney disease on dialysis: a systematic review and meta-analysis. Am J Physiol Renal Physiol. 2019; 316: F856-F872
337. Pu J., Jiang Z., Wu W., et al. Efficacy and safety of intradialytic exercise in haemodialysis patients: a systematic review and meta-analysis. BMJ Open. 2019; 9e020633
338. Watson E.L., Gould D.W., Wilkinson T.J., et al. Twelve-week combined resistance and aerobic training confers greater benefits than aerobic training alone in nondialysis CKD. Am J Physiol Renal Physiol. 2018; 314: F1188-F1196
339. Whaley-Connell A., Sowers J.R. Obesity and kidney disease: from population to basic science and the search for new therapeutic targets. Kidney Int. 2017; 92: 313-323
340. WHO Expert Consultation Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet. 2004; 363: 157-163
341. Chang A.R., Grams M.E., Ballew S.H., et al. Adiposity and risk of decline in glomerular filtration rate: meta-analysis of individual participant data in a global consortium. BMJ. 2019; 364: k5301
342. Bolignano D., Zoccali C. Effects of weight loss on renal function in obese CKD patients: a systematic review. Nephrol Dial Transplant. 2013; 28: iv82-iv98
343. Navaneethan S.D., Yehnert H., Moustarah F., et al. Weight loss interventions in chronic kidney disease: a systematic review and meta-analysis. Clin J Am Soc Nephrol. 2009; 4: 1565-1574
344. Kalantar-Zadeh K., Abbott K.C., Salahudeen A.K., et al. Survival advantages of obesity in dialysis patients. Am J Clin Nutr. 2005; 81: 543-554
345. Sattar N., Lee M.M.Y., Kristensen S.L., et al. Cardiovascular, mortality, and kidney outcomes with GLP-1 receptor agonists in patients with type 2 diabetes: a systematic review and meta-analysis of randomised trials. Lancet Diabetes Endocrinol. 2021; 9: 653-662
346. Gerstein H.C., Sattar N., Rosenstock J., et al. Cardiovascular and renal outcomes with efpeglenatide in type 2 diabetes. N Engl J Med. 2021; 385: 896-907
347. Rosenstock J., Perkovic V., Johansen O.E., et al. Effect of linagliptin vs placebo on major cardiovascular events in adults with type 2 diabetes and high cardiovascular and renal risk: The CARMELINA Randomized Clinical Trial. JAMA. 2019; 321: 69-79
348. Neumiller J.J., Alicic R.Z., Tuttle K.R. Therapeutic considerations for antihyperglycemic agents in diabetic kidney disease. J Am Soc Nephrol. 2017; 28: 2263-2274
349. United Kingdom Prospective Diabetes Study (UKPDS) 13: Relative efficacy of randomly allocated diet, sulphonylurea, insulin, or metformin in patients with newly diagnosed non-insulin dependent diabetes followed for three years. BMJ. 1995; 310: 83-88
350. Bennett W.L., Maruthur N.M., Singh S. ,et al. Comparative effectiveness and safety of medications for type 2 diabetes: an update including new drugs and 2-drug combinations. Ann Intern Med. 2011; 154: 602-613
351. Maruthur N.M., Tseng E., Hutfless S., et al. Diabetes medications as monotherapy or metformin-based combination therapy for type 2 diabetes: a systematic review and meta-analysis. Ann Intern Med. 2016; 164: 740-751
352. Hong J., Zhang Y., Lai S., et al. Effects of metformin versus glipizide on cardiovascular outcomes in patients with type 2 diabetes and coronary artery disease. Diabetes Care. 2013; 36: 1304-1311
353. Graham G.G., Punt J., Arora M., et al. Clinical pharmacokinetics of metformin. Clin Pharmacokinet. 2011; 50: 81-98
354. Misbin R.I. The phantom of lactic acidosis due to metformin in patients with diabetes. Diabetes Care. 2004; 27: 1791-1793
355. Salpeter S.R., Greyber E., Pasternak G.A., et al. Risk of fatal and nonfatal lactic acidosis with metformin use in type 2 diabetes mellitus. Cochrane Database Syst Rev. 2010; 4: CD002967
356. Inzucchi S.E., Lipska K.J., Mayo H., et al. Metformin in patients with type 2 diabetes and kidney disease: a systematic review. JAMA. 2014; 312: 2668-2675
