Определение скорости клубочковой фильтрации у детей и подростков: теоретические и практические аспекты
https://doi.org/10.28996/2618-9801-2024-2-186-203
Аннотация
Скорость клубочковой фильтрации (СКФ) является основным показателем, характеризующим функцию почек. Целью работы явилась систематизация данных по методам измерения и расчета СКФ в детской популяции с разработкой алгоритма действий для единого подхода и более точного определения СКФ. В статье обсуждаются методы измерения с помощью экзогенных и эндогенных маркеров клубочковой фильтрации и уравнения расчета СКФ (рСКФ), преимущества и ограничения их использования. Подробно описываются эндогенные маркеры СКФ - сывороточный креатинин и цистатин С. Подчеркивается, что в современных формулах рСКФ используются значения этих маркеров, полученные только стандартизованными методами. Для стандартизации измерения концентрации креатинина применяется эталонный метод - тандемная масс-спектрометрия с изотопным разбавлением (isotope dilution mass spectrometry, IDMS) и калибраторы со стандартным эталонным материалом (SRM) креатинина с присвоением сертификационного кода NIST (для креатинина NIST SRM 967). Переход лабораторий на измерение концентрации креатинина со стандартизацией по IDMS послужил толчком к модернизации уже имевшихся формул и появлению новых уравнений для расчета СКФ. Подробно описываются международные рекомендации для первичной оценки почечной функции с использованием креатинина крови и рСКФ, а при определенных обстоятельствах, когда рСКФ по креатинину дает менее точный результат, предлагается включать дополнительные уточняющие тесты. Важной составляющей статьи является подробное описание расчетных формул СКФ в историческом аспекте и обоснование преимущественного использования в настоящее время уравнений CKiD U25 и EKFC. Отдельные разделы работы посвящены особенностям оценки СКФ у детей раннего возраста, подростков и молодых взрослых. Выделены частные вопросы определения СКФ, а именно: у детей с тяжелыми соматическими, онкогематологическими заболеваниями, хроническими инфекциями, а также у пациентов, находящихся в критическом состоянии. В заключении приводится четкий алгоритм выбора формулы для расчета СКФ и последовательность проведения уточняющих тестов в случае необходимости.
Об авторах
С. В. БайкоРоссия
Е. Н. Кулакова
Россия
М. Е. Аксёнова
Россия
М. В. Шумихина
Россия
Т. Л. Настаушева
Россия
Список литературы
1. Inker L.A., Titan S. Measurement and Estimation of GFR for Use in Clinical Practice: Core Curriculum 2021. Am J Kidney Dis. 2021. 78(5):736-749. doi: 10.1053/j.ajkd.2021.04.016
2. Байко С.В. Хроническая болезнь почек у детей: определение, классификация и диагностика. Нефрология и диализ. 2020. 22(1):53-70. doi: 10.28996/2618-9801-2020-1-53-70
3. Кулакова Е.Н., Настаушева Т.Л., Звягина Т.Г. и соавт. Проблемы оценки скорости клубочковой фильтрации у подростков и молодых взрослых: описательный обзор литературы и примеры из практики. Нефрология и диализ. 2021. 23(4):472-488. doi: 10.28996/2618-9801-2021-4-472-488
4. National Kidney Foundation. K/DOQI Clinical Practice Guidelines for Chronic Kidney Disease: Evaluation, Classification and Stratification. Am J Kidney Dis. 2002. 39 (suppl 1):S1-S266. doi: 10.7326/0003-4819-139-2-200307150-00013
5. Miller W.G. Perspective on new equations for estimating glomerular filtration rate. Clin Chem. 2021. 67(6):820-822. doi: 10.1093/clinchem/hvab029
6. Inker L.A., Levey A.S. New GFR-estimating equations for children and young adults in North America and Europe. Kidney Int. 2021. 99(4):808-811. doi: 10.1016/j.kint.2020.12.032
