Preview

Nephrology and Dialysis

Advanced search

Thrombotic microangiopathy after kidney transplantation: what is behind the pathology pattern? Review

https://doi.org/10.28996/2618-9801-2019-4-404-418

Abstract

Thrombotic microangiopathy (TMA) of the renal transplant is a clinical and morphological phenomenon characterized by specific damage of glomerular capillaries and medium-small arteries in the form of endothelial cells edema, expansion of the subendothelial space with a sharp narrowing of the vessels lumen, in some cases with blood clots. In the chronic TMA, a morphological picture of the "onion peel" is formed. TMA of a transplanted kidney develops de novo or as a recurrent pathology, may be systemic or localized in the transplant, but in all cases decreases the survival of the recipients and grafts. Morphological examination is necessary to confirm TMA of a renal transplant, but kidney biopsy does not always help to establish the etiology of TMA. The most common causes of de novo TMA are the toxicity of calcineurin inhibitors and antibody-mediated transplant rejection, and recurrent TMA is a relapse of atypical hemolytic-uremic syndrome (aHUS). Mutations in the genes of complement regulatory proteins play an important role not only in the recurrent aHUS after kidney transplantation (KT), but also in some cases of de novo TMA. To treat de novo TMA its causes should be eliminated. Plasma exchange and intravenous immunoglobulin are also used. In some cases of de novo TMA with uncontrollable activation of the complement system, resistant to standard therapy, it is advisable to use complement-blocking therapy. In all patients with recurrent aHUS after KT the first-line therapy is eculizumab. If a patient is diagnosed with aHUS and identified as high risk of relapse after KT through genetic testing and assessing of clinical features, prevention of disease recurrence with "endothelial protection regimen" and eculizumab is necessary. In general, the problem of TMA after KT requires further studies with the development of reliable predictors of its development and new approaches to prevention and treatment.

About the Author

E. I. Prokopenko
M.F. Vladimirsky Moscow Regional Research Clinical Institute
Russian Federation


References

1. Abbas F., Kossi M.E., Kim J.J. et al. Thrombotic microangiopathy after renal transplantation: Current insights in de novo and recurrent disease. World J. Transplant. 2018; 8(5): 122-141. DOI: 10.5500/wjt.v8.i5.122

2. Garg N., Rennke H.G., Pavlakis M., Zandi-Nejad K. De novo thrombotic microangiopathy after kidney transplantation. Transplant. Rev. (Orlando) 2018; 32: 58-68. DOI: 10.1016/j.trre.2017.10.001

3. Reynolds J.C., Agodoa L.Y., Yuan C.M., Abbott K.C. Thrombotic microangiopathy after renal transplantation in the United States. Am. J. Kidney Dis. 2003; 42: 1058-1068. DOI: 10.1016/j.ajkd.2003.07.008

4. Caires R.A., Marques I.D.B., Repizo L.P. et al. De novo thrombotic microangiopathy after kidney transplantation: clinical features, treatment, and long-term patient and graft survival. Transplant. Proc. 2012; 44: 2388-2390. DOI: 10.1016/j.transproceed.2012.07.039

5. Nadasdy T. Thrombotic microangiopathy in renal allografts: the diagnostic challenge. Curr. Opin. Organ Transplant. 2014; 19: 283-292. DOI: 10.1097/MOT.0000000000000074

6. Broecker V., Bardsley V., Torpey N. et al. Clinical-pathological correlations in post-transplant thrombotic microangiopathy. Histopathology. 2019 Mar 9. DOI: 10.1111/his.13855

7. Devresse A., de Meyer M., Aydin S. et al. De novo atypical haemolytic uremic syndrome after kidney transplantation. Case Rep. Nephrol. 2018; 2018:1727986. DOI: 10.1155/2018/1727986

8. Asif A., Nayer A., Haas C.S. Atypical hemolytic uremic syndrome in the setting of complement-amplifying conditions: case reports and a review of the evidence for treatment with eculizumab. J. Nephrol. 2017; 30: 347-362. DOI: 10.1007/s40620-016-0357-7

9. Krid S., Roumenina L.T., Beury D. et al. Renal transplantation under prophylactic eculizumab in atypical hemolytic uremic syndrome with CFH/CFHR1 hybrid protein. Am. J. Transplant. 2012; 12(7): 1938-1944. DOI: 10.1111/j.1600-6143.2012.04051.x

10. Menne J., Delmas Y., Fakhouri F. et al. Outcomes in patients with atypical hemolytic uremic syndrome treated with eculizumab in a long-term observational study. BMC Nephrol. 2019; 20(1):125. DOI: 10.1186/s12882-019-1314-1

