Preview

Nephrology and Dialysis

Advanced search

Two sides of the same coin: role of insufficient and excessive weight in patogenesis of the chronic kidney disease

https://doi.org/10.28996/2618-9801-2019-3-292-300

Abstract

In recent years, a global increase in the incidence of Chronic Kidney Disease (CKD) has been observed. This problem has both medical (high mortality from cardiovascular causes in this population) and economic (large costs of the health care system for a relatively small category of patients) character. Therefore, a search for solutions for reduction of the CKD burden is an important problem of modern nephrology. Nutritional status impairments are widespread. They are predictors of adverse outcomes in CKD. However, with early detection they can be relatively easily corrected with special diet. Variations of nutritional status impairments include both underweight and overweight. The impact of nutritional status disorders on the progression and clinical outcomes of CKD varies depending on the stage: protein-energy wasting (PEW) is an unfavorable factor and can be found in all stages of CKD. It is more common at the later stages, whereas, obesity plays a greater role in CKD progression on its early stages. However, in dialysis patients, obesity is associated with better survival (reverse epidemiology). The combination of PEW and obesity (sarcopenia-obesity complex), was found in all stages of CKD. It was suggested that in patient with normal weight or overweight, it is the loss of muscle mass and the uneven distribution of adipose tissue by the central type, adversely affect the prognosis. The nutritional status disorders are amenable to correction and their timely identification, modification of lifestyle, correction of dietary regime and ratio can ease the burden of CKD in the group of high-risk patients. However, in practice, the importance of determining and correcting nutritional status impairments is often underestimated. The purpose of this review was to identify the role of overweight and underweight in the pathogenesis and progression of CKD, to discuss the results of the recent studies on this topic and to improve understanding of the mechanisms of violation of nutritional status in CKD, which will undoubtedly contribute to the development of effective strategies for their prevention, diagnosis and treatment.

About the Authors

K. . A. Asanbek
Osh State University, International Medical Faculty
Russian Federation


S. . Sezer
Atylim University, Medical Faculty; International Kyrgyz-Turkish Clinic
Russian Federation


References

1. KDIGO, 2012. Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Kidney Int Suppl. 2013; 3:1-136.

2. De Nicola L., Zoccali C. Chronic kidney disease prevalence in the general population: Heterogeneity and concerns. Nephrol. Dial. Transplant. 2016; 31:331-335. doi: 10.1093/ndt/gfv427.

3. Jha V, Garcia-Garcia G, Iseki K, et al. Chronic kidney disease: global dimension and perspectives. Lancet. 2013 Jul 20;382(9888):260-72. doi: 10.1016/S0140-6736(13)60687-X. Epub 2013 May 31. Review. Erratum in: Lancet. 2013 Jul 20;382(9888):208.

4. Gracia-Iguacel C., González-Parra E., Pérez-Gómez M.V., et al. Prevalence of protein-energy wasting syndrome and its association with mortality in haemodialysis patients in a centre in Spain. Nefrologia. 2013;33:495-505.

5. Kalantar-Zadeh, K., Ikizler, T.A., Block, G. et al. Malnutrition-inflammation complex syndrome in dialysis patients: causes and consequences. Am J Kidney Dis. 2003; 42: 864-881

6. Амреева З.К. Нарушения нутриционного статуса у пациентов с хронической болезнью почек. Вестник Казахского Национального медицинского университета, 2018 (1), 208-212.

7. Fouque D, Kalantar-Zadeh K, Kopple J, et al. A proposed nomenclature and diagnostic criteria for protein-energy wasting in acute and chronic kidney disease. Kidney Int. 2008;73(4):391-398.

8. Ikizler TA, Cano NJ, Franch H, et al. International Society of Renal Nutrition and Metabolism. Prevention and treatment of protein energy wasting in chronic kidney disease patients: a consensus statement by the International Society of Renal Nutrition and Metabolism. Kidney Int. 2013 Dec;84(6):1096-107. doi: 10.1038/ki.2013.147.