7. Pottel H. Measuring and estimating glomerular filtration rate in children. Pediatr Nephrol. 2017. 32(2):249-263. doi: 10.1007/s00467-016-3373-x
8. Soveri I., Berg U.B., Björk J. et al. Measuring GFR: a systematic review. Am. J. Kidney Dis. 2014. 64(3):411-424. doi: 10.1053/j.ajkd.2014.04.010
9. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int. Suppl. 2013. 3(1):S 1-150
10. Клинические практические рекомендации KDIGO 2012 по диагностике и лечению хронической болезни почек: пер. с англ. Е. В. Захаровой. Нефрология и диализ. 2017. 19(1):22-206. doi: 10.28996/1680-4422-2017-1-22-206
11. Аверьянов С.Н., Амчеславский В.Г., Багаев В.Г. и др. Определение скорости клубочковой фильтрации у детей: история и современные подходы. Педиатрическая фармакология. 2018. 15(3):218-223. doi: 10.15690/pf.v15i3.1901
12. Delanaye P., Cavalier E., Pottel H. Serum Creatinine: Not So Simple! Nephron. 2017. 136(4):302-308. doi:10.1159/000469669
13. den Bakker E., Gemke R.J.B.J., Bökenkamp A. Endogenous markers for kidney function in children: a review. Crit. Rev. Clin. Lab. Sci. 2018. 55(3):163-183. doi: 10.1080/10408363.2018.1427041
14. Ostermann M., Joannidis M. Acute kidney injury 2016: diagnosis and diagnostic workup. Crit. Care. 2016. 20(1):299. doi: 10.1186/s13054-016-1478-z
15. Lempert K.D. Probiotics and CKD Progression: Are Creatinine-Based Estimates of GFR Applicable? AJKD. 2019. 74(4):429-431. doi: 10.1053/j.ajkd.2019.02.003
16. Dunn S.R., Gabuzda G.M., Superdock K.R. et al. Induction of creatininase activity in chronic renal failure: timing of creatinine degradation and effect of antibiotics. Am. J. Kidney Dis. 1997. 29(1):72-77. doi: 10.1016/s0272-6386(97)90010-x
17. Papadakis M.A., Arieff A.I. Unpredictability of clinical evaluation of renal function in cirrhosis. Prospective study. Am. J. Med. 1987. 82(5): 945-952. doi: 10.1016/0002-9343(87)90156-2
18. Doi K., Yuen P.S., Eisner C. et al. Reduced production of creatinine limits its use as marker of kidney injury in sepsis. J. Am. Soc. Nephrol. 2009. 20(6):1217-1221. doi: 10.1681/ASN.2008060617
19. Mian AN, Schwartz GJ. Measurement and Estimation of Glomerular Filtration Rate in Children. Adv Chronic Kidney Dis. 2017. 24(6):348-356. doi: 10.1053/j.ackd.2017.09.011
20. Rodieux F., Wilbaux M., van den Anker J.N. et al. Effect of Kidney Function on Drug Kinetics and Dosing in Neonates, Infants, and Children. Clin. Pharmacokinet. 2015. 54(12):1183-204. doi: 10.1007/s40262-015-0298-7
21. Feldman H., Guignard J.P. Plasma creatinine in the first month of life. Arch. Dis. Child. 1982. 57(2):123-126. doi: 10.1136/adc.57.2.123
22. Mosteller R. Simplified calculation of body surface area. New Engl. J. Med. 1987. 317(17):1098. doi: 10.1056/NEJM198710223171717
23. Интернет-калькулятор расчета площади поверхности тела у детей по формуле Дюбуа, Мостеллера, Хэйкока и др. [Электронный ресурс]. URL: https://juxtra.info/diagnostics/body_surface_area.php (дата обращения: 16.12.2023)
24. Filler G., Bökenkamp A., HofmannW. et al. Cystatin C as a marker of GFR - history, indications, and future research. Clin. Biochem. 2005. 38(1):1-8. doi: 10.1016/j.clinbiochem.2004.09.025
25. Andersen T.B., Eskild-Jensen A., Frøkiaer J. et al. Measuring glomerular filtration rate in children; can cystatin C replace established methods? A review. Pediatr. Nephrol. 2009. 24(5): 929-941. doi: 10.1007/s00467-008-0991-y