357. US Food & Drug Administration. FDA Drug Safety Communication: FDA revises warnings regarding use of the diabetes medicine metformin in certain patients with reduced kidney function. www.fda.gov/Drugs/DrugSafety/ucm493244.htm Date accessed: August 14, 2020
358. Crowley M.J., Diamantidis C.J., McDuffie J.R., et al. Clinical outcomes of metformin use in populations with chronic kidney disease, congestive heart failure, or chronic liver disease: a systematic review. Ann Intern Med. 2017; 166: 191-200
359. Bailey C.J., Turner R.C. Metformin. N Engl J Med. 1996; 334: 574-579
360. DeFronzo R.A., Goodman A.M. Efficacy of metformin in patients with non-insulin-dependent diabetes mellitus. The Multicenter Metformin Study Group. N Engl J Med. 1995; 333: 541-549
361. Donnelly L.A., Morris A.D., Pearson E.R. Adherence in patients transferred from immediate release metformin to a sustained release formulation: a population-based study. Diabetes Obes Metab. 2009; 11: 338-342
362. Garber A.J., Duncan T.G., Goodman A.M., et al. Efficacy of metformin in type II diabetes: results of a double-blind, placebo-controlled, dose-response trial. Am J Med. 1997; 103: 491-497.Levy J. Cobas R.A. Gomes M.B. Assessment of efficacy and tolerability of once-daily extended release metformin in patients with type 2 diabetes mellitus. Diabetol Metab Syndr. 2010; 2: 16
363. Schwartz S., Fonseca V., Berner B., et al. Efficacy, tolerability, and safety of a novel once-daily extended-release metformin in patients with type 2 diabetes. Diabetes Care. 2006; 29: 759-764
364. Ji L., Liu J., Yang J., et al. Comparative effectiveness of metformin monotherapy in extended release and immediate release formulations for the treatment of type 2 diabetes in treatment-naive Chinese patients: analysis of results from the CONSENT trial. Diabetes Obes Metab. 2018; 20: 1006-1013
365. Stephen J., Anderson-Haag T.L., Gustafson S., et al. Metformin use in kidney transplant recipients in the United States: an observational study. Am J Nephrol. 2014; 40: 546-553
366. Vest L.S., Koraishy F.M., Zhang Z., et al. Metformin use in the first year after kidney transplant, correlates, and associated outcomes in diabetic transplant recipients: a retrospective analysis of integrated registry and pharmacy claims data. Clin Transplant. 2018; 32e13302
367. Alnasrallah B., Goh T.L., Chan L.W., et al. Transplantation and diabetes (Transdiab): a pilot randomised controlled trial of metformin in impaired glucose tolerance after kidney transplantation. BMC Nephrol. 2019; 20: 147
368. Reinstatler L., Qi Y.P., Williamson R.S., et al. Association of biochemical B12 deficiency with metformin therapy and vitamin B12 supplements: the National Health and Nutrition Examination Survey, 1999-2006. Diabetes Care. 2012; 35: 327-333
369. de Jager J., Kooy A., Lehert P., et al. Long term treatment with metformin in patients with type 2 diabetes and risk of vitamin B-12 deficiency: randomised placebo controlled trial. BMJ. 2010; 340: c2181
370. Gerstein H.C., Colhoun H.M., Dagenais G.R., et al. Dulaglutide and cardiovascular outcomes in type 2 diabetes (REWIND): a double-blind, randomised placebo-controlled trial. Lancet. 2019; 394: 121-130
371. Hernandez A.F., Green J.B., Janmohamed S., et al. Albiglutide and cardiovascular outcomes in patients with type 2 diabetes and cardiovascular disease (Harmony Outcomes): a double-blind, randomised placebo-controlled trial. Lancet. 2018; 392: 1519-1529
372. Marso S.P., Bain S.C., Consoli A., et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med. 2016; 375: 1834-1844
373. Marso S.P., Daniels G.H., Brown-Frandsen K., et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2016; 375: 311-322