11. Riddell A., Goodship T., Bingham C. Prevention of recurrence of atypical hemolytic uremic syndrome post renal transplant with the use of higher-dose eculizumab. Clin. Nephrol. 2016; 86(10): 200-202. DOI: 10.5414/CN108808

12. Hasegawa D., Saito A., Nino N. et al. Successful treatment of transplantation-associated atypical hemolytic uremic syndrome with eculizumab. J. Pediatr. Hematol. Oncol. 2018; 40(1): e41-e44. DOI: 10.1097/MPH.0000000000000862

13. Campistol J.M., Arias M., Ariceta G. et al. An update for atypical haemolytic uraemic syndrome: diagnosis and treatment. A consensus document. Nefrologia. 2015; 35(5): 421-47. DOI: 10.1016/j.nefro.2015.07.005

14. De Keyzer K., Van Laecke S., Peeters P., Vanholder R. De novo thrombotic microangiopathy induced by cytomegalovirus infection leading to renal allograft loss. Am. J. Nephrol. 2010; 32(5): 491-496. DOI: 10.1159/000321328

15. Langer R.M., Van Buren C.T., Katz S.M., Kahan B.D. De novo hemolytic uremic syndrome after kidney transplantation in patients treated with cyclosporine-sirolimus combination. Transplantation. 2002; 73: 756-760. DOI: 10.1097/00007890-200203150-000

16. Schwimmer J., Nadasdy T.A., Spitalnik P.F. et al. De novo thrombotic microangiopathy in renal transplant recipients: a comparison of hemolytic uremic syndrome with localized renal thrombotic microangiopathy. Am. J. Kidney Dis. 2003; 41: 471-479. DOI: 10.1053/ajkd.2003.50058

17. Zarifian A., Meleg-Smith S., O’donovan R. et al. Cyclosporine-associated thrombotic microangiopathy in renal allografts. Kidney Int. 1999; 55: 2457-2466. DOI: 10.1046/j.1523-1755.1999.00492.x

18. Satoskar A.A., Pelletier R., Adams P. et al. De novo thrombotic microangiopathy in renal allograft biopsies-role of antibody-mediated rejection. Am. J. Transplant. 2010; 10: 1804-1811. DOI: 10.1111/j.1600-6143.2010.03178.x

19. Karthikeyan V., Parasuraman R., Shah V. Outcome of plasma exchange therapy in thrombotic microangiopathy after renal transplantation. Am. J. Transplant. 2003; 3: 1289-1294. DOI: 10.1046/j.1600-6143.2003.00222.x

20. Zuber J., Le Quintrec M., Morris H. et al. Targeted strategies in the prevention and management of atypical HUS recurrence after kidney transplantation. Transplant. Rev. (Orlando). 2013; 27(4):117-125. DOI: 10.1016/j.trre.2013.07.003

21. Blosser C.D., Bloom RD. Recurrent glomerular disease after kidney transplantation. Curr. Opin. Nephrol. Hypertens. 2017; 26(6): 501-508. DOI: 10.1097/MNH.0000000000000358

22. Tsuchimoto A., Matsukuma Y., Ueki K. et al. Thrombotic microangiopathy associated with anticardiolipin antibody in a kidney transplant recipient with polycythemia. CEN Case Reports. 2019; 8:1-7. DOI: 10.1007/s13730-018-0354-x

23. Vilayur E., de Malmanche J., Trevillian P., Ferreira D. Metastatic lung adenocarcinoma- associated thrombotic microangiopathy in a renal transplant recipient. BMJ Case Rep. 2018; 11(1): pii: e226707. DOI: 10.1136/bcr-2018-226707

24. Sahin G., Akay O.M., Bal C. et al. The effect of calcineurin inhibitors on endothelial and platelet function in renal transplant patients. Clin. Nephrol. 2011; 76: 218-225. PMID: 21888859

25. Tomasiak M., Rusak T., Gacko M., Stelmach H. Cyclosporine enhances platelet procoagulant activity. Nephrol. Dial. Transplant. 2007; 22: 1750-1756. DOI: 10.1093/ndt/gfl836

26. Renner B., Klawitter J., Goldberg R. et al. Cyclosporine induces endothelial cell release of complement-activating microparticles. J. Am. Soc. Nephrol. 2013; 24: 1849-1862. DOI: 10.1681/ASN.2012111064

27. Hošková L., Málek I., Kopkan L., Kautzner J. Pathophysiological mechanisms of calcineurin inhibitor-induced nephrotoxicity and arterial hypertension. Physio.l Res. 2017; 66(2):167-180. PMID: 27982677

