Comparative assessment of the antioxidant and nephroprotective effects of melatonin and methylethylpyridinol hydrochloride in diabetic nephropathy
https://doi.org/10.28996/2618-9801-2021-2-203-212
Abstract
About the Authors
S. S. PopovRussian Federation
E. I. Anufrieva
Russian Federation
E. D. Krylsky
Russian Federation
K. K. Shulgin
Russian Federation
A. N. Verevkin
Russian Federation
A. N. Pashkov
Russian Federation
A. P. Volynkina
Russian Federation
T. N. Popova
Russian Federation
References
1. Tesch G.H. Diabetic nephropathy - is this an immune disorder? Clin Sci (Lond). 2017; 131(16): 2183-2199. DOI: 10.1042/CS20160636.
2. Sifuentes-Franco S., Padilla-Tejeda D.E., Carrillo-Ibarra S., et al. Oxidative Stress, Apoptosis, and Mitochondrial Function in Diabetic Nephropathy. International Journal of Endocrinology. 2018; 2018(2): 1-13. DOI: 10.1155/2018/1875870.
3. Miranda-Díaz A.G., Pazarín-Villaseñor L., Yanowsky-Escatell F.G., et al. Oxidative Stress in Diabetic Nephropathy with Early Chronic Kidney Disease. J Diabetes Res. 2016; 2016: 7047238. DOI: 10.1155/2016/7047238.
4. Sanajou D., Haghjo A.G., Argani H., et al. AGE-RAGE axis blockade in diabetic nephropathy: Current status and future directions. Eur J Pharmacol. 2018; 833: 158-164. DOI: 10.1016/j.ejphar.2018.06.001.
5. Sagoo M.K., Gnudi L. Diabetic nephropathy: Is there a role for oxidative stress? Free Radic Biol Med. 2018; 116: 50-63. DOI: 10.1016/j.freeradbiomed.2017.12.040.
6. Mesquita A., Weinberger M., Silva A., et al. Caloric restriction or catalase inactivation extends yeast chronological lifespan by inducing H2O2 and superoxide dismutase activity. PNAS. 2010; 107(34): 15123-15128. DOI: 10.1073/pnas.1004432107.
7. Voelker J., Berg P.H., Sheetz M., et al. Anti-TGF-β1 Antibody Therapy in Patients with Diabetic Nephropathy. JASN. 2017; 28(3): 953-962. DOI: 10.1681/ASN.2015111230.
8. Волчегорский И.А., Мирошниченко И.Ю., Рассохина Л.М и соавт. Анксиолитическое и антидепрессивное действие эмоксипина, реамберина и мексидола при экспериментальном сахарном диабете. Журнал неврологии и психиатрии. 2017; 5: 52-57. DOI: 10.17116/jnevro20171175152-57.
9. Агарков А.А., Попова Т.Н., Матасова Л.В., и соавт. Оценка степени фрагментации ДНК, активности аконитатгидратазы и уровня цитрата при сахарном диабете 2 типа у крыс и введении мелатонина. Российский медико-биологический вестник им. академика И.П. Павлова. 2012; 20(3): 21-26. DOI: 10.17816/PAVLOVJ2012321-26.
10. Горбенко М.В., Попова Т.Н., Шульгин К.К., и соавт. Влияние мелаксена и вальдоксана на активность глутатионовой антиоксидантной системы и НАДФН-генерирующих ферментов в сердце крыс при экспериментальном гипертиреозе. 2013; 76(10): 12-15. DOI: 10.30906/0869-2092-2013-76-10-12-15.
11. Попов С.С., Пашков А.Н., Золоедов В.И., и соавт. Применение мелатонина в комбинированной терапии при лечении лекарственного гепатита. Клиническая медицина. 2013; 91(3): 50-53.