26. Slort P.R., Ozden N., Pape L. et al. Comparing cystatin C and creatinine in the diagnosis of pediatric acute renal allograft dysfunction. Pediatr. Nephrol. 2012. 27(5):843-849. doi: 10.1007/s00467-011-2073-9
27. Bökenkamp A., Laarman C.A., Braam K.I. et al. Effect of corticosteroid therapy on low-molecular weight protein markers of kidney function. Clin. Chem. 2007. 53(12):2219-2221. doi: 10.1373/clinchem.2007.094946
28. Zhai J.L., Ge N., Zhen Y. et al. Corticosteroids Significantly Increase Serum Cystatin C Concentration without Affecting Renal Function in Symptomatic Heart Failure. Clin Lab. 2016. 62(1-2):203-207. doi: 10.7754/clin.lab.2015.150701
29. Ye Y., Gai X., Xie H., et al. Impact of thyroid function on serum cystatin C and estimated glomerular filtration rate: a cross-sectional study. Endocr Pract. 2013. 19(3):397-403. doi: 10.4158/EP12282.OR
30. Knight E.L., Verhave J.C., Spiegelman D. et al. Factors influencing serum cystatin C levels other than renal function and the impact on renal function measurement. Kidney Int. 2004. 65(4):1416-1421. doi: 10.1111/j.1523-1755.2004.00517.x
31. Adingwupu O.M., Barbosa E.R., Palevsky P.M. et al. Cystatin C as a GFR Estimation Marker in Acute and Chronic Illness: A Systematic Review. Kidney Med. 2023. 5(12):100727. doi: 10.1016/j.xkme.2023.100727
32. Bökenkamp A., Domanetzki M., Zinck R. et al. Reference values for cystatin C serum concentrations in children. Pediatr. Nephrol. 1998. 12(2):125-129. doi: 10.1007/s004670050419
33. Delanghe J.R., Speeckaert M.M. Creatinine determination according to Jaffe-what does it stand for? NDT Plus. 2011. 4(2): 83-86. doi: 10.1093/ndtplus/sfq211
34. Cobbaert C.M., Baadenhuijsen H., Weykamp C.W. Prime time for enzymatic creatinine methods in pediatrics. Clin. Chem. 2009. 55 (3):549-558. doi: 10.1373/clinchem.2008.116863
35. Peake M, Whiting M. Measurement of serum creatinine - current status and future goals. Clin Biochem Rev. 2006. 27(4):173-184
36. Myers G.L., Miller W.G., Coresh J. Recommendations for improving serum creatinine measurement: a report from the Laboratory Working Group of the National Kidney Disease Education Program. Clin. Chem. 2006. 52(1):5-18. doi: 10.1373/clinchem.2005.0525144
37. Greenberg N., Roberts W.L., Bachmann L.M. et al. Specificity characteristics of 7 commercial creatinine measurement procedures by enzymatic and Jaffe method principles. Clinical chemistry. 2012. 58(2):391-401. doi: 10.1373/clinchem.2011.172288
38. Ou M., Song Y., Li S. et al. LC-MS/MS Method for Serum Creatinine: Comparison with Enzymatic Method and Jaffe Method. PLoS One. 2015. 10(7):e0133912. doi: 10.1371/journal.pone.0133912
39. Nah H., Lee S.G., Lee K.S. et al. Evaluation of bilirubin interference and accuracy of six creatinine assays compared with isotope dilution-liquid chromatography mass spectrometry. Clin. Biochem. 2016. 49(3):274-281. doi: 10.1016/j.clinbiochem.2015.10.015
40. Delanghe J.R. How to estimate GFR in children. Nephrol. Dial. Transplant. 2009. 24(3):714-716. doi: 10.1093/ndt/gfn306
41. Dodder N.G., Tai S.S., Sniegoski L.T. et al. Certification of creatinine in a human serum reference material by GC-MS and LC-MS. Clin Chem. 2007. 53(9):1694-1699. doi: 10.1373/clinchem.2007.090027
42. Adeli K., Higgins V., Trajcevski K. et al. The Canadian laboratory initiative on pediatric ref- erence intervals: a CALIPER white paper. Crit. Rev. Cl. Lab. Sci. 2017. 54(6):358-413. doi: 10.1080/10408363.2017.1379945
43. Pediatric Nephrology, 8th Ed. Eds. F. Emma, S.L. Goldstein, A. Bagga, C.M. Bates, R. Shroff. Springer Nature Switzerland AG. 2022. P. 2057.
