Preview

Nephrology and Dialysis

Advanced search

Genetic lesions in a series of russian CAKUT patients: a pilot study

https://doi.org/10.28996/2618-9801-2024-2-165-175

Abstract

Congenital Anomalies of Kidney and Urinary Tract (CAKUT) are a frequent cause of chronic kidney disease in children and young adults. Anomalies of the CAKUT spectrum are often associated with monogenic conditions and occur both as isolated malformations and in the structure of hereditary syndromes. CAKUT is characterized by marked genetic heterogeneity, incomplete penetrance, and variability of phenotypic manifestations. Objective: to assess the spectrum of inherited genetic defects in a cohort of Russian CAKUT patients, to trace genotype/phenotype correlations. Materials and methods: patients with CAKUT-related chronic kidney disease (5 isolated and 11 syndromal cases) underwent clinical exome sequencing; when analyzing the results, priority was given to the search for rare variants in genes associated with the development of CAKUT (n=91), as well as cystic renal dysplasia/nephronophthisis (n=72). Results: Probable cause of the disease was identified in 7 of 16 patients (44%): EYA1, PAX2, MAFB, KMT2D, GATA3, and TMEM67 mutations were detected. All pathogenic/likely pathogenic variants were identified in syndromal CAKUT varieties only (branchio-oto-renal and coloboma-renal syndromes, multicentric carpotarsal osteolysis, Kabuki and Barakat syndromes, nephronophthisis type 11). One patient was found to harbor rare missense BNC2, NOTCH2, and KMT2D variants of unknown clinical significance. Except autosomal recessive nephronophthisis 11, all identified inherited diseases had an autosomal dominant type of inheritance, with at least 3/6 (50%) of cases being caused by de novo mutations. Interestingly, nephronophthisis, presenting as renal hypodysplasia, demonstrated the absence of cysts and was clinically recognized as CAKUT syndrome. Conclusion: identification of the genetic (monogenic) nature of the disease opens up opportunities for medical and genetic counseling of families and clarification of prognosis, as well as allows timely detection of the possible extrarenal manifestations.

About the Authors

G. A. Yanus
Saint-Petersburg State Pediatric Medical University; N.N. Petrov National Medical Research Centre for Oncology, Russia
Russian Federation


E. N. Suspitsyn
Saint-Petersburg State Pediatric Medical University; N.N. Petrov National Medical Research Centre for Oncology, Russia
Russian Federation


S. N. Aleksakhina
N.N. Petrov National Medical Research Centre for Oncology, Russia
Russian Federation


Y. A. Gorgul
N.N. Petrov National Medical Research Centre for Oncology, Russia
Russian Federation


A. E. Voshchinina
N.N. Petrov National Medical Research Centre for Oncology, Russia
Russian Federation


A. V. Tumakova
Saint-Petersburg State Pediatric Medical University
Russian Federation


E. P. Fedotova
Saint-Petersburg State Pediatric Medical University
Russian Federation


R. A. Nasyrov
Saint-Petersburg State Pediatric Medical University
Russian Federation


A. Yu. Zvereva
Saint-Petersburg Children’s City multidisciplinary clinical specialized center for advanced medical technology
Russian Federation


T. A. Durasova
Saint-Petersburg Children’s City multidisciplinary clinical specialized center for advanced medical technology
Russian Federation


K. V. Voyskovaya
Saint-Petersburg Children’s City multidisciplinary clinical specialized center for advanced medical technology
Russian Federation


A. L. Shavkin
Saint-Petersburg Children’s City multidisciplinary clinical specialized center for advanced medical technology
Russian Federation


E. N. Imyanitov
Saint-Petersburg State Pediatric Medical University; N.N. Petrov National Medical Research Centre for Oncology, Russia
Russian Federation


References

1. Kolvenbach CM, Shril S, Hildebrandt F. The genetics and pathogenesis of CAKUT. Nat Rev Nephrol. 2023. doi: 10.1038/s41581-023-00742-9.

2. Лысова Е.В., Савенкова Н.Д. CAKUT-синдром в этиологической структуре хронической болезни почек у детей и подростков. Нефрология. 2017. 21(3):69-74. doi: 10.24884/1561-6274-2017-3-69-74

3. Murugapoopathy V, Gupta IR. A Primer on Congenital Anomalies of the Kidneys and Urinary Tracts (CAKUT). Clin J Am Soc Nephrol. 2020. 15(5):723-731. doi: 10.2215/CJN.12581019

4. Bulum B, Ozçakar ZB, Ustüner E, et al. High frequency of kidney and urinary tract anomalies in asymptomatic first-degree relatives of patients with CAKUT. Pediatr Nephrol. 2013. 28(11):2143-2147. doi: 10.1007/s00467-013-2530-8.