12. Piskarev I.M., Trofimova S.V., Ivanova I.P., et al. Investigation of the level of free-radical processes in substrates and biological samples using induced chemiluminescence. Biophysics. 2015; 60: 400-408. DOI: 10.1134/S0006350915030148.
13. Nishikimi M., Rao N.A. Yagi, K. The occurrence of superoxide anion in the reaction of reduced phenazine methosulphate and molecular oxygen. Biochem. Biophys. Res. Co. 1972; 46(2): 849-864. DOI: 10.1016/s0006-291x(72)80218-3.
14. Góth, L. A simple method for determination of serum catalase activity and revision of reference range. Clin Chim Acta. 1991; 196(2-3): 143-151. DOI: 10.1016/0009-8981(91)90067-m.
15. Zhao D., Yu Y., Shen Y, et al. Melatonin Synthesis and Function: Evolutionary History in Animals and Plants. Front Endocrinol. 2019; 10: 249. DOI: 10.3389/fendo.2019.00249.
16. Meng X., Li Y., Li S., et al. Dietary Sources and Bioactivities of Melatonin. Nutrients. 2017; 9(4): E367. DOI: 10.3390/nu9040367.
17. Lindblom R., Higgins G., Coughlan M., et al. Targeting Mitochondria and Reactive Oxygen Species-Driven Pathogenesis in Diabetic Nephropathy. Rev Diabet Stud. 2015; 12(1-2): 134-156. DOI: 10.1900/RDS.2015.12.134.
18. Stacchiotti A., Favero G., Giugno L., et al. Mitochondrial and metabolic dysfunction in renal convoluted tubules of obese mice: Protective role of melatonin. PLoS One. 2014; 9(10): e111141. DOI: 10.1371/journal.pone.0111141.
19. Giribabu N., Rao P.V. Kumar K.P., et al. Aqueous Extract of Phyllanthus niruri Leaves Displays In Vitro Antioxidant Activity and Prevents the Elevation of Oxidative Stress in the Kidney of Streptozotocin-Induced Diabetic Male Rats. Evid Based Complement Alternat Med. 2014; 2014: 834815. DOI: 10.1155/2014/834815.
20. Xie R., Zhang H., Wang X-Z., et al. The protective effect of betulinic acid (BA) diabetic nephropathy on streptozotocin (STZ)-induced diabetic rats. Food Funct. 2017; 8(1): 299-306. DOI: 10.1039/c6fo01601d.
21. Peresypkina A, Pazhinsky A, Pokrovskii M, et al. Correction of Experimental Retinal Ischemia by l-Isomer of Ethylmethylhydroxypyridine Malate. Antioxidants (Basel). 2019; 8(2): E34. DOI: 10.3390/antiox8020034.
22. Lowes D.A., Webster N.R., Murphy M.P., et al. Antioxidants that protect mitochondria reduce interleukin-6 and oxidative stress, improve mitochondrial function, and reduce biochemical markers of organ dysfunction in a rat model of acute sepsis. Br J Anaesth. 2013; 110(3): 472-480. DOI: 10.1093/bja/aes577.
23. Fernando S., Rombauts L. Melatonin: shedding light on infertility? - A review of the recent literature. J Ovarian Res. 2014; 7: 98. DOI: 10.1186/s13048-014-0098-y.
24. Korkmaz A., Reiter R.J., Topal T., et al. Melatonin: an established antioxidant worthy of use in clinical trials. Mol Med. 2009; 15(1-2): 43-50. DOI: 10.2119/molmed.2008.00117.
Review
For citations:
Popov S.S., Anufrieva E.I., Krylsky E.D., Shulgin K.K., Verevkin A.N., Pashkov A.N., Volynkina A.P., Popova T.N. Comparative assessment of the antioxidant and nephroprotective effects of melatonin and methylethylpyridinol hydrochloride in diabetic nephropathy. Nephrology and Dialysis. 2021;23(2):203-212. (In Russ.) https://doi.org/10.28996/2618-9801-2021-2-203-212