44. Ristiniemi N., Savage C., Bruun L. et al. Evaluation of a new immunoassay for cystatin C, based on a double monoclonal principle, in men with normal and impaired renal function. Nephrol. Dial. Transplant. 2012. 27(2):682-687. doi: 10.1093/ndt/gfr350
45. Yang S.K., Liu J., Zhang X.M. et al. Diagnostic accuracy of serum cystatin C for the evaluation of renal dysfunction in diabetic patients: a meta-analysis. Ther. Apher. Dial. 2016. 20(6):579-587. doi: 10.1111/1744-9987.12462
46. Schwartz G.J., Schneider M.F., Maier P.S. et al. Improved equations estimating GFR in children with chronic kidney disease using an immunonephelometric determination of cystatin C. Kidney Int. 2012. 82(4):445-453. doi: 10.1038/ki.2012.169
47. Grubb A., Blirup-Jensen S., Lindström V. et al. First certified reference material for cystatin C in human serum ERM-DA471/IFCC. Clin. Chem. Lab. Med. 2010. 48(11):1619-1621. doi: 10.1515/CCLM.2010.318
48. Delanaye P., Pieroni L., Abshoff C. et al. Analytical study of three cystatin C assays and their impact on cystatin C-based GFR-prediction equations. Clin. Chim. Acta. 2008. 398(1-2):118-124. doi: 10.1016/j.cca.2008.09.001
49. Abitbol C.L., DeFreitas M.J., Strauss J. Assessment of kidney function in preterm infants: lifelong implications. Pediatr Nephrol. 2016. 31(12):2213-2222. doi: 10.1007/s00467-016-3320-x
50. Ziegelasch N., Vogel M., Müller E. et al. Cystatin C serum levels in healthy children are related to age, gender, and pubertal stage. Pediatr Nephrol. 2019. 34(3):449-457. doi: 10.1007/s00467-018-4087-z
51. Schwartz G.J., Haycock G.B., Edelmann C.M., Spitzer A. A simple estimate of glomerular filtration rate in children derived from body length and plasma creatinine. Pediatrics. 1976. 58(2):259-263. doi: 10.1055/s-2004-830943
52. Schwartz G.J., Feld L.G., Langford D.J. A simple estimate of glomerular filtration rate in full-term infants during the first year of life. J Pediatr. 1984. 104(6):849-54. doi: 10.1016/s0022-3476(84)80479-5
53. Schwartz G.J., Gauthier B. A simple estimate of glomerular filtration rate in adolescent boys. J Pediatr. 1985. 106(3):522-526. doi: 10.1016/S0022-3476(85)80697-1
54. Brion L.P., Fleischman A.R., McCarton C., Schwartz G.J. A simple estimate of glomerular filtration rate in low birth weight infants during the first year of life: noninvasive assessment of body composition and growth. J Pediatr. 1986. 109(4):698-707. doi: 10.1016/s0022-3476(86)80245-1
55. Schwartz G.J., Brion L.P., Spitzer A. The use of plasma creatinine concentration for estimating glomerular filtration rate in infants, children, and adolescents. Pediatr Clin North Am. 1987. 34(3):571-90. doi: 10.1016/s0031-3955(16)36251-4
56. Schwartz G.J., Furth S., Cole S.R. et al. Glomerular filtration rate via plasma iohexol disappearance: pilot study for chronic kidney disease in children. Kidney Int. 2006. 69(11):2070-2077. doi: 10.1038/sj.ki.5000385
57. Schwartz G.J., Muñoz A., Schneider M.F., et al. New equations to estimate GFR in children with CKD. J Am Soc Nephrol. 2009. 20(3):629-637. doi: 10.1681/ASN.2008030287
58. Schwartz G.J., Work D.F. Measurement and estimation of GFR in children and adolescents. Clin. J. of the Am. Soc. of Nephrol. 2009. 4(11):1832-1843. doi:10.2215/CJN.01640309
59. De Souza V.C., Rabilloud M., Cochat P. et al. Schwartz formula: is one k-coefficient adequate for all children? PLoS One. 2012. 7(12):e53439. doi: 10.1371/journal.pone.0053439