28. Mulgaonkar S., Kaufman D.B. Conversion from calcineurin inhibitorbased immunosuppression to mammalian target of rapamycin inhibitors or belatacept in renal transplant recipients. Clin. Transplant. 2014; 28: 1209-1224.DOI: 10.1111/ctr.12453

29. Le Quintrec M., Zuber J., Moulin B. et al. Complement genes strongly predict recurrence and graft outcome in adult renal transplant recipients with atypical hemolytic and uremic syndrome. Am. J. Transplant. 2013; 13: 663-675. DOI: 10.1111/ajt.12077

30. Cortina G., Trojer R., Waldegger S. et al. De novo tacrolimus-induced thrombotic microangiopathy in the early stage after renal transplantation successfully treated with conversion to everolimus. Pediatr. Nephrol. 2015; 30: 693-697. DOI: 10.1007/s00467-014-3036-8

31. Keller K., Daniel C., Schöcklmann H. et al. Everolimus inhibits glomerular endothelial cell proliferation and VEGF, but not long-term recovery in experimental thrombotic microangiopathy. Nephrol. Dial. Transplant. 2006; 21: 2724-2735. DOI: 10.1093/ndt/gfl340

32. Nava F., Cappelli G., Mori G. et al. Everolimus, cyclosporine, and thrombotic microangiopathy: clinical role and preventive tools in renal transplantation. Transplant. Proc. 2014; 46: 2263-2268. DOI: 10.1016/j.transproceed.2014.07.062

33. Baas M.C., Gerdes V.E., Ten Berge I.J. et al. Treatment with everolimus is associated with a procoagulant state. Thromb. Res. 2013; 132: 307-311. DOI: 10.1016/j.thromres.2013.07.004

34. Sartelet H., Toupance O., Lorenzato M. et al. Sirolimus-induced thrombotic microangiopathy is associated with decreased expression of vascular endothelial growth factor in kidneys. Am. J. Transplant. 2005; 5(10): 2441-2447. DOI: 10.1111/j.1600-6143.2005.01047.x

35. Miriuka S.G., Rao V., Peterson M. et al. mTOR inhibition induces endothelial progenitorcell death. Am. J. Transplant. 2006; 6(9):2069-2079. DOI: 10.1111/j.1600-6143.2006.01433.x

36. Keir L.S., Firth R., Aponik L. et al. VEGF regulates local inhibitory complement proteins in the eye and kidney. J. Clin. Invest. 2017; 127(1):199-214. DOI: 10.1172/JCI86418

37. Pascual J., Diekmann F., Fernández-Rivera C. et al. Recommendations for the use of everolimus in de novo kidney transplantation: False beliefs, myths and realities. Nefrologia. 2017; 37(3): 253-266. DOI: 10.1016/j.nefro.2016.11.007

38. Meehan S.M., Kremer J., Ali F.N. et al. Thrombotic microangiopathy and peritubular capillary C4d expression in renal allograft biopsies. Clin. J. Am. Soc. Nephrol. 2011; 6: 395-403. DOI: 10.2215/CJN.05870710

39. Baid-Agrawal S., Farris A.B. 3rd, Pascual M. et al. Overlapping pathways to transplant glomerulopathy: chronic humoral rejection, hepatitis C infection, and thrombotic microangiopathy. Kidney Int. 2011; 80: 879-885. DOI: 10.1038/ki.2011.194

40. Waldman M., Kopp J.B. Parvovirus-B19-associated complications in renal transplant recipients. Nat. Clin. Pract. Nephrol. 2007; 3: 540-550. DOI: 10.1038/ncpneph0609

41. Petrogiannis-Haliotis T., Sakoulas G., Kirby J. et al. BK-related polyomavirus vasculopathy in a renal-transplant recipient. N. Engl. J. Med. 2001; 345: 1250-1255. DOI: 10.1056/NEJMoa010319

42. Ardalan M.R., Shoja M.M., Tubbs R.S., Jayne D. Parvovirus B19 microepidemic in renal transplant recipients with thromboticmicroangiopathy and allograft vasculitis. Exp. Clin. Transplant. 2008; 6:137-143. PMID: 18816241

43. Esmaili H., Mostafidi E., Ardalan M. et al. BK virus nephropathy is not always alone. J. Renal. Inj. Prev. 2015; 5(1):12-16. DOI: 10.15171/jrip.2016.03

44. Večerić-Haler Ž., Bizjak B., Romozi K., Arnol M. Expanded valganciclovir prophylaxis in kidney transplant recipients is associated with lower incidence of cytomegalovirus infection. Clin. Nephrol. 2017 Suppl. 1; 88(13):126-130. DOI: 10.5414/CNP88FX27

45. Kotton C.N., Kumar D., Caliendo A.M. et al.; The Transplantation Society International CMV Consensus Group. The Third International Consensus Guidelines on the Management of Cytomegalovirus in Solid-organ Transplantation. Transplantation. 2018; 102(6): 900-931. DOI: 10.1097/TP.0000000000002191.

