Preview

Nephrology and Dialysis

Advanced search

Renal tubular calcium transport, physiology and clinical significance: terra «cognita»

Abstract

The kidneys are the only place of the absorpted calcium elimination. About 10 g of elemental calcium passes through a glomerular filter per day, while the daily urinary calcium excretion is only 100-200 mg. 99% of the filtered calcium undergoes reabsorption in various parts of the nephron. Dysregulation of the renal calcium handling leads to adverse renal manifestations such as hypercalciuria, nephrolithiasis, nephrocalcinosis, kidney tubular injury, chronic kidney disease. Hypercalciuria is associated with the dysfunction of various molecular regulatory mechanisms responsible for calcium transport in the nephron. The paracellular calcium transport in the proximal tubules and in the thick ascending limb (TAL) of the Henle’s loop is mediated by claudins, a group of membrane proteins of epithelial cell tight junctions. Claudins form cation-selective channels with high permeability to calcium. Deletions of, or mutations in genes encoding renal claudins can cause genetic diseases characterized by hypercalciuria. The main regulator of the paracellular transport of calcium in the TAL is calcium-sensitive receptors (CaSR) of the basolateral membrane of epithelial cells. Various mutations and polymorphisms of CASR gene are associated with hypercalciuria, nephrolithiasis and nephrocalcinosis. In the distal tubules luminal calcium transfer into the cell occurs via specific selective calcium TRPV5 (transient receptor potential channel, vanilloid subgroup) channels, which play a key role in calcium reabsorption. Parathyroid hormone (PTH) is the principle hormone that has been described to regulate the abudance and activity of TRPV5 channels of the distal tubules’ epithelial cells. Moreover, αKloto protein and fibroblast growth factor 23 (FGF23) are involved in the regulation of renal tubule calcium transport in this site of the nephron. Although over the past years major advances have been made in the understanding of the renal calcium transport physiology and its hormonal regulation, at present therapeutic options aiming to reduce hypercalciuria remain restricted. Further effort is necessary for the development of targeted therapy based on the underlying pathophysiological mechanisms of nephrolithiasis.

About the Author

E. V. Parshina
Saint Petersburg State University Hospital
Russian Federation


References

1. Scales C., Smith A., Hanley J. et al. Prevalence of kidney stones in the United States. Eur Urol. 2012;62(1):160-165. doi:10.1016/j.eururo.2012.03.052

2. Ziemba J., Matlaga B. Epidemiology and economics of nephrolithiasis. Investig Clin Urol. 2017;58(5):299. doi:10.4111/icu.2017.58.5.299

3. Alexander R., Hemmelgarn B., Wiebe N. et al. Kidney stones and kidney function loss: a cohort study. BMJ. 2012;345: e5287-e5287. doi:10.1136/bmj.e5287

4. Rule A., Roger V., Melton L. et al. Kidney stones associate with increased risk for myocardial infarction. Journal of the American Society of Nephrology. 2010;21(10):1641-1644. doi:10.1681/asn.2010030253

5. Alexander R., Hemmelgarn B., Wiebe N. et al. Kidney stones and cardiovascular events: a cohort study. Clinical Journal of the American Society of Nephrology. 2013;9(3):506-512. doi:10.2215/cjn.04960513

6. Weinberg A., Patel C., Chertow G. et al. Diabetic severity and risk of kidney stone disease. Eur Urol. 2014;65(1):242-247. doi:10.1016/j.eururo.2013.03.026

7. Sakhaee K. Nephrolithiasis as a systemic disorder. Curr Opin Nephrol Hypertens. 2008;17(3):304-309. doi:10.1097/mnh.0b013e3282f8b34d

8. Sorensen M., Duh Q., Grogan R. et al. Urinary parameters as predictors of primary hyperparathyroidism in patients with nephrolithiasis. Journal of Urology. 2012;187(2):516-521. doi:10.1016/j.juro.2011.10.027

9. Rejnmark L., Vestergaard P., Mosekilde L. Nephrolithiasis and renal calcifications in primary hyperparathyroidism. The Journal of Clinical Endocrinology & Metabolism. 2011;96(8):2377-2385. doi:10.1210/jc.2011-0569

10. Sakhaee K., Maalouf N., Sinnott B. Kidney stones 2012: pathogenesis, diagnosis, and management. The Journal of Clinical Endocrinology & Metabolism. 2012;97(6):1847-1860. doi:10.1210/jc.2011-3492

11. Edwards A., Bonny O. A model of calcium transport and regulation in the proximal tubule. American Journal of Physiology-Renal Physiology. 2018;315(4): F942-F953. doi:10.1152/ajprenal.00129.2018