60. Selistre L., De Souza V., Cochat P. et al. GFR estimation in adolescents and young adults. J. Am. Soc. Nephrol. 2012. 23(6):989-996. doi: 10.1681/ASN.2011070705
61. Pierce C.B., Muñoz A., Ng D.K. et al. Age- and sex-dependent clinical equations to estimate glomerular filtration rates in children and young adults with chronic kidney disease. Kidney Int. 2021. 99(4):948-956. doi: 10.1016/j.kint.2020.10.047
62. Inker L.A., Tighiouart H., Adingwupu O.M. et al. Performance of GFR Estimating Equations in Young Adults. American Journal of Kidney Diseases. Published online September 2023. doi: 10.1053/j.ajkd.2023.06.008
63. Pottel H., Björk J., Courbebaisse M., et al. Development and validation of a modified Full Age Spectrum creatinine-based equation to estimate glomerular filtration rate: a cross-sectional analysis of pooled data. Ann Intern Med. 2021. 174(2):183-191. doi: 10.7326/M20-4366
64. Levey A.S., Stevens L.A., Schmid C.H. et al. A new equation to estimate glomerular filtration rate [published correction appears in Ann Intern Med. 2011 Sep 20;155(6):408]. Ann Intern Med. 2009. 150(9):604-612. doi: 10.7326/0003-4819-150-9-200905050-00006
65. Pottel H., Hoste L., Dubourg L. et al. An estimated glomerular filtration rate equation for the full age spectrum. Nephrol Dial Transplant. 2016. 31(5):798-806. doi: 10.1093/ndt/gfv454
66. Pottel H., Nyman U., Björk J. et al. Extending the cystatin C based EKFC-equation to children - validation results from Europe. Pediatr Nephrol. Published online October 24, 2023. doi: 10.1007/s00467-023-06192-6
67. Wang Y., Adingwupu O.M., Shlipak M.G. et al. Discordance Between Creatinine-Based and Cystatin C-Based Estimated GFR: Interpretation According to Performance Compared to Measured GFR. Kidney Med. 2023. 5(10):100710. doi: 10.1016/j.xkme.2023.100710
68. Fu E.L., Levey A.S., Coresh J. et al. Accuracy of GFR Estimating Equations in Patients with Discordances between Creatinine and Cystatin C-Based Estimations. J Am Soc Nephrol 2023. 34(7):1241-1251. doi: 10.1681/ASN.0000000000000128
69. Seiberth S., Terstegen T., Strobach D., Czock D. Accuracy of freely available online GFR calculators using the CKD-EPI equation. Eur J Clin Pharmacol. 2020. 76(10):1465-1470. doi: 10.1007/s00228-020-02932-x
70. Selewski D.T., Charlton J.R., Jetton J.G. et al. Neonatal Acute Kidney Injury. Pediatrics. 2015. 136(2):e463-e473. doi: 10.1542/peds.2014-3819
71. Stritzke A., Thomas S., Amin H. et al. Renal consequences of preterm birth. Mol Cell Pediatr. 2017. 4(1):2. doi: 10.1186/s40348-016-0068-0
72. Muhari-Stark E., Burckart G.J. Glomerular Filtration Rate Estimation Formulas for Pediatric and Neonatal Use. J Pediatr Pharmacol Ther. 2018. 23(6):424-431. doi: 10.5863/1551-6776-23.6.424
73. Pottel H., Mottaghy F.M., Zaman Z., Martens F. On the relationship between glomerular filtration rate and serum creatinine in children. Pediatr Nephrol. 2010. 25(5):927-934. doi: 10.1007/s00467-009-1389-1
74. Smeets N.J.L., IntHout J., van der Burgh M.J.P. et al. Maturation of GFR in Term-Born Neonates: An Individual Participant Data Meta-Analysis. J Am Soc Nephrol. 2022. 33(7):1277-1292. doi: 10.1681/ASN.2021101326
75. Smeets N.J.L., Teunissen E.M.M., van der Velden K. et al. Glomerular filtration rate in critically ill neonates and children: creatinine-based estimations versus iohexol-based measurements. Pediatr Nephrol. 2023. 38(4):1087-1097. doi: 10.1007/s00467-022-05651-w
76. Pottel H., Björk J., Bökenkamp A., et al. Estimating glomerular filtration rate at the transition from pediatric to adult care. Kidney Int. 2019. 95(5):1234-1243. doi: 10.1016/j.kint.2018.12.020