46. Прокопенко Е.И., Щербакова Е.О., Ватазин А.В. и др. Результаты профилактики цитомегаловирусной инфекции валганцикловиром у пациентов с трансплантированной почкой. Клиническая нефрология. 2013; 5: 37-41.

47. Waiser J., Budde K., Rudolph B. et al. De novo hemolytic uremic syndrome postrenal transplant after cytomegalovirus infection. Am. J. Kidney Dis. 1999; 34: 556-560. DOI: 10.1053/AJKD03400556

48. Olie K.H., Goodship T.H. Verlaak R. et al. Posttransplantation cytomegalovirus induced recurrence of atypical hemolytic syndrome associated with a factor H mutation: successful treatment with intensive plasma exchanges and ganciclovir. Am. J. Kidney Dis. 2005; 45:e12-e15. PMID: 15696434

49. Jeejeebhoy F.M., Zaltzman J.S. Thrombotic microangiopathy in association with cytomegalovirus infection in a renal transplant patient: a new treatment strategy. Transplantation. 1998; 65(12):1645-1648. DOI: 10.1097/00007890-199806270-00018

50. Java A., Edwards A., Rossi A. et al. Cytomegalovirus-induced thrombotic microangiopathy after renal transplant successfully treated with eculizumab: case report and review of the literature. Transpl. Int. 2015; 28(9):1121-1125. DOI: 10.1111/tri.12582

51. de Vries D.K., van der Pol P., van Anken G.E. et al. Acute but transient release of terminal complement complex after reperfusion in clinical kidney transplantation. Transplantation. 2013; 95: 816-820. DOI: 10.1097/TP.0b013e31827e31c9

52. Ulinski T., Charpentier A., Colombat M. et al. From humoral rejection to generalized thrombotic microangiopathy--role of acquired ADAMTS13 deficiency in a renal allograft recipient. Am. J. Transplant. 2006; 6: 3030-3036. DOI: 10.1111/j.1600-6143.2006.01574.x

53. Lorcy N., Rioux-Leclercq N., Lombard M.L. et al. Three kidneys, two diseases, one antibody? Nephrol. Dial. Transplant. 2011; 26: 3811-3813. DOI: 10.1093/ndt/gfr436

54. González-Moreno J., Callejas-Rubio J.L., Ríos-Fernández R., Ortego-Centeno N. Antiphospholipid syndrome, antiphospholipid antibodies and solid organ transplantation. Lupus. 2015; 24(13):1356-1363. DOI: 10.1177/0961203315595129

55. Barbour T.D., Crosthwaite A., Chow K., Finlay M.J. Antiphospholipid syndrome in renal transplantation. Nephrology (Carlton). 2014; 19(4):177-185. DOI: 10.1111/nep.12217

56. Geethakumari P.R., Mille P., Gulati R., Nagalla S. Complement inhibition with eculizumab for thrombotic microangiopathy rescues a living-donor kidney transplant in a patient with antiphospholipid antibody syndrome. Transfus. Apher. Sci. 2017; 56(3): 400-403. DOI: 10.1016/j.transci.2017.02.007

57. Chew C.G., Bannister K.M., Mathew T.H. et al. Thrombotic microangiopathy related to anticardiolipin antibody in a renal allograft. Nephrol. Dial. Transplant. 1999; 14: 436-438.

58. Ruffatti A., Marson P., Valente M. et al. Plasma exchange in a patient with primary antiphospholipid syndrome undergoing kidney transplantation. Transpl. Int. 2007; 20: 475-477.

59. Chandran S., Baxter-Lowe L., Olson J.L. et al. Eculizumab for the treatment of de novo thrombotic microangiopathy post simultaneous pancreas-kidney transplantation--a case report. Transplant. Proc. 2011; 43(5): 2097-2101. DOI: 10.1016/j.transproceed.2011.02.064

60. Shochet L., Kanellis J., Simpson I. et al. De novo thrombotic microangiopathy following simultaneous pancreas and kidney transplantation managed with eculizumab. Nephrology (Carlton). 2017; 22 Suppl 1: 23-27. DOI: 10.1111/nep.12936

61. Le Quintrec M., Lionet A., Kamar N. et al. Complement mutation-associated de novo thrombotic microangiopathy following kidney transplantation. Am. J. Transplant. 2008; 8: 1694-1701. DOI: 10.1111/j.1600-6143.2008.02297.x