374. Bethel M.A., Mentz R.J., Merrill P., et al. Microvascular and cardiovascular outcomes according to renal function in patients treated with once-weekly exenatide: insights from the EXSCEL Trial. Diabetes Care. 2020; 43: 446-452
375. Gerstein H.C., Colhoun H.M., Dagenais G.R., et al. Dulaglutide and renal outcomes in type 2 diabetes: an exploratory analysis of the REWIND randomised, placebo-controlled trial. Lancet. 2019; 394: 131-138
376. Holman R.R., Bethel M.A., Mentz R.J., et al. Effects of once-weekly exenatide on cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2017; 377: 1228-1239
377. Mann J.F.E., Orsted D.D., Brown-Frandsen K., et al. Liraglutide and renal outcomes in type 2 diabetes. N Engl J Med. 2017; 377: 839-848
378. Muskiet MHA, Tonneijck L., Huang Y., et al. Lixisenatide and renal outcomes in patients with type 2 diabetes and acute coronary syndrome: an exploratory analysis of the ELIXA randomised, placebo-controlled trial. Lancet Diabetes Endocrinol. 2018; 6: 859-869
379. Pfeffer M.A., Claggett B. Diaz R., et al. Lixisenatide in patients with type 2 diabetes and acute coronary syndrome. N Engl J Med. 2015; 373: 2247-2257
380. Tuttle K.R., Lakshmanan M.C., Rayner B., et al. Dulaglutide versus insulin glargine in patients with type 2 diabetes and moderate-to-severe chronic kidney disease (AWARD-7): a multicentre, open-label, randomised trial. Lancet Diabetes Endocrinol. 2018; 6: 605-617
381. Husain M., Birkenfeld A.L., Donsmark M., et al. Oral semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med. 2019; 381: 841-851
382. Mann J.F.E., Fonseca V., Mosenzon O., et al. Effects of liraglutide versus placebo on cardiovascular events in patients with type 2 diabetes mellitus and chronic kidney disease. Circulation. 2018; 138: 2908-2918
383. Tuttle K.R., Rayner B., Lakshmanan M.C., et al. Clinical outcomes by albuminuria status with dulaglutide versus insulin glargine in participants with diabetes and CKD: AWARD-7 exploratory analysis. Kidney360. 2021; 2: 254-262
384. US National Library of Medicine A research study to find out how semaglutide works in the kidneys compared to placebo, in people with type 2 diabetes and chronic kidney disease (the REMODEL Trial) (REMODEL). https://clinicaltrials.gov/ct2/show/NCT04865770 Date accessed: January 11, 2022
385. Bettge K., Kahle M., Abd El Aziz M.S., et al. Occurrence of nausea, vomiting and diarrhoea reported as adverse events in clinical trials studying glucagon-like peptide-1 receptor agonists: a systematic analysis of published clinical trials. Diabetes Obes Metab. 2017; 19: 336-347
386. Hanefeld M., Arteaga J.M., Leiter L.A., et al. Efficacy and safety of lixisenatide in patients with type 2 diabetes and renal impairment. Diabetes Obes Metab. 2017; 19: 1594-1601
387. Bomholt T., Idorn T., Knop F.K., et al. The glycemic effect of liraglutide evaluated by continuous glucose monitoring in persons with type 2 diabetes receiving dialysis. Nephron. 2021; 145: 27-34
388. Dailey G.E., Dex T.A., Roberts M., et al. Efficacy and safety of lixisenatide as add-on in patients with T2D aged >=70 years uncontrolled on basal insulin in the Getgoal-O Study [abstract]. Endocrine Pract. 2018; 24: 48
389. Davies M.J., Bain S.C., Atkin S.L., et al. Efficacy and safety of liraglutide versus placebo as add-on to glucose-lowering therapy in patients with type 2 diabetes and moderate renal impairment (LIRA-RENAL): a randomized clinical trial. Diabetes Care. 2016; 39: 222-230
390. Idorn T., Knop F.K., Jorgensen M.B., et al. Safety and efficacy of liraglutide in patients with type 2 diabetes and end-stage renal disease: an investigator-initiated, placebo-controlled, double-blind, parallel-group, randomized trial. Diabetes Care. 2016; 39: 206-213