9. Obi Y, Qader H, Kovesdy CP, et al. Latest consensus and update on protein-energy wasting in chronic kidney disease. Curr Opin Clin Nutr Metab Care. 2015;18(3):254-262. doi:10.1097/MCO.0000000000000171

10. Mount PF, Juncos LA. Obesity-Related CKD: When Kidneys Get the Munchies. J Am Soc Nephrol. 2017;28(12):3429-3432. doi:10.1681/ASN.2017080850

11. Speakman JR, Westerterp KR. Reverse epidemiology, obesity and mortality in chronic kidney disease: modelling mortality expectations using energetics. Blood Purif. 2010;29(2):150-7. doi: 10.1159/000245642.

12. Dierkes, J., Dahl, H., Lervaag Welland, N., et al. High rates of central obesity and sarcopenia in CKD irrespective of renal replacement therapy - an observational cross-sectional study. BMC nephrology. 19(1), 259. doi:10.1186/s12882-018-1055-6

13. Koppe L, Fouque D, Kalantar-Zadeh K. Kidney cachexia or protein-energy wasting in chronic kidney disease: facts and numbers. J Cachexia Sarcopenia Muscle. 2019 Apr 12. doi: 10.1002/jcsm.12421.

14. Эйдельштейн В.А., Земченков А.Ю., Райхельсон К.Л. и соавт. Проблемы оценки белково-энергетической недостаточности у диализных больных. Нефрология и диализ. Т 5 №3 2003 г.

15. Carrero JJ, Thomas F, Nagy K, et al. Global Prevalence of Protein-Energy Wasting in Kidney Disease: A Meta-analysis of Contemporary Observational Studies From the International Society of Renal Nutrition and Metabolism. J Ren Nutr. 2018 Nov;28(6):380-392. doi:10.1053/j.jrn.2018.08.006.

16. Carrero JJ, Stenvinkel P, Cuppari L, et al. Etiology of the protein-energy wasting syndrome in chronic kidney disease: a consensus statement from the International Society of Renal Nutrition and Metabolism (ISRNM). J Ren Nutr. 2013 Mar;23(2):77-90. doi: 10.1053/j.jrn.2013.01.001.

17. Строков А.Г., Гуревич К.Я., Шилов Е.М. Клинические рекомендации. Оценка и коррекция статуса питания у пациентов на программном гемодиализе. Москва 2014 г.

18. Muñoz-Pérez E, Espinosa-Cuevas MLÁ, Miranda-Alatriste PV, et al. Combined assessment of nutritional status in patients with peritoneal dialysis using bioelectrical impedance vectors and malnutrition inflammation score. Nutr Hosp. 2017 Oct 24;34(5):1125-1132. doi: 10.20960/nh.890.

19. Velasco C, Garcia E, Rodriguez V, et al. Comparison of four nutritional screening tools to detect nutritional risk in hospitalized patients: a multicentre study. European journal of clinical nutrition. 2011;65(2):269-74.

20. Яковенко А.А., Румянцев А.Ш., Конюхов Е.А., и соавт. Трудности скрининга белково-энергетической недостаточности у пациентов, получающих лечение программным гемодиализом. Клиническая нефрология 2018;(3):25-30. doi: https://dx.doi.org/10.18565/nephrology.2018.3.25-30

21. Kovesdy CP, Kopple JD, Kalantar-Zadeh K. Management of protein-energy wasting in non-dialysis-dependent chronic kidney disease: reconciling low protein intake with nutritional therapy. Am J Clin Nutr. 2013;97(6):1163-1177. doi:10.3945/ajcn.112.036418

22. Wu HL, Sung JM, Kao MD, et al. Nonprotein calorie supplement improves adherence to low-protein diet and exerts beneficial responses on renal function in chronic kidney disease. J Ren Nutr. 2013 Jul;23(4):271-6. doi: 10.1053/j.jrn.2012.09.003.

23. Di Iorio BR, Marzocco S, Bellasi A, et al. Nutritional therapy reduces protein carbamylation through urea lowering in chronic kidney disease. Nephrol Dial Transplant. 2018 May 1;33(5):804-813. doi: 10.1093/ndt/gfx203.

