Preview

Nephrology and Dialysis

Advanced search

Infantile nephrotic syndrome: clinical and pathology features, genetic heterogeneity and outcome. A single-center study

https://doi.org/10.28996/2618-9801-2019-2-234-242

Abstract

Infantile nephrotic syndrome (NS) is a rare, genetically heterogeneous group of glomerulopathies with the onset of the disease at the age of 4-12 months. Aim: to study of clinical and pathological characteristics, genetic features and outcome in children with infantile NS. Materials and methods: we conducted a retrospective one-center follow up study of 8 children (4M/4F) aged 3.2 (IQR: 3.0; 6.1) years with infantile NS. Targeted next-generation sequencing covering 68 genes associated with steroid-resistant NS with confirmation by direct Sanger sequencing were applied. Results: renal biopsy revealed focal-segmental glomerulosclerosis (FSGS) in 7/7 (100%) of the affected children. Monogenic causes of infantile NS were identified in 4/8 (50%) of children. Mutations were found in 4/68 (5.9%) genes, including NPHS2, NPHS1, WT1 and ITGB4. Normal renal functions on the last follow up had 2/8 (25%) children with infantile NS. Conclusion: genetic analyses of infantile NS with next-generation sequencing technique expands diagnostic possibilities with the subsequent personalization of therapeutic approaches.

About the Authors

L. S. Prikhodina
Division of Inherited and Acquired Kidney Diseases, Y.E. Veltishev Research Clinical Institute for Pediatrics, Pirogov Russian National Research Medical University; G.N. Speransky Department of Pediatrics with polyclinic pediatrics course, Russian Academy of Medical Continuous Postgraduate Education
Russian Federation


S. V. Papizh
Division of Inherited and Acquired Kidney Diseases, Y.E. Veltishev Research Clinical Institute for Pediatrics, Pirogov Russian National Research Medical University
Russian Federation


E. S. Stolyarevich
Department of Nephrology, Faculty of Postgraduate Education, Moscow State Medical and Dental University; Department of Nephrological Problems of Kidney Transplantation, V.I. Shumakov Federal Research Center of Transplantation and Artificial Organs
Russian Federation


P. E. Povilaitite
Rostov Region Pathology Bureau
Russian Federation


P. A. Shatalov
Laboratory of Pathomorphology and Immunology, Y.E. Veltishev Research Clinical Institute for Pediatrics, Pirogov Russian National Research Medical University
Russian Federation


References

1. Trautmann A., Bodria M., Ozaltin F., Gheisari A., Melk A., Azocar M., Anarat A., Caliskan S., Emma F., Gellermann J., Oh J., Baskin E., Ksiazek J., Remuzzi G., Erdogan O., Akman S., Dusek J., Davitaia T., O¨zkaya O., Papachristou F., Firszt-Adamczyk A., Urasinski T., Testa S., Krmar R.T, Hyla-Klekot L., Pasini A., O¨zcakar Z.B., Sallay P., Cakar N., Galanti M., Terzic J., Aoun B., Caldas A.A., Szymanik-Grzelak H., Lipska B.S., Schnaidt S., Schaefer F., PodoNet Consortium. Spectrum of steroid-resistant and congenital nephrotic syndrome. Clin. J. Am. Soc. Nephrol. 2015; 7; 10(4): 592-600. DOI: 10.2215/CJN.06260614

2. Büscher A.K., Beck B.B., Melk A., Hoefele J., Kranz B., Bamborschke D., Baig S., Lange-Sperandio B., Jungraithmayr T., Weber L.T., Kemper M. J., Tönshoff B, Hoyer P.F., Konrad M., Weber S. Rapid response to Cyclosporin A and favorable renal outcome in nongenetic versus genetic steroid-resistant nephrotic syndrome. Clin. J. Am. Soc. Nephrol. 2016; 11(2): 245-253. DOI: 10.2215/CJN.07370715

3. Patrakka J., Kestila M., Wartiovaara J., Ruotsalainen V., Tissari P., Lenkkeri U., Mannikko M., Visapaa I., Holmberg C., Rapola J., Tryggvason K., Jalanko H. Congenital nephrotic syndrome (NPHS1): features resulting from different mutations in Finnish patients. Kidney Int. 2000; 58(3): 972-980. DOI: 10.1046/j.1523-1755.2000.00254.x

4. Ozen S., Tinaztepe K. Diffuse mesangial sclerosis: a unique type of congenital and infantile nephrotic syndrome. Nephron. 1996; 72(2): 288-291. DOI: 10.1159/000188856

5. Kaneko K., Suzuki Y., Kiya K., Matsubara T., Fukuda Y., Yabuta K. Minimal change lesion in congenital nephrotic syndrome. Two case reports and a review of the literature. Nephron. 1998; 79(3): 379-380. DOI: 10.1159/000045079

6. Machuca E., Benoit G., Nevo F., Tete M.J., Gribouval O., Pawtowski A., Brandstrom P., Loirat C., Niaudet P., Gubler M.C., Antignac C. Genotype-phenotype correlations in non-Finnish congenital nephrotic syndrome. J. Am. Soc. Nephrol. 2010; 21(7): 1209-1217. DOI: 10.1681/ASN.2009121309

7. Kari J.A., Montini G., Bockenhauer D., Brennan E., Rees L., Trompeter R.S., Tullus K., Van't Hoff W., Waters A., Ashton E., Lench N., Sebire N.J., Marks S.D. Pediatr. Nephrol. 2014; (11): 2173-2180. DOI: 10.1007/s00467-014-2856-x.