391. Linjawi S., Bode B.W., Chaykin L.B., et al. The efficacy of IDegLira (insulin degludec/liraglutide combination) in adults with type 2 diabetes inadequately controlled with a GLP-1 receptor agonist and oral therapy: DUAL III Randomized Clinical Trial. Diabetes Ther. 2017; 8: 101-114
392. Mosenzon O., Blicher T.M., Rosenlund S., et al. Efficacy and safety of oral semaglutide in patients with type 2 diabetes and moderate renal impairment (PIONEER 5): a placebo-controlled, randomised, phase 3a trial. Lancet Diabetes Endocrinol. 2019; 7: 515-527
393. von Scholten B.J., Persson F., Rosenlund S., et al. The effect of liraglutide on renal function: a randomized clinical trial. Diabetes Obes Metab. 2017; 19: 239-247
394. Zhou L. Lu G., Shen Y. Renal protection of exenatide in patients with diabetic kidney disease in early stage. J Xi'an Jiaotong Univ (Med Sci). 2019; 40 ([in Chinese]): 967-972
395. Vega-Hernandez G., Wojcik R., Schlueter M. Cost-effectiveness of liraglutide versus dapagliflozin for the treatment of patients with type 2 diabetes mellitus in the UK. Diabetes Ther. 2017; 8: 513-530
396. Zueger P.M., Schultz N.M., Lee T.A. Cost effectiveness of liraglutide in type II diabetes: a systematic review. Pharmacoeconomics. 2014; 32: 1079-1091
397. Boye K.S., Botros F.T., Haupt A., et al. Glucagon-like peptide-1 receptor agonist use and renal impairment: a retrospective analysis of an electronic health records database in the U.S. population. Diabetes Ther. 2018; 9: 637-650
398. Alicic R.Z., Patakoti R., Tuttle K.R. Direct and indirect effects of obesity on the kidney. Adv Chronic Kidney Dis. 2013; 20: 121-127
399. Shah P.P., Brady T.M., Meyers K.E.C., et al. Association of obesity with cardiovascular risk factors and kidney disease outcomes in primary proteinuric glomerulopathies. Nephron. 2021; 145: 245-255
400. Bays H., Pi-Sunyer X., Hemmingsson J.U., et al. Liraglutide 3.0 mg for weight management: weight-loss dependent and independent effects. Curr Med Res Opin. 2017; 33: 225-229
401. Chatterjee S., Davies M.J., Heller S., et al. Diabetes structured self-management education programmes: a narrative review and current innovations. Lancet Diabetes Endocrinol. 2018; 6: 130-142
402. Steinsbekk A., Rygg L.O., Lisulo M., et al. Group based diabetes self-management education compared to routine treatment for people with type 2 diabetes mellitus. A systematic review with meta-analysis. BMC Health Serv Res. 2012; 12: 213
403. Pillay J., Armstrong M.J., Butalia S., et al. Behavioral programs for type 2 diabetes mellitus: a systematic review and network meta-analysis. Ann Intern Med. 2015; 163: 848-860
404. Fogelfeld L., Hart P., Miernik J., et al. Combined diabetes-renal multifactorial intervention in patients with advanced diabetic nephropathy: proof-of-concept. J Diabetes Complications. 2017; 31: 624-630
405. Kopf S., Oikonomou D., von Eynatten M., et al. Urinary excretion of high molecular weight adiponectin is an independent predictor of decline of renal function in type 2 diabetes. Acta Diabetol. 2014; 51: 479-489
406. Li T., Wu H.M., Wang F., et al. Education programmes for people with diabetic kidney disease. Cochrane Database Syst Rev. 2011; 6: CD007374
407. Steed L., Lankester J., Barnard M., et al. Evaluation of the UCL diabetes self-management programme (UCL-DSMP): a randomized controlled trial. J Health Psychol. 2005; 10: 261-276
408. Griva K. Rajeswari M. Nandakumar M. et al. The combined diabetes and renal control trial (C-DIRECT) a feasibility randomised controlled trial to evaluate outcomes in multi-morbid patients with diabetes and on dialysis using a mixed methods approach. BMC Nephrol. 2019; 20: 2