24. Di Iorio BR, Di Micco L, Marzocco S, et al. Very Low-Protein Diet (VLPD) Reduces Metabolic Acidosis in Subjects with Chronic Kidney Disease: The "Nutritional Light Signal" of the Renal Acid Load. Nutrients. 2017;9(1):69. Published 2017 Jan 17. doi:10.3390/nu9010069

25. Lau WL, Vaziri ND. The Leaky Gut and Altered Microbiome in Chronic Kidney Disease. J Ren Nutr. 2017 Nov;27(6):458-461. doi: 10.1053/j.jrn.2017.02.010.

26. Koppe L, Fouque D. The Role for Protein Restriction in Addition to Renin-Angiotensin-Aldosterone System Inhibitors in the Management of CKD. Am J Kidney Dis. 2019 Feb;73(2):248-257. doi: 10.1053/j.ajkd.2018.06.016.

27. Moe SM, Zidehsarai MP, Chambers MA et al. Vegetarian compared with meat dietary protein source and phosphorus homeostasis in chronic kidney disease. Clin J Am Soc Nephrol. 2011 Feb;6(2):257-64. doi: 10.2215/CJN.05040610.

28. Menon V., Kopple J.D., Wang X., et al. Effect of a very low-protein diet on outcomes: Long-term follow-up of the Modification of Diet in Renal Disease (MDRD) Study. Am. J. Kidney Dis. 2009;53:208-217. doi: 10.1053/j.ajkd.2008.08.009.

29. Hahn D, Hodson EM, Fouque D. Low protein diets for non-diabetic adults with chronic kidney disease. Cochrane Database Syst Rev. 2018 Oct 4;10:CD001892. doi: 10.1002/14651858.CD001892.pub4.

30. Li A, Lee HY, Lin YC. The Effect of Ketoanalogues on Chronic Kidney Disease Deterioration: A Meta-Analysis. Nutrients. 2019 Apr 26;11(5). pii: E957. doi:10.3390/nu11050957.

31. Paes-Barreto JG, Silva MI, Qureshi AR, et al. Can renal nutrition education improve adherence to a low-protein diet in patients with stages 3 to 5 chronic kidney disease? J Ren Nutr. 2013 May;23(3):164-71. doi: 10.1053/j.jrn.2012.10.004.

32. Jadeja YP, Kher V. Protein energy wasting in chronic kidney disease: An update with focus on nutritional interventions to improve outcomes. Indian J Endocrinol Metab. 2012 Mar;16(2):246-51. doi: 10.4103/2230-8210.93743.

33. Ioannidou E, Swede H, Fares G, et al. Tooth loss strongly associates with malnutrition in chronic kidney disease. J Periodontol. 2014;85(7):899-907. doi:10.1902/jop.2013.130347

34. Яковенко А.А. Румянцев А.Ш. Распространенность белково-энергетической недостаточности у пациентов, получающих лечение программным гемодиализом. Нефрология и диализ. 2019;21(1):66-71. doi: 10.28996/2618-9801-2019-1-66-71

35. Burrowes, J.D., Larive, B., Chertow, G.M., et al. Self-reported appetite, hospitalization and death in haemodialysis patients: findings from the hemodialysis (HEMO) study. Nephrol Dial Transpl. 2005; 20: 2765-2774

36. Ding H, Gao XL, Hirschberg R, et al. Impaired actions of insulin-like growth factor 1 on protein synthesis and degradation in skeletal muscle of rats with chronic renal failure. Evidence for a postreceptor defect. J Clin Invest. 1996;97:1064-1075.

37. Thomas SS, Mitch WE. Mechanisms stimulating muscle wasting in chronic kidney disease: the roles of the ubiquitin-proteasome system and myostatin. Clin Exp Nephrol. 2013 Apr;17(2):174-82. doi: 10.1007/s10157-012-0729-9.

38. Wang, Xiaonan H, William E Mitch. Mechanisms of muscle wasting in chronic kidney disease. Nature reviews. Nephrology vol. 10,9 (2014): 504-16. doi:10.1038/nrneph.2014.112.

39. Tang W.H.W., Kitai T., Hazen S.L., et al. Gut Microbiota in Cardiovascular Health and Disease. Circ. Res. 2017;120:1183-1196. doi: 10.1161/CIRCRESAHA.117.309715.