12. Moor M., Bonny O. Ways of calcium reabsorption in the kidney. American Journal of Physiology-Renal Physiology. 2016;310(11):F1337-F1350. doi:10.1152/ajprenal.00273.2015

13. Alexander R., Rievaj J., Dimke H. Paracellular calcium transport across renal and intestinal epithelia. Biochemistry and Cell Biology. 2014;92(6):467-480. doi:10.1139/bcb-2014-0061

14. Amasheh S. Claudin-2 expression induces cation-selective channels in tight junctions of epithelial cells. J Cell Sci. 2002;115(24):4969-4976. doi:10.1242/jcs.00165

15. Lifton R., Somlo S., Giebisch G. et al. Genetic diseases of the kidney. UK, USA: Elsevier; 2009: 213-226.

16. Mount D., Pollak M. Molecular and Genetic Basis of Renal Disease. UK, USA: Elsevier; 2008: 19

17. Wang W., Li C., Kwon T et al. Reduced expression of renal Na+ transporters in rats with PTH-induced hypercalcemia. American Journal of Physiology-Renal Physiology. 2004;286(3):F534-F545. doi:10.1152/ajprenal.00044.2003

18. Lee J., Plain A., Beggs M. et al. Effects of phospho- and calciotropic hormones on electrolyte transport in the proximal tubule. F1000Res. 2017;6:1797. doi:10.12688/f1000research.12097.1

19. Hou J., Renigunta A., Konrad M. et al. Claudin-16 and claudin-19 interact and form a cation-selective tight junction complex. Journal of Clinical Investigation. 2008; 118(2):619-28.doi:10.1172/jci33970

20. Hou J. The kidney tight junction (Review). Int J Mol Med. 2014;34(6):1451-1457. doi:10.3892/ijmm.2014.1955

21. Yu A. Claudins and the kidney. Journal of the American Society of Nephrology. 2014;26(1):11-19. doi:10.1681/asn.2014030284

22. Konrad M., Schaller A., Seelow D. et al. Mutations in the tight-junction gene claudin 19 (CLDN19) are associated with renal magnesium wasting, renal failure, and severe ocular involvement. The American Journal of Human Genetics. 2006;79(5):949-957. doi:10.1086/508617

23. Plain A., Alexander R. Claudins and nephrolithiasis. Curr Opin Nephrol Hypertens. 2018;27(4):268-276. doi:10.1097/mnh.0000000000000426

24. Hou J. Claudins and mineral metabolism. Curr Opin Nephrol Hypertens. 2016;25(4):308-313. doi:10.1097/

25. mnh.0000000000000239

26. Gong Y., Renigunta V., Himmerkus N. et al. Claudin-14 regulates renal Ca++ transport in response to CaSR signalling via a novel microRNA pathway. EMBO J. 2012;31(8):1999-2012. doi:10.1038/emboj.2012.49

27. Dimke H., Desai P., Borovac J. et al. Activation of the Ca2+-sensing receptor increases renal claudin-14 expression and urinary Ca2+ excretion. American Journal of Physiology-Renal Physiology. 2013;304(6):F761-F769. doi:10.1152/ajprenal.00263.2012

28. Sato T., Courbebaisse M., Ide N. et al. Parathyroid hormone controls paracellular Ca2+ transport in the thick ascending limb by regulating the tight-junction protein Claudin14. Proceedings of the National Academy of Sciences. 2017;114(16):E3344-E3353. doi:10.1073/pnas.1616733114

29. Ure M., Heydari E., Pan W. et al. A variant in a cis-regulatory element enhances claudin-14 expression and is associated with pediatric-onset hypercalciuria and kidney stones. Hum Mutat. 2017;38(6):649-657. doi:10.1002/humu.23202

30. Motoyama H., Friedman P. Calcium-sensing receptor regulation of PTH-dependent calcium absorption by mouse cortical ascending limbs. American Journal of Physiology-Renal Physiology. 2002;283(3):F399-F406. doi:10.1152/ajprenal.00346.2001

31. Vezzoli G., Scillitani A., Corbetta S. et al. Risk of nephrolithiasis in primary hyperparathyroidism is associated with two polymorphisms of the calcium-sensing receptor gene. J Nephrol. 2014;28(1):67-72. doi:10.1007/s40620-014-0106-8

32. Rothe H., Shapiro W., Sun W. et al. Calcium-sensing receptor gene polymorphism Arg990Gly and its possible effect on response to cinacalcet HCl. Pharmacogenet Genomics. 2005;15(1):29-34. doi:10.1097/01213011-200501000-00005

33. Shakhssalim N., Kazemi B., Basiri A. et al. Association between calcium-sensing receptor gene polymorphisms and recurrent calcium kidney stone disease: A comprehensive gene analysis. Scand J Urol Nephrol. 2010;44(6):406-412. doi:10.3109/00365599.2010.497770

34. Mayr B., Schnabel D., Dörr H. et al. GENETICS IN ENDOCRINOLOGY: Gain and loss of function mutations of the calcium-sensing receptor and associated proteins: current treatment concepts. Eur J Endocrinol. 2016;174(5):R189-R208. doi:10.1530/eje-15-1028

35. Vitale C., Bermond F., Rodofili A. et al. The effects of Cinacalcet in renal stone formers with primary hyperparathyroidism. G Ital Nefrol. 2016; 33(4).