409. Kazawa K., Osaki K., Rahman M.M., et al. Evaluating the effectiveness and feasibility of nurse-led distant and face-to-face interviews programs for promoting behavioral change and disease management in patients with diabetic nephropathy: a triangulation approach. BMC Nurs. 2020; 19: 16
410. Zimbudzi E., Lo C., Misso M.L., et al. Effectiveness of self-management support interventions for people with comorbid diabetes and chronic kidney disease: a systematic review and meta-analysis. Syst Rev. 2018; 7: 84
411. Shea B.J., Reeves B.C., Wells G., et al. AMSTAR 2: a critical appraisal tool for systematic reviews that include randomised or non-randomised studies of healthcare interventions, or both. BMJ. 2017; 358: j4008
412. Barrett B.J., Garg A.X., Goeree R., et al. A nurse-coordinated model of care versus usual care for stage 3/4 chronic kidney disease in the community: a randomized controlled trial. Clin J Am Soc Nephrol. 2011; 6: 1241-1247
413. Chan J.C., So W.Y., Yeung C.Y., et al. Effects of structured versus usual care on renal endpoint in type 2 diabetes: the SURE study: a randomized multicenter translational study. Diabetes Care. 2009; 32: 977-982
414. McManus R.J. Mant J. Haque M.S. et al. Effect of self-monitoring and medication self-titration on systolic blood pressure in hypertensive patients at high risk of cardiovascular disease: the TASMIN-SR randomized clinical trial. JAMA. 2014; 312: 799-808
415. Scherpbier-de Haan N.D., Vervoort G.M. van Weel C., et al. Effect of shared care on blood pressure in patients with chronic kidney disease: a cluster randomised controlled trial. Br J Gen Pract. 2013; 63: e798-e806
416. Williams A., Manias E., Walker R., Gorelik A. A multifactorial intervention to improve blood pressure control in co-existing diabetes and kidney disease: a feasibility randomized controlled trial. J Adv Nurs. 2012; 68: 2515-2525
417. McMurray S.D., Johnson G., Davis S., McDougall K. Diabetes education and care management significantly improve patient outcomes in the dialysis unit. Am J Kidney Dis. 2002; 40: 566-575
418. Blakeman T., Blickem C., Kennedy A., et al. Effect of information and telephone-guided access to community support for people with chronic kidney disease: randomised controlled trial. PLoS One. 2014; 9e109135
419. Curtin R.B., Walters B.A., Schatell D., et al. Self-efficacy and self-management behaviors in patients with chronic kidney disease. Adv Chronic Kidney Dis. 2008; 15: 191-205
420. Chen S.H., Tsai Y.F., Sun C.Y., et al. The impact of self-management support on the progression of chronic kidney disease--a prospective randomized controlled trial. Nephrol Dial Transplant. 2011; 26: 3560-3566
421. Teljeur C., Moran P.S., Walshe S., et al. Economic evaluation of chronic disease self-management for people with diabetes: a systematic review. Diabet Med. 2017; 34: 1040-1049
422. Boren S.A., Fitzner K.A., Panhalkar P.S., et al. Costs and benefits associated with diabetes education: a review of the literature. Diabetes Educ. 2009; 35: 72-96
423. UK Department of Health Structured patient education in diabetes. Report from the Patient Education Working Group. London, London, UK2005
424. National Institute for Health and Care Excellence (NICE) Diabetes in adults. https://www.nice.org.uk/guidance/qs Date accessed: August 14, 2020
425. NHS Digital National Diabetes Audit Report 1: Care Processes and Treatment Targets 2016-17. https://digital.nhs.uk/data-and-information/publications/statistical/national-diabetes-audit/national-diabetes-audit-report-1-care-processes-and-treatment-targets-2016-17 Date accessed: August 14, 2020
426. NHS Digital. (National Diabetes Audit-Report 1 Care Processes and Treatment Targets) Date: 2017-18
427. Chan J.C.N., Lim L.L., Luk A.O.Y., et al. From Hong Kong Diabetes Register to JADE Program to RAMP-DM for Data-Driven Actions. Diabetes Care. 2019; 42: 2022-2031