62. Rolla D., Fontana I., Ravetti J.L. et al. De novo post-transplant thrombotic microangiopathy localized only to the graft in autosomal dominant polycystic kidney disease with thrombophilia. J. Renal. Inj. Prev. 2015; 4(4):135-138. DOI: 10.12861/jrip.2015.28

63. Noris M., Remuzzi G. Thrombotic microangiopathy after kidney transplantation. Am. J. Transplant. 2010; 10: 1517-1523. DOI: 10.1111/j.1600-6143.2010.03156.x

64. Salameh H., Abu Omar M., Alhariri A. et al. Adult post-kidney transplant familial atypical hemolytic uremic syndrome successfully treated with eculizumab: a case report and literature review. Am. J. Ther. 2016; 23(4): e1110-115. DOI: 10.1097/MJT.0000000000000133

65. Goodship T.H., Cook H.T., Fakhouri F. et al. Atypical hemolytic uremic syndrome and C3 glomerulopathy: conclusions from a "Kidney Disease: Improving Global Outcomes" (KDIGO) Controversies Conference. Kidney Int. 2017; 91(3): 539-551. DOI: 10.1016/j.kint.2016.10.005

66. Goicoechea de Jorge E., Tortajada A., García S.P. et al. Factor H competitor generated by gene conversion events associates with atypical hemolytic uremic syndrome. J. Am. Soc. Nephrol. 2018; 29(1): 240-249. DOI: 10.1681/ASN.2017050518

67. Noris M., Remuzzi G. Atypical hemolytic-uremic syndrome. N. Engl. J. Med. 2009; 361: 1676-1687. DOI: 10.1056/NEJMra0902814

68. Bresin E., Rurali E., Caprioli J. et al. Combined complement gene mutations in atypical hemolytic uremic syndrome influence clinical phenotype. J. Am. Soc. Nephrol. 2013; 24(3): 475-486. DOI: 10.1681/ASN.2012090884

69. Bresin E., Daina E., Noris M. et al. Outcome of renal transplantation in patients with non-Shiga toxin-associated hemolytic uremic syndrome: prognostic significance of genetic background. Clin. J. Am. Soc. Nephrol. 2006; 1(1): 88-99. DOI: 10.2215/CJN.00050505

70. Saland J.M., Ruggenenti P., Remuzzi G.; Consensus Study Group. Liver-kidney transplantation to cure atypical hemolytic uremic syndrome. J. Am. Soc. Nephrol. 2009; 20(5): 940-949. DOI: 10.1681/ASN.2008080906

71. Koskinen A.R., Tukiainen E., Arola J. et al. Complement activation during liver transplantation-special emphasis on patients with atypical hemolytic uremic syndrome. Am. J. Transplant. 2011; 11(9): 1885-1895. DOI: 10.1111/j.1600-6143.2011.03612

72. Loirat C., Saland J., Bitzan M. Management of hemolytic uremic syndrome. Presse Med. 2012; 41(3 Pt 2): e115-135. DOI: 10.1016/j.lpm.2011.11.013

73. Tran H., Chaudhuri A., Concepcion W. et al. Use of eculizumab and plasma exchange in successful combined liver-kidney transplantation in a case of atypical HUS associated with complement factor H mutation. Pediatr. Nephrol. 2014; 29(3): 477-480. DOI: 10.1007/s00467-013-2630-5

74. Gonzales E., Ulinski T., Habes D. et al. Long-term successful liver-kidney transplantation in a child with atypical hemolytic uremic syndrome caused by homozygous factor H deficiency. Pediatr. Nephrol. 2016; 31(12): 2375-2378. DOI: 10.1007/s00467-016-3511-5

75. Szymczak M., Kaliciński P., Kowalewski G. et al. Combined liver-kidney transplantation in children: single-center experiences and long-term results. Transplant. Proc. 2018; 50(7): 2140-2144. DOI: 10.1016/j.transproceed.2018.04.061

76. Coppo R., Bonaudo R., Peruzzi R.L. et al. Liver transplantation for aHUS: still needed in the eculizumab era? Pediatr. Nephrol. 2016; 31(5): 759-768. DOI: 10.1007/s00467-015-3278-0

77. Salvadori M., Bertoni E. Complement related kidney diseases: recurrence after transplantation. World.J. Transplant. 2016; 6: 632-645. DOI: 10.5500/wjt.v6.i4.632

78. Epand R.M., So V., Jennings W. et al. Diacylglycerol kinase-ε: properties and biological roles. Front. Cell Dev. Biol. 2016; 4: 112. DOI: 10.3389/fcell.2016.00112