8. Kidney Disease: Improving Global Outcomes (KDIGO) Glomerulonephritis Work Group (2012) KDIGO Clinical Practice Guideline for Glomerulonephritis. Kidney Int. 2012; Suppl 2: 139-274. DOI: 10.1038/kisup.2012.9.

9. Schwartz G.J., Work D.F. Measurement and estimation of GFR in children and adolescents. J. Am. Soc. Nephrol. 2009; 4(11): 1832-643. DOI: 10.2215/CJN.01640309

10. National Kidney Foundation Kidney Disease Outcomes Quality Initiatives. K/DOQI Clinical Practice Guidelines for Chronic Kidney Disease Evaluation Classification Stratification. Am. J. Kidney Dis. 2002; 39(2 Suppl 1): 1-266.

11. Schwarz J.M., Cooper D.N., Schuelke M., Seelow D. MutationTaster2: mutation prediction for the deep-sequencing age. Nat. Methods 2014; 11(4): 361-362. DOI: 10.1038/nmeth.2890.

12. Adzhubei I.A., Schmidt S., Peshkin L., Ramensky V.E., Gerasimova A., Bork P., Kondrashov A.S., Sunyaev S.R. A method and server for predicting damaging missense mutations. Nat. Methods 2010; 7(4): 248-249. DOI: 10.1038/nmeth0410-248

13. Ng P.C., Henikoff S. Predicting deleterious amino acid substitutions. Genome Res. 2001; 11(5): 863-874. DOI:10.1101/gr.176601

14. Stenson P.D., Ball E.V., Mort M., Phillips A.D., Shiel J.A., Thomas N.S.T., Abeysinghe S., Krawczak M., Coope D.N. Human Gene Mutation Database (HGMD®): 2003 update. Hum. Mutat. 2003; 21(6): 577-581. DOI: 10.1002/humu.10212

15. Landrum M.J., Lee J.M., Benson M., Brown G., Chao C., Chitipiralla S., Gu B., Hart J., Hoffman D., Hoover J., Jang W., Katz K., Ovetsky M., Riley G., Sethi A., Tully R., Villamarin-Salomon R., Rubinstein W., Maglott D.R. ClinVar: public archive of interpretations of clinically relevant variants. Nucleic Acids Res. 2016; 44(1): 862-868. DOI: 10.1093/nar/gkv1222

16. Genomes Project Consortium, Auton A., Brooks L.D., Durbin R.M., Garrison E.P., Kang H.M., Korbel J.O., Marchini J.L., McCarthy S., McVean G.A., Abecasis G.R. A global reference for human genetic variation. Nature. 2015; 526(7571): 68-74. DOI: 10.1038/nature15393

17. Talevich E., Shain AH., Botton T., Bastian B.C. CNVkit: Genome-Wide Copy Number Detection and Visualization from Targeted DNA Sequencing. PLoS Comput. Biol. 2016; 21; 12(4):e1004873. DOI: 10.1371/journal.pcbi.1004873. eCollection 2016.

18. Van der Auwera G.A., Carneiro M.O., Hartl C., Poplin R., Del Angel G., Levy-Moonshine A., Jordan T., Shakir K., Roazen D., Thibault J., Banks E., Garimella K.V., Altshuler D., Gabriel S., DePristo M.A. From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr. Protoc. Bioinformatics. 2013; 43: 11.10.1-33. DOI: 10.1002/0471250953.bi1110s43

19. Mark A DePristo, Eric Banks, Ryan Poplin, Kiran V Garimella, Jared R Maguire, Christopher Hartl, Anthony A Philippakis, Guillermo del Angel, Manuel A Rivas, Matt Hanna, Aaron McKenna, Tim J Fennell, Andrew M Kernytsky, Andrey Y Sivachenko, Kristian Cibulskis, Stacey B Gabriel, David Altshuler, Mark J Daly. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nature Genetics 2011; 43: 491-498. DOI: 10.1038/ng.806

20. Richards S., Aziz N., Bale S., Bick D., Das S., Gastier-Foster J., Grody W.W., Hegde M., Lyon E., Spector E., Voelkerding K., Rehm H.L.; ACMG Laboratory Quality Assurance Committee. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015; 17(5): 405-24. DOI: 10.1038/gim.2015.30

21. Cil O., Besbas N., Duzova A., Topaloglu R., Peco-Antić A., Korkmaz E., Ozaltin F. Genetic abnormalities and prognosis in patients with congenital and infantile nephrotic syndrome. Pediatr. Nephrol. 2015; 30(8): 1279-1287. DOI: 10.1007/s00467-015-3058-x.