5. Suman Gök E, Ayvacı A, Ağbaş A, et al. The Frequency of Familial Congenital Anomalies of the Kidney and Urinary Tract: Should We Screen Asymptomatic First-Degree Relatives Using Urinary Tract Ultrasonography? Nephron. 2020. 144(4):170-175. doi: 10.1159/000505402.

6. Kohl S, Hwang DY, Dworschak GC, et al. Mild Recessive Mutations in Six Fraser Syndrome-Related Genes Cause Isolated Congenital Anomalies of the Kidney and Urinary Tract J Am Soc Nephrol. 2014. 25(9):1917-22. doi: 10.1681/ASN.2013101103.

7. van der Ven AT, Connaughton DM, Ityel H, et al. Whole-exome sequencing identifies causative mutations in families with congenital anomalies of the kidney and urinary tract. J Am Soc Nephrol. 2018. 29(9):2348-2361. doi: 10.1681/ASN.2017121265.

8. Connaughton DM, Hildebrandt F. Disease mechanisms of monogenic congenital anomalies of the kidney and urinary tract American Journal of Medical Genetics Part C. Am J Med Genet C Semin Med Genet. 2022. 190(3):325-343. doi: 10.1002/ajmg.c.32006.

9. Wolf MT, Beck BB, Zaucke F, et al. The Uromodulin C744G mutation causes MCKD2 and FJHN in children and adults and may be due to a possible founder effect. Kidney Int. 2007. 71(6):574-581. doi: 10.1038/sj.ki.5002089

10. Izzi C, Sanna-Cherchi S, Prati E, et al. Familial aggregation of primary glomerulonephritis in an Italian population isolate: Valtrompia study. Kidney Int. 2006. 69:1033-1040. doi: 10.1038/sj.ki.5000185

11. Żurowska AM, Bielska O, Daca-Roszak P, et al. Mild X-linked Alport syndrome due to the COL4A5 G624D variant originating in the Middle Ages is predominant in Central/East Europe and causes kidney failure in midlife. Kidney Int. 2021. 99(6):1451-1458. doi: 10.1016/j.kint.2020.10.040

12. Папиж С.В., Шумихина М.В., Тюльпаков А.Н., и др. Идиопатическая инфантильная гиперкальциемия, тип 1: клинико-генетическaя характеристика российской когорты детей. Нефрология и диализ. 2023. 25(1):76-88. doi: 10.28996/2618-9801-2023-1-76-88

13. Kitzler TM, Schneider R, Kohl S, et al. COL4A1 mutations as a potential novel cause of autosomal dominant CAKUT in humans. Hum Genet. 2019. 138(10):1105-1115. doi: 10.1007/s00439-019-02042-4

14. Кутырло И.Э., Савенкова Н.Д. CAKUT - синдром у детей. Нефрология. 2017. 21(3):18-24. doi: 10.24884/1561-6274-2017-3-18-24

15. Кутырло И.Э., Савенкова Н.Д. Частота и характер сочетанной врожденной аномалии почек и мочевыводящих путей в структуре CAKUT-синдрома у детей. Нефрология. 2018. 22(3):51-57. doi: 10.24884/1561-6274-2018-22-3-51-57

16. Сафина Е.В., Зеленцова В.Л., Мышинская О.И., и др. Особенности течения нефропатий в сочетании с CAKUT-синдромом у детей раннего возраста. Российский педиатрический журнал. 2020. 1(3):24-32. doi: 10.15690/rpj.v1i3.2175

17. Richards S, Aziz N, Bale S, Bick D, et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015. 17(5):405-424. doi: 10.1038/gim.2015.30

18. Рыжкова О.П., Кардымон О.Л., Прохорчук Е.Б., и соавт. Руководство по интерпретации данных последовательности ДНК человека, полученных методами массового параллельного секвенирования (MPS) (редакция 2018, версия 2). Медицинская генетика. 2019. 18(2):3-23. doi: 10.25557/2073-7998.2019.02.3-23

19. Bower MA, Schimmenti LA, Eccles MR. PAX2-Related Disorder. 2007 Jun 8 [Updated 2018 Feb 8]. In: Adam MP, Everman DB, Mirzaa GM, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2022. Available from: https://www.ncbi.nlm.nih.gov/books/NBK1451/

20. Zankl A, Duncan E L, Leo P J, et al. Multicentric carpotarsal osteolysis is caused by mutations clustering in the amino-terminal transcriptional activation domain of MAFB. Am J Hum Genet. 2014. 94(04):643. doi: 10.1016/j.ajhg.2012.01.003

21. Otto EA, Tory K, Attanasio M, et al. Hypomorphic mutations in meckelin (MKS3/TMEM67) cause nephronophthisis with liver fibrosis (NPHP11). J Med Genet. 2009. 46(10):663-670. doi: 10.1136/jmg.2009.066613.