40. Vaziri N.D., Zhao Y.Y., Pahl M.V. Altered intestinal microbial flora and impaired epithelial barrier structure and function in CKD: The nature, mechanisms, consequences and potential treatment. Nephrol. Dial. Transplant. 2015;31:737-746. doi: 10.1093/ndt/gfv095.

41. Carrero JJ. Mechanisms of altered regulation of food intake in chronic kidney disease. J Ren Nutr. 2011 Jan;21(1):7-11. doi: 10.1053/j.jrn.2010.10.004.

42. Ramezani A, Massy ZA, Meijers B, et al. Role of the Gut Microbiome in Uremia: A Potential Therapeutic Target. Am J Kidney Dis. 2016;67(3):483-498. doi:10.1053/j.ajkd.2015.09.027

43. Jimenez RE, Price DA, Pinkus GS, et al. Development of gastrointestinal beta2-microglobulin amyloidosis correlates with time on dialysis. Am J Surg Pathol. 1998 Jun;22(6):729-35.

44. Phatharacharukul P, Thongprayoon C, Cheungpasitporn W, et al. The Risks of Incident and Recurrent Clostridium difficile-Associated Diarrhea in Chronic Kidney Disease and End-Stage Kidney Disease Patients: A Systematic Review and Meta-Analysis. Dig Dis Sci. 2015 Oct;60(10):2913-22. doi: 10.1007/s10620-015-3714-9.

45. Pommer W. Preventive Nephrology: The Role of Obesity in Different Stages of Chronic Kidney Disease. Kidney Dis (Basel). 2018 Nov;4(4):199-204. doi: 10.1159/000490247.

46. Silva Junior GB, Bentes AC, Daher EF, et al. Obesity and kidney disease. J Bras Nefrol. 2017 Mar;39(1):65-69. doi: 10.5935/0101-2800.20170011. Review.

47. Kopple JD, Feroze U. The effect of obesity on chronic kidney disease. J Ren Nutr 2011;21:66-71. DOI: http://dx.doi.org/10.1053/j.jrn.2010.10.009

48. Renehan AG, Tyson M, Egger M, et al. Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies. Lancet 371:569-578, 2008.

49. Whaley-Connell A, Sowers JR Obesity and kidney disease: from population to basic science and the search for new therapeutic targets. Kidney Int 2017; 92: 313-323. doi: 10.1016/j.kint.2016.12.034.

50. Chan S, Cameron A, Wang Z, et al. Body mass index in an Australian population with chronic kidney disease. BMC Nephrol. 2018;19(1):209. Published 2018 Aug 20. doi:10.1186/s12882-018-1006-2.

51. WHO. Obesity: preventing and managing the global epidemic. WHO Technical Report Series number 894. WHO, Geneva; 2000

52. Zoccali C, Torino C, Tripepi G, et al. Assessment of obesity in chronic kidney disease: What is the best measure? Curr Opin Nephrol Hypertens 21: 641-646, 2012

53. Grundy SM, Cleeman JI, Daniels SR, et al. Diagnosis and management of the metabolic syndrome: An American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation. 2005;112:2735-52.

54. Pinheiro ACDB, Filho NS, França AKTDC, et al. Sensitivity and specificity of the body mass index in the diagnosis of obesity in patients with non-dialysis chronic kidney disease: a comparison between gold standard methods and the cut-off value purpose. Nutr Hosp. 2019 Mar 7;36(1):73-79. doi:10.20960/nh.1880.

55. Johnson Stoklossa CA, Forhan M, Padwal RS, et al. Practical Considerations for Body Composition Assessment of Adults with Class II/III Obesity Using Bioelectrical Impedance Analysis or Dual-Energy X-Ray Absorptiometry. Curr Obes Rep. 2016 Dec;5(4):389-396. Review.

56. Wong Vega M, Srivaths PR. Air Displacement Plethysmography Versus Bioelectrical Impedance to Determine Body Composition in Pediatric Hemodialysis Patients. J Ren Nutr. 2017 Nov;27(6):439-444. doi: 10.1053/j.jrn.2017.04.007.