77. Schwaderer A.L., Maier P., Greenbaum L.A., et al. Application of GFR estimating equations to children with normal, near-normal, or discordant GFR. Pediatric Nephrology. Published online 2023. doi: 10.1007/s00467-023-06045-2
78. Pottel H., Björk J., Delanaye P., Nyman U. Evaluation of the creatinine-based chronic kidney disease in children (under 25 years) equation in healthy children and adolescents. Pediatr Nephrol. 2022. 37(9):2213-2216. doi: 10.1007/s00467-022-05429-0
79. Nyman U., Björk J., Berg U. et al. The Modified CKiD Study Estimated GFR Equations for Children and Young Adults Under 25 Years of Age: Performance in a European Multicenter Cohort. Am J Kidney Dis. 2022. 80(6):807-810. doi: 10.1053/j.ajkd.2022.02.018
80. Delanaye P., Rule A.D., Schaeffner E, et al. Performance of the European Kidney Function Consortium (EKFC) creatinine-based equation in United States cohorts. Kidney Int. Published online December 13, 2023. doi: 10.1016/j.kint.2023.11.024
81. Filler G., Ahmad F., Bhayana V., et al. Limitations of U25 CKiD and CKD-EPI eGFR formulae in patients 2-20 years of age with measured GFR >60 mL/min/1.73 m2-a cross-sectional study. Pediatric Nephrology. Published online October 16, 2023. doi: 10.1007/s00467-023-06185-5
82. Jeong T.D., Cho E.J., Lee W. et al. Efficient reporting of the estimated glomerular filtration rate without height in pediatric patients with cancer. Clin Chem Lab Med. 2017. 55(12):1891-1897. doi: 10.1515/cclm-2016-1151
83. Lambert M., White-Koning M., Alonso M. et al. Plasma cystatin C is a marker of renal glomerular injury in children treated with cisplatin or ifosfamide. Pediatr Blood Cancer. 2021. 68(1):e28747. doi: 10.1002/pbc.28747
84. Hingorani S., Pao E., Schoch G. et al. Estimating GFR in adult patients with hematopoietic cell transplant: comparison of estimating equations with an iohexol reference standard. Clin J Am Soc Nephrol. 2015. 10(4):601-610. doi: 10.2215/CJN.06470614
85. Costa E.S.V.T., Gil L.A. Jr, Inker L.A. et al. A prospective crosssectional study estimated glomerular filtration rate from creatinine and cystatin C in adults with solid tumors. Kidney Int. 2022. S0085-2538(21):01209-01206. doi: 10.1016/j.kint.2021.12.010.
86. Bhasin B., Lau B., Atta M.G. et al. HIV viremia and T-cell activation differentially affect the performance of glomerular filtration rate equations based on creatinine and cystatin C. PloS One. 2013. 8(12):e82028. doi: 10.1371/journal.pone.0082028
87. Lucas G.M., Atta M.G., Zook K. et al. Cross-sectional and longitudinal performance of creatinine- and cystatin C-based estimating equations relative to exogenously measured glomerular filtration rate in HIV-positive and HIV-negative persons. J Acquir Immune Defic Syndr. 2020. 85(4):e58-e66. doi: 10.1097/QAI.0000000000002471
88. De Souza V., Hadj-Aissa A., Dolomanova O. et al. Creatinine versus cystatine C-based equations in assessing the renal function of candidates for liver transplantation with cirrhosis. Hepatology. 2014. 59(4):1522-1531. doi: 10.1002/hep.26886
89. Torre A., Aguirre-Valadez J.M., Arreola-Guerra J.M. et al. Creatinine versus cystatin C for estimating GFR in patients with liver cirrhosis. Am J Kidney Dis. 2016. 67(2):342-344. doi: 10.1053/j.ajkd.2015.09.022
90. Wagner D., Kniepeiss D., Stiegler P. et al. The assessment of GFR after orthotopic liver transplantation using cystatin C and creatinine-based equations. Transpl Int. 2012. 25(5):527-536. doi: 10.1111/j.1432-2277.2012.01449.x