428. Davies M.J., D'Alessio D.A., Fradkin J., et al. Management of hyperglycemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care. 2018; 41: 2669-2701
429. International Diabetes Federation IDF clinical practice recommendations for managing type 2 diabetes in primary care. https://www.idf.org/e-library/guidelines/128-idf-clinical-practice-recommendations-for-managing-type-2-diabetes-in-primary-care.html Date accessed: August 14, 2020
430. International Diabetes Federation IDF Diabetes Altas. https://diabetesatlas.org/en/resources/ Date accessed: August 14, 2020
431. Kong A.P., Yang X., Luk A., et al. Severe hypoglycemia identifies vulnerable patients with type 2 diabetes at risk for premature death and all-site cancer: the Hong Kong diabetes registry. Diabetes Care. 2014; 37: 1024-1031
432. Miccoli R., Penno G., Del Prato S. Multidrug treatment of type 2 diabetes: a challenge for compliance. Diabetes Care. 2011; 34: S231-S235
433. Zoungas S., Patel A., Chalmers J., et al. Severe hypoglycemia and risks of vascular events and death. N Engl J Med. 2010; 363: 1410-1418
434. Epping-Jordan J.E., Pruitt S.D., Bengoa R., et al. Improving the quality of health care for chronic conditions. Qual Saf Health Care. 2004; 13: 299-305
435. Lim L.L., Lau E.S.H., Kong A.P.S., et al. Aspects of multicomponent integrated care promote sustained improvement in surrogate clinical outcomes: a systematic review and meta-analysis. Diabetes Care. 2018; 41: 1312-1320
436. Seidu S., Achana F.A., Gray L.J., et al. Effects of glucose-lowering and multifactorial interventions on cardiovascular and mortality outcomes: a meta-analysis of randomized control trials. Diabet Med. 2016; 33: 280-289.Leehey D.J. Collins E. Kramer H.J. et al. Structured exercise in obese diabetic patients with chronic kidney disease: a randomized controlled trial. Am J Nephrol. 2016; 44: 54-62
437. Williams A.F., Manias E., Walker R.G. The devil is in the detail-a multifactorial intervention to reduce blood pressure in co-existing diabetes and chronic kidney disease: a single blind, randomized controlled trial. BMC Fam Pract. 2010; 11: 3
438. Funnell M.M., Piatt G.A. Diabetes quality improvement: beyond glucose control. Lancet. 2012; 379: 2218-2219
439. McGill M., Blonde L., Chan J.C.N., et al. The interdisciplinary team in type 2 diabetes management: challenges and best practice solutions from real-world scenarios. J Clin Transl Endocrinol. 2017; 7: 21-27
440. Patil S.J., Ruppar T., Koopman R.J., et al. Peer support interventions for adults with diabetes: a meta-analysis of hemoglobin A1c outcomes. Ann Fam Med. 2016; 14: 540-551
441. Trump L.J., Mendenhall T.J., Community health workers in diabetes care: a systematic review of randomized controlled trials. Fam Syst Health. 2017; 35: 320-340
442. Rao Kondapally Seshasai S., Kaptoge S., Thompson A., et al. Diabetes mellitus, fasting glucose, and risk of cause-specific death. N Engl J Med. 2011; 364: 829-841
443. Wu H.J., Lau E.S.H., Ma R.C.W., et al. Secular trends in all-cause and cause-specific mortality in people with diabetes in Hong Kong, 2001-2016: a retrospective cohort study. Diabetologia. 2020; 63: 757-766
444. Gaede P., Valentine W.J., Palmer A.J., et al. Cost-effectiveness of intensified versus conventional multifactorial intervention in type 2 diabetes: results and projections from the Steno-2 study. Diabetes Care. 2008; 31: 1510-1515
445. Ko G.T., Yeung C.Y., Leung W.Y., et al. Cost implication of team-based structured versus usual care for type 2 diabetic patients with chronic renal disease. Hong Kong Med J. 2011; 17: 9-12
446. Owolabi M.O., Yaria J.O., Daivadanam M., et al. Gaps in guidelines for the management of diabetes in low- and middle-income versus high-income countries-a systematic review. Diabetes Care. 2018; 41: 1097-1105
