Preview

Nephrology and Dialysis

Advanced search

Contemporary dialysis membranes classification and tariffs in compulsory health insurance

https://doi.org/10.28996/2618-9801-2020-4-490-495

Abstract

The letter provides a detailed answer to the question about the boundary between low and high flux dialyzers in the practice of organizing dialysis in the CHI system. Rapid progress in the development of new dialysis membranes and technologies is not always quickly reflected in regulatory documents and clinical guidelines. It is generally accepted to consider the sieving coefficient for β2-microglobulin more than 0.6 or clearance for β2-microglobulin more than 20 ml/min as the lower limit of the parameters of high-flux dialyzers. However, for modern high-flux dialyzers, the ultrafiltration coefficient has lost its value, and the sieving coefficient for β2-microglobulin, having approached one, has ceased to distinguish between the types of dialyzers. Narrowing the width of the membrane pore size distribution made it possible to bring the permeability boundary close to albumin, simultaneously limiting its loss.

About the Author

A. Yu. Zemchenkov
Северо-Западный медицинский университет им. И.И. Мечникова; Первый Санкт-Петербургский медицинский университет им. акад. И.И. Павлова
Russian Federation


References

1. Строков А.Г., Гуревич К.Я., Ильин А.П. и соавт. Лечение пациентов с хронической болезнью почек 5 стадии (ХБП 5) методами гемодиализа и гемодиафильтрации. Клинические рекомендации. Нефрология. 2017; 21(3):92-111.

2. Storr M, Ward RA. Membrane innovation: closer to native kidneys. Nephrol Dial Transplant. 2018;33(suppl_3):iii22-iii27. doi: 10.1093/ndt/gfy228.

3. Hulko M, Haug U, Gauss J et al. Requirements and Pitfalls of Dialyzer Sieving Coefficients Comparisons. Artif Organs. 2018;42(12):1164-1173. doi:10.1111/aor.13278

4. Ronco C. The rise of expanded hemodialysis. Blood Purif. 2017; 44(2): I-VIII. doi: 10.1159/000476012.

5. Palmer SC, Rabindranath KS, Craig JC et al. High-flux versus low-flux membranes for end-stage kidney disease. Cochrane Database Syst Rev. 2012;2012(9):CD005016. doi:10.1002/14651858.CD005016.pub2

6. Румянцев А.Ш., Земченков Г.А., Сабодаш А.Б. К вопросу о перспективах обновления клинических рекомендаций по гемодиализу. Нефрология 2019; 23 (2): 49-76.

7. Чан КТ, Бланкестин ПДж, Дембер ЛМ. и соавт. Начало диализа, выбор метода, доступ и программы лечения: итоги конференции KDIGO (Инициатива по улучшению глобальных исходов заболеваний почек) по спорным вопросам. Нефрология и диализ. 2020. 22(2): 152-167.

8. Greene T, Beck GJ, Gassman JJ, et al. Design and statistical issues of the hemodialysis (HEMO) study. Control Clin Trials. 2000;21(5):502-525. doi:10.1016/s0197-2456(00)00062-3

9. Eknoyan G, Levey AS, Beck GJ, et al. The Hemodialysis (HEMO) Study: rationale for selection of interventions. Semin Dial 1996;9(1):24-33

10. Locatelli F, Hannedouche T, Jacobson S, et al. The effect of membrane permeability on ESRD: design of a prospective randomised multicentre trial. J Nephrol. 1999;12(2):85-88.

11. De Vriese AS, Langlois M, Bernard D, et al. Effect of dialyser membrane pore size on plasma homocysteine levels in haemodialysis patients. Nephrol Dial Transplant. 2003;18(12):2596-2600. doi:10.1093/ndt/gfg437

12. Palmer SC, Rabindranath KS, Craig JC et al. High-flux versus low-flux membranes for end-stage kidney disease. Cochrane Database of Systematic Reviews 2012, Issue 9. Art. No.: CD005016. doi: 10.1002/14651858.CD005016.pub2.

13. Asci G, Tz H, Ozkahya M, et al. The impact of membrane permeability and dialysate purity on cardiovascular outcomes. J Am Soc Nephrol. 2013;24(6):1014-1023. doi:10.1681/ASN.2012090908

14. Yokoyama H, Kawaguchi T, Wada T, et al. Biocompatibility and permeability of dialyzer membranes do not affect anemia, erythropoietin dosage or mortality in japanese patients on chronic non-reuse hemodialysis: a prospective cohort study from the J-DOPPS II study. Nephron Clin Pract. 2008;109(2):c100-c108. doi:10.1159/000142528

15. Ronco C. Hemodiafiltration: Technical and Clinical Issues. Blood Purif. 2015;40 Suppl 1:2-11. doi:10.1159/000437403

16. Canaud B, Bragg-Gresham JL, Marshall MR, et al. Mortality risk for patients receiving hemodiafiltration versus hemodialysis: European results from the DOPPS. Kidney Int. 2006;69(11):2087-2093. doi:10.1038/sj.ki.5000447

17. Nubé MJ, Peters SAE, Blankestijn PJ, et al. Mortality reduction by post-dilution online-haemodiafiltration: a cause-specific analysis. Nephrol Dial Transplant. 2017;32(3):548-555. doi:10.1093/ndt/gfw381

18. Сабодаш АБ, Земченков ГА, Казанцева НС и соавт. Возможности достижения целевого конвекционного объема при on-line гемодиафильтрации. Вестник трансплантации и искусственных органов. 2015; 17(4):63-71.

19. Румянцев АШ, Земченков ГА, Сабодаш АБ. К вопросу о перспективах обновления клинических рекомендаций по гемодиализу. Нефрология. 2019; 23 (2): 49-76.

20. Weiner DE, Falzon L, Skoufos L, Bernardo A, Beck W, Xiao M, Tran H. Efficacy and Safety of Expanded Hemodialysis with the Theranova 400 Dialyzer: A Randomized Controlled Trial. Clin J Am Soc Nephrol. 2020 Sep 7;15(9):1310-1319. doi: 10.2215/CJN.01210120.

21. Belmouaz M, Bauwens M, Hauet T, Bossard V, Jamet P, Joly F, Chikhi E, Joffrion S, Gand E, Bridoux F. Comparison of the removal of uraemic toxins with medium cut-off and high-flux dialysers: a randomized clinical trial. Nephrol Dial Transplant. 2020;35(2):328-335. doi: 10.1093/ndt/gfz189.


Review

For citations:


Zemchenkov A.Yu. Contemporary dialysis membranes classification and tariffs in compulsory health insurance. Nephrology and Dialysis. 2020;22(4):490-495. (In Russ.) https://doi.org/10.28996/2618-9801-2020-4-490-495

Views: 85


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1680-4422 (Print)
ISSN 2618-9801 (Online)