79. Azukaitis K., Simkova E., Majid M.A. et al. The phenotypic spectrum of nephropathies associated with mutations in diacylglycerol kinase ε. J. Am. Soc. Nephrol. 2017; 28: 3066-3075. DOI: 10.1681/ASN.2017010031

80. Jokiranta T.S. HUS and atypical HUS. Blood. 2017; 129(21): 2847-2856. DOI: 10.1182/blood-2016-11-709865

81. Ruggenenti P. Post-transplant hemolytic-uremic syndrome. Kidney Int. 2002; 62: 1093-1104. DOI: 10.1046/j.1523-1755.2002.00543.x

82. Garlo K., Dressel D., Savic M. et al. Successful eculizumab treatment of recurrent postpartum atypical hemolytic uremic syndrome after kidney transplantation. Clin. Nephrol. Case Stud. 2015; 3: 8-13. DOI: 10.5414/CNCS108491

83. Duval A., Olagne J., Cognard N. et al. Pregnancy in a kidney transplant woman under treatment with eculizumab for atypical hemolytic uremic syndrome: is it safe? Kidney Int. Rep. 2019; 4: 733-739. DOI: 10.1016/j.ekir.2018.12.014

84. Noris M., Caprioli J., Bresin E. et al. Relative role of genetic complement abnormalities in sporadic and familial aHUS and their impact on clinical phenotype. Clin. J. Am. Soc. Nephrol. 2010; 5(10):1844-1859. DOI: 10.2215/CJN.02210310

85. Fremeaux-Bacchi V., Fakhouri F., Garnier A. et al. Genetics and outcome of atypical hemolytic uremic syndrome: a nationwide French series comparing children and adults. Clin. J. Am. Soc. Nephrol. 2013; 8: 554-562. DOI: 10.2215/CJN.04760512

86. Lemaire M., Frémeaux-Bacchi V., Schaefer F. et al. Recessive mutations in DGKE cause atypical hemolytic-uremic syndrome. Nat. Genet. 2013; 45: 531-536. DOI: 10.1038/ng.2590

87. Bresin E. Genetics of aHUS and transplant recurrence. G. Ital. Nefrol. 2015; 32 Suppl. 64. pii: gin/32.S64.3. PMID: 26479051

88. Venables J.P., Strain L., Routledge D. et al. Atypical haemolytic uraemic syndrome associated with a hybrid complement gene. PLoS Med. 2006; 3: e431. DOI: 10.1371/journal.pmed.0030431]

89. Valoti E., Alberti M., Tortajada A. et al. A novel atypical hemolytic uremic syndrome-associated hybrid CFHR1/CFH gene encoding a fusion protein that antagonizes factor H-dependent complement regulation. J. Am. Soc. Nephrol. 2015; 26: 209-219. DOI: 10.1681/ASN.2013121339

90. Challis R.C., Araujo G.S., Wong E.K. et al. A de novo deletion in the regulators of complement activation cluster producing a hybrid complement factor H/complement factor H-related 3 gene in atypical hemolytic uremic syndrome. J. Am. Soc. Nephrol. 2016; 27: 1617-1624. DOI: 10.1681/ASN.2015010100

91. Lam K., Martlew V., Walkinshaw S. et al. Successful management of recurrent pregnancy-related thrombotic thrombocytopaenia purpura in a renal transplant recipient. Nephrol. Dial.Transplant. 2010; 25(7): 2378-2380. DOI: 10.1093/ndt/gfq228

92. Mise K., Ubara Y., Matsumoto M. et al. Long term follow up of congenital thrombotic thrombocytopenic purpura (Upshaw-Schulman syndrome) on hemodialysis for 19 years: a case report. BMC Nephrol. 2013; 14: 156. DOI: 10.1186/1471-2369-14-156

93. Song D., Wu L.H., Wang F.M. et al. The spectrum of renal thrombotic microangiopathy in lupus nephritis. Arthritis Res. Ther. 2013; 15(1): R12. DOI: 10.1186/ar4142

94. Kais H., Nourredine C., Raoudha B. Treatment of tacrolimus-associated thrombotic microangiopathy in renal transplant recipient with fresh frozen plasma: A case report. Saudi J. Kidney Dis. Transpl. 2006; 17:58-61. PMID: 17297539

95. Franco A., Hernandez D., Capdevilla L. et al. De novo hemolytic-uremic syndrome/thrombotic microangiopathy in renal transplant patients receiving calcineurin inhibitors: role of sirolimus. Transplant. Proc. 2003; 35: 1764-1766. DOI: 10.1016/S0041-1345(03)00614-6