22. Belge H, Dahan K, Cambier JF, et al. Clinical and mutational spectrum of hypoparathyroidism, deafness and renal dysplasia syndrome. Nephrol Dial Transplant. 2017. 32(5):830-837. doi: 10.1093/ndt/gfw271.

23. Okawa T, Yoshida M, Usui T, et al. A novel loss-of-function mutation of GATA3 (p.R299Q) in a Japanese family with Hypoparathyroidism, Deafness, and Renal Dysplasia (HDR) syndrome. BMC Endocr Disord. 2015. 15:66. doi: 10.1186/s12902-015-0065-7.

24. Barakat AJ, Raygada M, Rennert OM. Barakat syndrome revisited. Am J Med Genet A. 2018. 176(6):1341-1348. doi: 10.1002/ajmg.a.38693.

25. Nordenvall AS, Cao J, Markljung E, et al. Evaluation of BNC2 as a new candidate gene for hypospadias. Journal of Medical Genetics and Genomics, 2015. 7(1):1-6. doi:10.5897/JMGG2015.0078

26. Fernandez-Prado R, Kanbay M, Ortiz A, et al. Expanding congenital abnormalities of the kidney and urinary tract (CAKUT) genetics: basonuclin 2 (BNC2) and lower urinary tract obstruction. Ann Transl Med. 2019. 7(Suppl 6):S226. doi: 10.21037/atm.2019.08.73.

27. Кондратенко И., Суспицын Е., Вахлярская С., и др. Синдром Кабуки. Вопросы гематологии/онкологии и иммунопатологии в педиатрии. 2017. 16(4):75-83. doi: 10.24287/1726-1708-2017-16-4-75-83

28. König JC, Karsay R, Gerß J, et al. Refining Kidney Survival in 383 Genetically Characterized Patients With Nephronophthisis. Kidney Int Rep. 2022. 7(9):2016-2028. doi: 10.1016/j.ekir.2022.05.035.

29. Андреева Э.Ф., Савенкова Н.Д. Нефронофтиз вследствие мутации гена TMEM67. Российский вестник перинатологии и педиатрии. 2022. 67(2):121-126. doi: 10.21508/1027-4065-2022-67-2-121-126

30. Petzold F, Billot K, Chen X, et al. The genetic landscape and clinical spectrum of nephronophthisis and related ciliopathies. Kidney Int. 2023. 104(2):378-387. doi: 10.1016/j.kint.2023.05.007.

31. Mache C, Hubmann H. Renal Agenesis, Dysplasia, Hypoplasia, and Cystic Diseases of the Kidney. In: Riccabona, M. (eds) Pediatric Urogenital Radiology. Medical Radiology. 2018. Springer, Cham. doi: 10.1007/978-3-319-39202-8_11

32. Nicolaou N, Pulit SL, Nijman IJ, et al. Prioritization and burden analysis of rare variants in 208 candidate genes suggest they do not play a major role in CAKUT. Kidney Int. 2016. 89(2):476-486. doi: 10.1038/ki.2015.319

33. Heidet L, Morinière V, Henry C, et al. Targeted exome sequencing identifies PBX1 as involved in monogenic congenital anomalies of the kidney and urinary tract. J Am Soc Nephrol. 2017. 28(10):2901-2914. doi: 10.1681/ASN.2017010043

34. Rasmussen M, Sunde L, Nielsen ML, et al. Targeted gene sequencing and whole-exome sequencing in autopsied fetuses with prenatally diagnosed kidney anomalies. Clin Genet. 2018. 93(4):860-869. doi: 10.1111/cge.13185

35. Connaughton DM, Kennedy C, Shril S, et al. Monogenic causes of chronic kidney disease in adults. Kidney Int. 2019. 95(4):914-928. doi: 10.1016/j.kint.2018.10.031.

36. Koenigbauer JT, Fangmann L, Reinhardt C, et al. Spectrum of congenital anomalies of the kidney and urinary tract (CAKUT) including renal parenchymal malformations during fetal life and the implementation of prenatal exome sequencing (WES). Arch Gynecol Obstet. 2023. doi: 10.1007/s00404-023-07165-8

37. Verbitsky M, Westland R, Perez A, et al. The copy number variation landscape of congenital anomalies of the kidney and urinary tract. Nat Genet. 2019. 51(1):117-127. doi: 10.1038/s41588-018-0281-y


Review

For citations:


Yanus G.A., Suspitsyn E.N., Aleksakhina S.N., Gorgul Y.A., Voshchinina A.E., Tumakova A.V., Fedotova E.P., Nasyrov R.A., Zvereva A.Yu., Durasova T.A., Voyskovaya K.V., Shavkin A.L., Imyanitov E.N. Genetic lesions in a series of russian CAKUT patients: a pilot study. Nephrology and Dialysis. 2024;26(2):165-175. (In Russ.) https://doi.org/10.28996/2618-9801-2024-2-165-175

Views: 278


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1680-4422 (Print)
ISSN 2618-9801 (Online)