447. Tonelli M., Muntner P., Lloyd A., et al. Risk of coronary events in people with chronic kidney disease compared with those with diabetes: a population-level cohort study. Lancet. 2012; 380: 807-814
448. Luk A.O., Li X., Zhang Y., et al. Quality of care in patients with diabetic kidney disease in Asia: The Joint Asia Diabetes Evaluation (JADE) Registry. Diabet Med. 2016; 33: 1230-1239
449. Bello A.K., Ronksley P.E., Tangri N., et al. Quality of chronic kidney disease management in Canadian primary care. JAMA Netw Open. 2019; 2e1910704
450. Chan J.C. What can we learn from the recent blood glucose lowering megatrials?. J Diabetes Investig. 2011; 2: 1-5
451. Ueki K., Sasako T., Okazaki Y., et al. Effect of an intensified multifactorial intervention on cardiovascular outcomes and mortality in type 2 diabetes (J-DOIT3): an open-label, randomised controlled trial. Lancet Diabetes Endocrinol. 2017; 5: 951-964
452. Institute of Medicine (US) Committee on Standards for Developing Trustworthy Clinical Practice Guidelines. in: Graham R. Mancher, M. Miller, Wolman D.W. Clinical Practice Guidelines We Can Trust. National Academies Press (US), 2011
453. Schunemann H.J., Fretheim A., Oxman A.D. Improving the use of research evidence in guideline development: 9. Grading evidence and recommendations. Health Res Policy Syst. 2006; 4: 21
454. Brouwers M.C., Kho M.E., Browman G.P., et al. AGREE II: advancing guideline development, reporting and evaluation in health care. J Clin Epidemiol. 2010; 63: 1308-1311
455. Andad V., Kshirsagar A.V., Navaneethan S.D., et al. Direct renin inhibitors for preventing the progression of diabetic kidney disease (protocol). Cochrane Database Syst Rev. 2013; 9: CD010724
456. Lo C., Jun M., Badve S.V., et al. Glucose-lowering agents for treating pre-existing and new-onset diabetes in kidney transplant recipients. Cochrane Database Syst Rev. 2017; 2: CD009966
457. McMahon E.J., Campbell K.L., Bauer J.D., et al. Altered dietary salt intake for people with chronic kidney disease. Cochrane Database Syst Rev. 2015; 2: CD010070
458. Natale P., Palmer S.C., Ruospo M., et al. Potassium binders for chronic hyperkalaemia in people with chronic kidney disease. Cochrane Database Syst Rev. 2020; 6: CD013165
459. Palmer S.C., Maggo J.K., Campbell K.L., et al. Dietary interventions for adults with chronic kidney disease. Cochrane Database Syst Rev. 2017; 4: CD011998
460. Higgins J.P.T., Thomas J., Chandler J., Cochrane Handbook for Systematic Reviews of Interventions. 2nd edition. Wiley, 2019
461. Guyatt G.H., Oxman A.D., Schunemann H.J., et al. GRADE guidelines: a new series of articles in the Journal of Clinical Epidemiology. J Clin Epidemiol. 2011; 64: 380-382
462. Higgins J.P., Altman D.G., Gotzsche P.C., et al. The Cochrane Collaboration's tool for assessing risk of bias in randomised trials. BMJ. 2011; 343: d5928
463. Boutron I., Page M.J., Higgins J.P.T., et al. Chapter 7: Considering bias and conflicts of interest among the included studies. in: Higgins J.P.T., Thomas J., Chandler J., Cochrane Handbook for Systematic Reviews of Interventions, version 6.3 (2022). Cochrane, 2022 (Accessed August 18, 2022) www.training.cochrane.org/handbook
464. Higgins J.P., Thompson S.G., Deeks J.J., et al. Measuring inconsistency in meta-analyses. BMJ. 2003; 327: 557-560
465. Brunetti M., Shemilt I., Pregno S., et al. GRADE guidelines: 10. Considering resource use and rating the quality of economic evidence. J Clin Epidemiol. 2013; 66: 140-150
Review
For citations:
Article E. KDIGO 2022 Clinical Practice Guideline For Diabetes Management in Chronic Kidney Disease. Nephrology and Dialysis. 2023;25(2):141-221. (In Russ.) https://doi.org/10.28996/2618-9801-2023-2-141-221