36. Festen-Spanjer B., Haring C., Koster J. et al. Correction of hypercalcaemia by cinacalcet in familial hypocalciuric hypercalcaemia. Clin Endocrinol (Oxf). 2008; 68(2):324-5. doi:10.1111/j.1365-2265.2007.03027.x

37. Rasmussen A., Jørgensen N., Schwarz P. Clinical and biochemical outcomes of cinacalcet treatment of familial hypocalciuric hypercalcemia: a case series. J Med Case Rep. 2011;5(1). doi:10.1186/1752-1947-5-564

38. Hannan F., Olesen M., Thakker R. Calcimimetic and calcilytic therapies for inherited disorders of the calcium-sensing receptor signalling pathway. Br J Pharmacol. 2017;175(21):4083-4094. doi:10.1111/bph.14086

39. Hannan F., Walls G., Babinsky V. et al. The calcilytic agent NPS 2143 rectifies hypocalcemia in a mouse model with an activating calcium-sensing receptor (CaSR) mutation: relevance to autosomal dominant hypocalcemia type 1 (ADH1). Endocrinology. 2015;156(9):3114-3121. doi:10.1210/en.2015-1269

40. Roberts M., Gafni R., Brillante B. et al. Treatment of autosomal dominant hypocalcemia type 1 with the calcilytic NPSP795 (SHP635). Journal of Bone and Mineral Research. 2019;34(9):1609-1618. doi:10.1002/jbmr.3747

41. Peng J., Suzuki Y., Gyimesi G. et al. TRPV5 and TRPV6 calcium-selective channels. In: Putney J., Kozak J. Calcium entry channels in non-excitable cells. Boca Raton (FL): CRC Press/Taylor & Francis; 2018: 242-266.

42. Zhou Y., Greka A. Calcium-permeable ion channels in the kidney. American Journal of Physiology-Renal Physiology. 2016;310(11):F1157-F1167. doi:10.1152/ajprenal.00117.2016

43. Hoenderop J., van der Kemp A., Hartog A. et al. Molecular identification of the apical Ca2+ channel in 1,25-dihydroxyvitamin D3-responsive epithelia. Journal of Biological Chemistry. 1999;274(13):8375-8378. doi:10.1074/jbc.274.13.8375

44. Hoenderop J., van Leeuwen J., van der Eerden B. et al. Renal Ca2+ wasting, hyperabsorption, and reduced bone thickness in mice lacking TRPV5. Journal of Clinical Investigation. 2003;112(12):1906-1914. doi:10.1172/jci200319826

45. Khaleel A., Wu M., Wong H. et al. A single nucleotide polymorphism (rs4236480) in TRPV5 calcium channel gene is associated with stone multiplicity in calcium nephrolithiasis patients. Mediators Inflamm. 2015;2015:1-7. doi:10.1155/2015/375427

46. de Groot T., Kovalevskaya N., Verkaart S. et al. Molecular mechanisms of calmodulin action on TRPV5 and modulation by parathyroid hormone. Mol Cell Biol. 2011;31(14):2845-2853. doi:10.1128/mcb.01319-10

47. de Groot T., Lee K., Langeslag M. et al. Parathyroid hormone activates TRPV5 via PKA-dependent phosphorylation. Journal of the American Society of Nephrology. 2009;20(8):1693-1704. doi:10.1681/asn.2008080873

48. Cha S., Wu T., Huang C. Protein kinase C inhibits caveolae-mediated endocytosis of TRPV5. American Journal of Physiology-Renal Physiology. 2008;294(5):F1212-F1221. doi:10.1152/ajprenal.00007.2008

49. Cha S., Huang C. WNK4 kinase stimulates caveola-mediated endocytosis of TRPV5 amplifying the dynamic range of regulation of the channel by protein kinase C. Journal of Biological Chemistry. 2010;285(9):6604-6611. doi:10.1074/jbc.m109.056044

50. Jiang Y., Ferguson W., Peng J. WNK4 enhances TRPV5-mediated calcium transport: potential role in hypercalciuria of familial hyperkalemic hypertension caused by gene mutation of WNK4. American Journal of Physiology-Renal Physiology. 2007;292(2):F545-F554. doi:10.1152/ajprenal.00187.2006