57. Kershaw EE, Flier JS. Adipose tissue as an endocrine organ. J Clin Endocrinol Metab. 2004 Jun;89(6):2548-56. Review.

58. Bargut TCL, Souza-Mello V, Aguila MB, et al. Browning of white adipose tissue: lessons from experimental models. Horm Mol Biol Clin Investig. 2017 Jan 18;31(1). doi:10.1515/hmbci-2016-0051. Review.

59. Saely CH, Geiger K, Drexel H. Brown versus white adipose tissue: a mini-review. Gerontology. 2012;58(1):15-23. doi: 10.1159/000321319.

60. Lee YH, Mottillo EP, Granneman JG. Adipose tissue plasticity from WAT to BAT and in between. Biochim Biophys Acta. 2014;1842(3):358-369. doi:10.1016/j.bbadis.2013.05.011

61. Markaki A, Grammatikopoulou MG, Venihaki M, et al. Associations of adiponectin and leptin levels with protein-energy wasting, in end stage renal disease patients. Endocrinol Nutr. 2016 Nov;63(9):449-457. doi: 10.1016/j.endonu.2016.07.003.

62. Kaynar K, Kural BV, Ulusoy S, et al. Is there any interaction of resistin and adiponectin levels with protein-energy wasting among patients with chronic kidney disease. Hemodial Int. 2014 Jan;18(1):153-62. doi: 10.1111/hdi.12072.

63. Hyun YY, Lee KB, Oh KH, et al. Representing KNOW-CKD Study Group. Serum adiponectin and protein-energy wasting in predialysis chronic kidney disease. Nutrition. 2017 Jan;33:254-260. doi: 10.1016/j.nut.2016.06.014.

64. Wolf G, Hamann A, Han DC, et al. Leptin stimulates proliferation and TGF-b expression in renal glomerular endothelial cells: potential role in glomerulosclerosis. Kidney Int. 1999;56:860-872.

65. Zou H, Liu Y, Wei D, et al. Leptin promotes proliferation and metastasis of human gallbladder cancer through OB-Rb leptin receptor. Int J Oncol. 2016 Jul;49(1):197-206. doi: 10.3892/ijo.2016.3530.

66. Van Doorn C, Macht VA, Grillo CA, et al. Leptin resistance and hippocampal behavioral deficits. Physiol Behav. 2017 Jul 1;176:207-213. doi:10.1016/j.physbeh.2017.03.002.

67. Canpolat N, Sever L, Agbas A, et al. Leptin and ghrelin in chronic kidney disease: their associations with protein-energy wasting. Pediatr Nephrol. 2018 Nov;33(11):2113-2122. doi:10.1007/s00467-018-4002-7.

68. Mao S, Fang L, Liu F, et al. Leptin and chronic kidney diseases. J Recept Signal Transduct Res. 2018 Apr;38(2):89-94. doi:10.1080/10799893.2018.1431278.

69. Yazıcı D, Sezer H. Insulin Resistance, Obesity and Lipotoxicity. Adv Exp Med Biol. 2017;960:277-304. doi: 10.1007/978-3-319-48382-5_12. Review.

70. Wong YV, Cook P, Somani BK. The association of metabolic syndrome and urolithiasis. Int J Endocrinol 2015;2015:570674. PMID: 25873954 DOI: http://dx.doi.org/10.1155/2015/570674

71. Kalantar-Zadeh K, Rhee CM, Chou J, et al. The Obesity Paradox in Kidney Disease: How to Reconcile it with Obesity Management. Kidney Int Rep. 2017 Mar;2(2):271-281. doi: 10.1016/j.ekir.2017.01.009.

72. Johansen KL, Lee C. Body composition in chronic kidney disease. Curr Opin Nephrol Hypertens. 2015 May;24(3):268-75. doi: 10.1097/MNH.0000000000000120.

73. Мисникова И.В., Ковалева Ю.А., Климина Н.А. Саркопеническое ожирение. РМЖ 2017;(1):24-29


Review

For citations:


A. Asanbek K., Sezer S. Two sides of the same coin: role of insufficient and excessive weight in patogenesis of the chronic kidney disease. Nephrology and Dialysis. 2019;21(3):292-300. (In Russ.) https://doi.org/10.28996/2618-9801-2019-3-292-300

Views: 1630


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1680-4422 (Print)
ISSN 2618-9801 (Online)