96. Epperla N., Hemauer K., Hamadani M. et al. Impact of treatment and outcomes for patients with posttransplant drug-associated thrombotic microangiopathy. Transfusion. 2017; 57: 2775-2781. DOI: 10.1111/trf.14263

97. Ashman N., Chapagain A., Dobbie H. et al. Belatacept as maintenance immunosuppression for postrenal transplant de novo drug-induced thrombotic microangiopathy. Am. J. Transplant. 2009; 9: 424-427. DOI: 10.1111/j.1600-6143.2008.02482.x

98. Koppula S., Yost S.E., Sussman A. et al. Successful conversion to belatacept after thrombotic microangiopathy in kidney transplant patients. Clin. Transplant. 2013; 27: 591-597. DOI: 10.1111/ctr.12170

99. Merola J., Yoo PS., Schaub J. et al. Belatacept and eculizumab for treatment of calcineurin inhibitor-induced thrombotic microangiopathy after kidney transplantation: case report. Transplant. Proc. 2016; 48(9): 3106-3108. DOI: 10.1016/j.transproceed.2016.04.005

100. Bell W.R., Braine H.G., Ness P.M., Kickler T.S. Improved survival in thrombotic thrombocytopenic purpura-hemolytic uremic syndrome. Clinical experience in 108 patients. N. Engl. J. Med. 1991; 325: 398-403. DOI: 10.1056/NEJM199108083250605

101. Scully M., Goodship T. How I treat thrombotic thrombocytopenic purpura and atypical haemolytic uraemic syndrome. Br. J. Haematol. 2014; 164(6): 759-766. DOI: 10.1111/bjh.12718

102. Burton S.A., Amir N., Asbury A. et al. Treatment of antibody-mediated rejection in renal transplant patients: a clinical practice survey. Clin. Transplant. 2015; 29(2):118-123. DOI: 10.1111/ctr.12491

103. Choi J.Y., Jung J.H., Shin S. et al. Living donor renal transplantation in patients with antiphospholipid syndrome: A case report. Medicine (Baltimore). 2016;95(46): e5419. DOI: 10.1097/MD.0000000000005419

104. Wilson C.H., Brown A.L., White S.A. et al. Successful treatment of de novo posttransplant thrombotic microangiopathy with eculizumab. Transplantation. 2011; 92: e42-e43. DOI: 10.1097/TP.0b013e318230c0bd

105. Stegall M.D., Diwan T., Raghavaiah S. et al. Terminal complement inhibition decreases antibody-mediated rejection in sensitized renal transplant recipients. Am. J. Transplant. 2011; 11: 2405-2413. DOI: 10.1111/j.1600-6143.2011.03757.x

106. Safa K., Logan M.S., Batal I. et al. Eculizumab for drug-induced de novo posttransplantation thrombotic microangiopathy: A case report. Clin. Nephrol. 2015; 83: 125-129. DOI: 10.5414/CN108163

107. Ikeda T., Okumi M., Unagami K. et al. Two cases of kidney transplantation associated thrombotic microangiopathy successfully treated with eculizumab. Nephrology (Carlton) 2016; 21 Suppl. 1: 35-40. DOI: 10.1111/nep.12768

108. Dedhia P., Govil A., Mogilishetty G. et al. Eculizumab and belatacept for de novo atypical hemolytic uremic syndrome associated with CFHR3-CFHR1 deletion in a kidney transplant recipient: a case report. Transplant. Proc. 2017; 49: 188-192. DOI: 10.1016/j.transproce ed.2016.11.008

109. González-Roncero F., Suñer M., Bernal G. et al. Eculizumab treatment of acute antibody-mediated rejection in renal transplantation: case reports. Transplant. Proc. 2012; 44: 2690-2694. DOI: 10.1016/j.transproceed.2012.09.038

110. Chehade H., Rotman S., Matter M. et al. Eculizumab to treat antibody-mediated rejection in a 7-year-old kidney transplant recipient. Pediatrics. 2015; 135: e551-e555. DOI: 10.1542/peds.2014-2275

111. Claes K.J., Massart A., Collard L. et al. Belgian consensus statement on the diagnosis and management of patients with atypical hemolytic uremic syndrome. Acta Clin. Belg. 2018; 73(1): 80-89. DOI: 10.1080/17843286.2017.1345185

112. Gonzalez Suarez M.L., Thongprayoon C., Mao M.A. et al. Outcomes of kidney transplant patients with atypical hemolytic uremic syndrome treated with eculizumab: a systematic review and meta-analysis. J. Clin. Med. 2019; 8(7). pii: E919. DOI: 10.3390/jcm8070919