22. Trautmann A., Lipska-Zietkiewicz B.S., Schaefer F. Exploring the Clinical and Genetic Spectrum of Steroid Resistant Nephrotic Syndrome: The PodoNet Registry. Front. Pediatr. 2018; 17 July; DOI: 10.3389/fped.2018.00200. eCollection 2018.

23. Santın S., Bullich G., Tazon-Vega B., Garcıa-Maset R., Gimenez I., Silva I., Ruız P., Balların J., Torra R., Ars E. Clinical utility of genetic testing in children and adults with steroid-resistant nephrotic syndrome. Clin. J. Am. Soc. Nephrol. 2011; 6(5): 1139-1148. DOI: 10.2215/CJN.05260610

24. Dufek S., Ylinen E., Trautmann A., Alpay H., Ariceta G., Aufricht C., Bacchetta J., Bakkaloglu S., Bayazit A., Caliskan S., do Sameiro Faria M., Dursun I., Ekim M., Jankauskiene A., Klaus G., Paglialonga F., Pasini A., Printza N., Conti V.S., Schmitt C.P., Stefanidis C., Verrina E., Vidal E., Webb H., Zampetoglou A., Edefonti A., Holtta T., Shroff R., ESPN Dialysis Working Group. Management of children with congenital nephrotic syndrome: challenging treatment paradigms. Nephrol. Dial. Transplant. 2018; Jun 21: 1-9. DOI: 10.1093/ndt/gfy165. [Epub ahead of print]

25. Gellermann J., Stefanidis C.J., Mitsioni A., Querfeld U. Successful treatment of steroid-resistant nephrotic syndrome associated with WT1 mutations. Pediatr. Nephrol. 2010; 25(7): 1285-1289. DOI: 10.1007/s00467-010-1468-3

26. Malina M., Cinek O., Janda J., Seeman T. Partial remission with cyclosporine A in a patient with nephrotic syndrome due to NPHS2 mutation. Pediatr. Nephrol. 2009; 24(10): 2051-2053. DOI: 10.1007/s00467-009-1211-0

27. Faul C., Donnelly M., Merscher-Gomez S., Chang Y.H., Franz S., Delfgaauw J. Chang J.M., Choi H.Y., Campbell K.N., Kim K., Reiser J., Mundel P. The actin cytoskeleton of kidney podocytes is a direct target of the antiproteinuric effect of cyclosporine A. Nat. Med. 2008; 14(9): 931-938. DOI: 10.1038/nm.1857

28. Starr M.C., Chang I.J., Finn L.S., Sun A., Larson A.A., Goebel J., Hanevold C., Thies J., Van Hove J.L.K., Hingorani S.R., Lam C. COQ2 nephropathy: a treatable cause of nephrotic syndrome in children. Pediatr. Nephrol. 2018; 33(7): 1257-1261. DOI: 10.1007/s00467-018-3937-z

29. Bérody S., Heidet L., Gribouval O., Harambat J., Niaudet P., Baudouin V., Bacchetta J., Boudaillez B., Dehennault M., de Parscau L., Dunand O., Flodrops H., Fila M., Garnier A., Louillet F., Macher M.A., May A., Merieau E., Monceaux F., Pietrement C., Rousset-Rouvière C., Roussey G., Taque S., Tenenbaum J., Ulinski T., Vieux R., Zaloszyc A., Morinière V., Salomon R., Boyer O. Treatment and outcome of congenital nephrotic syndrome. Nephrol. Dial. Transplant. 2018; Feb 20. DOI: 10.1093/ndt/gfy015. [Epub ahead of print]

30. Kuusniemi A-M., Qvist E., Sun Y., Patrakka J., Rönnholm K., Karikoski R., Jalanko H. Plasma exchange and retransplantation in recurrent nephrosis of patients with congenital nephrotic syndrome of the Finnish type. Transplantation. 2007; 83(10):1316-1323.


Review

For citations:


Prikhodina L.S., Papizh S.V., Stolyarevich E.S., Povilaitite P.E., Shatalov P.A. Infantile nephrotic syndrome: clinical and pathology features, genetic heterogeneity and outcome. A single-center study. Nephrology and Dialysis. 2019;21(2):234-242. (In Russ.) https://doi.org/10.28996/2618-9801-2019-2-234-242

Views: 75


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1680-4422 (Print)
ISSN 2618-9801 (Online)