91. Allen A.M., Kim W.R., Larson J.J. et al. Serum cystatin C as an indicator of renal function and mortality in liver transplant recipients. Transplantation. 2015. 99(7):1431-1435. doi: 10.1097/TP.0000000000000552
92. Kervella D., Lemoine S., Sens F. et al. Cystatin C versus creatinine for GFR estimation in CKD due to heart failure. Am J Kidney Dis. 2017. 69(2):321-323. doi: 10.1053/j.ajkd.2016.09.016
93. Swolinsky J.S., Nerger N.P., Leistner D.M. et al. Serum creatinine and cystatin C-based estimates of glomerular filtration rate are misleading in acute heart failure. ESC Heart Fail. 2021. 8(4):3070-3081. doi: 10.1002/ehf2.13404
94. Aldenbratt A., Lindberg C., Johannesson E. et al. Estimation of kidney function in patients with primary neuromuscular diseases: is serum cystatin C a better marker of kidney function than creatinine? J Nephrol. 2022. 35(2):493-503. doi: 10.1007/s40620-021-01122-x
95. Delanaye P., Cavalier E., Morel J. et al. Detection of decreased glomerular filtration rate in intensive care units: serum cystatin C versus serum creatinine. BMC Nephrol. 2014. 15:9. doi: 10.1186/1471-2369-15-9
96. Carlier M., Dumoulin A., Janssen A. et al. Comparison of different equations to assess glomerular filtration in critically ill patients. Intensive Care Med. 2015. 41(3):427-435. doi: 10.1007/s00134-014-3641-9
97. Haines R.W., Fowler A.J., Liang K. et al. Comparison of cystatin C and creatinine in the assessment of measured kidney function during critical illness. Clin J Am Soc Nephrol. 2023. 18(8):997-1005. doi: 10.2215/CJN.0000000000000203
98. Chang A.R., George J., Levey A.S. et al. Performance of glomerular filtration rate estimating equations before and after bariatric surgery. Kidney Med. 2020. 2(6):699-706.e1. doi: 10.1016/j.xkme.2020.08.008
99. Hanna P.E., Wang Q., Strohbehn I.A. et al. Medication-Related Adverse Events and Discordancies in Cystatin C-Based vs Serum Creatinine-Based Estimated Glomerular Filtration Rate in Patients With Cancer. JAMA Netw Open. 2023. 6(7):e2321715. doi: 10.1001/jamanetworkopen.2023.21715
100. Morgan C., Senthilselvan A., Bamforth F. et al. Correlation between cystatin C- and renal scan-determined glomerular filtration rate in children with spina bifida. Pediatr. Nephrol. 2008. 23(2): 329-332. doi: 10.1007/s00467-007-0613-0
101. Erlandsen E.J., Hansen R.M., Randers E. et al. Estimating the glomerular filtration rate using serum cystatin C levels in patients with spinal cord injuries. Spinal Cord. 2012. 50(10):778-783. doi: 10.1038/sc.2012.52.
102. Braat E., Hoste L., De Waele L. et al. Renal function in children and adolescents with Duchenne muscular dystrophy. Neuromuscul Disord. 2015. 25(5):381-387. doi: 10.1016/j.nmd.2015.01.005.
103. Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2024 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Kidney Int. 2024. 105(4S):S117-S314. doi: 10.1016/j.kint.2023.10.018
Рецензия
Для цитирования:
Байко С.В., Кулакова Е.Н., Аксёнова М.Е., Шумихина М.В., Настаушева Т.Л. Определение скорости клубочковой фильтрации у детей и подростков: теоретические и практические аспекты. Нефрология и диализ. 2024;26(2):186-203. https://doi.org/10.28996/2618-9801-2024-2-186-203
For citation:
Baiko S.V., Kulakova E.N., Aksenova M.E., Shumikhina M.V., Nastausheva T.L. Determination of glomerular filtration rate in children and adolescents: theoretical and practical aspects. Nephrology and Dialysis. 2024;26(2):186-203. (In Russ.) https://doi.org/10.28996/2618-9801-2024-2-186-203