113. Zuber J., Le Quintrec M., Krid S. et al.; French Study Group for Atypical HUS. Eculizumab for atypical hemolytic uremic syndrome recurrence in renal transplantation. Am. J. Transplant. 2012; 12: 3337-3354. DOI: 10.1111/j.1600-6143.2012.04252.x

114. Kwon T., Dragon-Durey M.A., Macher M.A. et al. Successful pretransplant management of a patient with anti-factor H autoantibodies-associated haemolytic uraemic syndrome. Nephrol. Dial. Transplant. 2008; 23: 2088-2090. DOI: 10.1093/ndt/gfn063

115. Waters A.M., Pappworth I., Marchbank K. et al. Successful renal transplantation in factor H autoantibody associated HUS with CFHR1 and 3 deficiency and CFH variant G2850T. Am. J. Transplant. 2010; 10: 168-172. DOI: 10.1111/j.1600-6143.2009.02870.x

116. Каабак М.М., Молчанова Е.А., Нестеренко И.В. и др. Резолюция междисциплинарного совета экспертов. Трансплантация почки у пациентов с атипичным гемолитико-уремическим синдромом: клинические и организационно-методические аспекты ведения пациентов. Клиническая нефрология. 2018; 3: 8-14.

117. Gatault P., Brachet G., Ternant D. et al. Therapeutic drug monitoring of eculizumab: rationale for an individualized dosing schedule. MAbs, 2015; 7(6): 1205-1211. DOI: 10.1080/19420862.2015.1086049

118. Wehling C., Amon O., Bommer M. et al. Monitoring of complement activation biomarkers and eculizumab in complement-mediated renal disorders. Clin. Exp. Immunol. 2016; 187: 304-315. DOI: 10.1111/cei.12890

119. Macia M., de Alvaro Moreno F., Dutt T. et al. Current evidence on the discontinuation of eculizumab in patients with atypical hemolytic uraemic syndrome. Clin. Kidney J. 2017; 10(3): 310-319. DOI: 10.1093/ckj/sfw115

120. Ardissino G., Tel F., Sgarbanti M. et al. Complement functional tests for monitoring eculizumab treatment in patients with atypical hemolytic uremic syndrome: an update. Pediatr. Nephrol. 2018; 33(3): 457-461. DOI: 10.1007/s00467-017-3813-2

121. Wijnsma K.L., Ter Heine R., Moes D.J.A.R. et al. Pharmacology, pharmacokinetics and pharmacodynamics of eculizumab, and possibilities for an individualized approach to eculizumab. Clin. Pharmacokinet. 2019; 8(7): 859-874. DOI: 10.1007/s40262-019-00742-8

122. Matar D., Naqvi F., Racusen L.C. et al. Atypical hemolytic uremic syndrome recurrence after kidney transplantation. Transplantation. 2014; 98(11):1205-1212. DOI: 10.1097/TP.0000000000000200

123. Walle J.V., Delmas Y., Ardissino G. et al. Improved renal recovery in patients with atypical hemolytic uremic syndrome following rapid initiation of eculizumab treatment. J. Nephrol. 2017; 30(1):127-134. DOI: 10.1007/s40620-016-0288-3

124. Zhang Y., Nester C.M., Holanda D.G. et al. Soluble CR1 therapy improves complement regulation in C3 glomerulopathy. J. Am. Soc. Nephrol. 2013; 24: 1820-1829. PMID: 23907509 DOI: 10.1681/ASN.2013010045

125. Zhang Y., Shao D., Ricklin D. et al. Compstatin analog Cp40 inhibits complement dysregulation in vitro in C3 glomerulopathy. Immunobiology. 2015; 220: 993-998. DOI: 10.1016/j.imbio.2015.04.001

126. Paixão-Cavalcante D., Torreira E., Lindorfer M.A. et al. A humanized antibody that regulates the alternative pathway convertase: potential for therapy of renal disease associated with nephritic factors. J. Immunol. 2014; 192: 4844-4851. DOI: 10.4049/jimmunol.1303131

127. Harris C.L. Expanding horizons in complement drug discovery: challenges and emerging strategies. Semin. Immunopathol. 2018; 40(1): 125-140. DOI: 10.1007/s00281-017-0655-8


Review

For citations:


Prokopenko E.I. Thrombotic microangiopathy after kidney transplantation: what is behind the pathology pattern? Review. Nephrology and Dialysis. 2019;21(4):404-418. (In Russ.) https://doi.org/10.28996/2618-9801-2019-4-404-418

Views: 45


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1680-4422 (Print)
ISSN 2618-9801 (Online)