51. Brini M., Carafoli E. The plasma membrane Ca2+ ATPase and the plasma membrane sodium calcium exchanger cooperate in the regulation of cell calcium. Cold Spring Harb Perspect Biol. 2010;3(2):a004168-a004168. doi:10.1101/cshperspect.a004168

52. Calì T., Brini M., Carafoli E. Regulation of cell calcium and role of plasma membrane calcium ATPases. Int Rev Cell Mol Biol. 2017:259-296. doi:10.1016/bs.ircmb.2017.01.002

53. Lambers T., Mahieu F., Oancea E. et al. Calbindin-D28K dynamically controls TRPV5-mediated Ca2+ transport. EMBO J. 2006;25(13):2978-2988. doi:10.1038/sj.emboj.7601186

54. Gkika D., Hsu Y., van der Kemp A. et al. Critical role of the epithelial Ca2+ channel TRPV5 in active Ca2+ reabsorption as revealed by TRPV5/calbindin-D28K knockout mice. Journal of the American Society of Nephrology. 2006;17(11):3020-3027. doi:10.1681/asn.2006060676

55. van Abel M., Hoenderop J., van der Kemp A. et al. Coordinated control of renal Ca2+ transport proteins by parathyroid hormone. Kidney Int. 2005;68(4):1708-1721. doi:10.1111/j.1523-1755.2005.00587.x

56. Hoover R., Tomilin V., Hanson L. et al. PTH modulation of NCC activity regulates TRPV5 Ca2+ reabsorption. American Journal of Physiology-Renal Physiology. 2016;310(2):F144-F151. doi:10.1152/ajprenal.00323.2015

57. Liu W., Chen M., Li M. et al. Vitamin D receptor gene (VDR) polymorphisms and the urolithiasis risk: an updated meta-analysis based on 20 case-control studies. Urolithiasis. 2013;42(1):45-52. doi:10.1007/s00240-013-0619-y

58. Amar A., Afzal A., Hussain S. et al. Association of vitamin D receptor gene polymorphisms and risk of urolithiasis: results of a genetic epidemiology study and comprehensive meta-analysis. Urolithiasis. 2019. doi:10.1007/s00240-019-01157-7

59. Martin A., David V., Quarles L. Regulation and function of the FGF23/Klotho endocrine pathways. Physiol Rev. 2012;92(1):131-155. doi:10.1152/physrev.00002.2011

60. Erben R., Andrukhova O. FGF23-Klotho signaling axis in the kidney. Bone. 2017;100:62-68. doi:10.1016/j.bone.2016.09.010

61. Andrukhova O., Smorodchenko A., Egerbacher M. et al. FGF23 promotes renal calcium reabsorption through the TRPV5 channel. EMBO J. 2014:n/a-n/a. doi:10.1002/embj.201284188

62. Kuro-o M., Matsumura Y., Aizawa H. et al. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature. 1997;390(6655):45-51. doi:10.1038/36285

63. Matsumura Y., Aizawa H., Shiraki-Iida T. et al. Identification of the human klotho gene and its two transcripts encoding membrane and secreted klotho protein. Biochem Biophys Res Commun. 1998;242(3):626-630. doi:10.1006/bbrc.1997.8019

64. Leunissen E., Nair A., Büll C. et al. The epithelial calcium channel TRPV5 is regulated differentially by klotho and sialidase. Journal of Biological Chemistry. 2013;288(41):29238-29246. doi:10.1074/jbc.m113.473520

65. Wolf M., An S., Nie M. et al. Klotho up-regulates renal calcium channel transient receptor potential vanilloid 5 (TRPV5) by intra- and extracellular N-glycosylation-dependent mechanisms. Journal of Biological Chemistry. 2014;289(52):35849-35857. doi:10.1074/jbc.m114.616649

66. Alexander R., McArthur E., Jandoc R. et al. Thiazide diuretic dose and risk of kidney stones in older adults: a retrospective cohort study. Can J Kidney Health Dis. 2018;5:205435811878748. doi:10.1177/2054358118787480

67. Goldfarb D. Empiric therapy for kidney stones. Urolithiasis. 2018;47(1):107-113. doi:10.1007/s00240-018-1090-6

68. Griebeler M., Kearns A., Ryu E. et al. Thiazide-associated hypercalcemia: incidence and association with primary hyperparathyroidism over two decades. The Journal of Clinical Endocrinology & Metabolism. 2016;101(3):1166-1173. doi:10.1210/jc.2015-3964


Review

For citations:


Parshina E.V. Renal tubular calcium transport, physiology and clinical significance: terra «cognita». Nephrology and Dialysis. 2020;22(2):170-180. (In Russ.)

Views: 41


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1680-4422 (Print)
ISSN 2618-9801 (Online)