Preview

Nephrology and Dialysis

Advanced search

A study of cytotoxic effect of the uremic toxin indoxyl sulfate on myoblasts in vitro, the expression of myostatin mRNA in myoblast cell culture, and the possibility of exogenous regulation

https://doi.org/10.28996/2618-9801-2021-2-219-224

Abstract

Introduction: indoxyl sulfate is a uremic toxin considered as one of the sources of muscle failure (cachexia) in patients with renal failure; this category of patients has a poor prognosis. Objective: an examination of the possibilities of exogenous regulation of the influence of indoxyl sulfate on myoblasts in vitro. Material and methods: the culture of primary mouse myoblasts was obtained according to the standard method. The cells were cultured in DMEM medium with 10% fetal calf serum (FST) (Gibco) at 37 °C and 6% CO2. The study of the effect of indoxyl sulfate on the proliferation rate of myoblasts was carried out by measuring the rate of reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT, Sigma). To measure the expression of myostatin, RNA was isolated from mouse myoblasts using the Trizol reagent (Thermo Fisher Scientific). Reverse transcription was performed using a set of reagents from Silex. To compare the expression of myostatin mRNA in myoblasts, a real-time polymerase chain reaction was used. Ethylmethylhydroxypyridine malate was used at a physiological concentration of 70 μg/ml. Results: we have shown that indoxyl sulfate has a significant cytostatic effect on myoblasts in vitro, suppressing their proliferation. Ethyl methyl hydroxypyridine malate showed a statistically significant protective effect for myoblasts treated with the toxicant. In experiments where the expression of myostatin mRNA was studied, indoxyl sulfate did activate the expression for euther 48 hours or 72 hours. However, the expression of myostatin mRNA increased with the combined use of indoxyl sulfate and ethylmethylhydroxypyridine malate for 48 hours and persisted after 72 hours. Conclusion: ethylmethylhydroxypyridine malate, leveling the toxic effect of indoxyl sulfate, has a protective effect on myoblasts in vitro. The mechanism of joint activation of mRNA expression of myostatin indoxyl sulfate and ethylmethylhydroxypyridine malate remains unclear and requires further study.

About the Authors

V. A. Furalyov
Federal research center "Fundamentals of biotechnology" of the Russian Academy of sciences
Russian Federation


V. G. Kukes
Sechenov First Moscow State Medical University
Russian Federation


A. A. Gazdanova
Sechenov First Moscow State Medical University
Russian Federation


References

1. Cheng T-H., Ma M-C., Liao M-T. et al. Indoxyl Sulfate, a Tubular Toxin, Contributes to the Development of Chronic Kidney Disease. Toxins. 2020;12(11):684. https://doi.org/10.3390/toxins12110684

2. Смирнов А.В., Голубев Р.В., Коростелева Н.Ю. и др. Снижение физической работоспособности у больных, получающих заместительную почечную терапию: фокус на саркопению. Нефрология. 2017; 21(4):9-29. https://doi.org/10.24884/1561-6274-2017-21-4-9-29.

3. Koyun D., Nergizoglu G., Kir K.M. Evaluation of the relationship between muscle mass and serum myostatin levels in chronic hemodialysis patients. Saudi J Kidney Dis Transpl [serial online] 2018. [cited 2020 Dec 12];29:809-15. Available from: https://www.sjkdt.org/text.asp?2018/29/4/809/239648

4. Milanesi S., Garibaldi S., Saio M. et al. Indoxyl Sulfate Induces Renal Fibroblast Activation through a Targetable Heat Shock Protein 90-Dependent Pathway. Oxidative Medicine and Cellular Longevity. 2019; Article ID 2050183, 11 pages https://doi.org/10.1155/2019/2050183

5. Kim H.Y., Yoo T., Hwang Y. et al. Indoxyl sulfate (IS)-mediated immune dysfunction provokes endothelial damage in patients with end-stage renal disease (ESRD). Sci Rep. 2017; (7)-3057. https://doi.org/10.1038/s41598-017-03130-z

6. Liew, H., Roberts, M.A., Pope, A. et al. Endothelial glycocalyx damage in kidney disease correlates with uraemic toxins and endothelial dysfunction. BMC Nephrol. 2021;22(1):21. https://doi.org/10.1186/s12882-020-02219-4

7. Watanabe K., Tominari T., Hirata M. et al. Indoxyl sulfate, a uremic toxin in chronic kidney disease, suppresses both bone formation and bone resorption. FEBS Open Bio; 2017; (7) 1178-1185. doi:10.1002/2211-5463.12258

8. Adesso S., Magnus T., Cuzzocrea S. et al. Indoxyl Sulfate Affects Glial Function Increasing Oxidative Stress and Neuroinflammation in Chronic Kidney Disease: Interaction between Astrocytes and Microglia. Front. Pharmacol. 2017;8:370. doi: 10.3389/fphar.2017.00370

9. Rando T.A., Blau H.M. Primary mouse myoblast purification, characterization, and transplantation for cell-mediated gene therapy. J Cell Biol. 1994;125(6):1275-87. doi: 10.1083/jcb.125.6.1275

10. Denizot F., Lang R. Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J Immunol Methods. 1986; 22;89(2):271-7. doi: 10.1016/0022-1759(86)90368-6

11. Artaza J.N., Bhasin S., Magee T.R. et al. Myostatin inhibits myogenesis and promotes adipogenesis in C3H 10T(1/2) mesenchymal multipotent cells. Endocrinology. 2005; 146: 3547-3557. doi: 10.1210/en.2005-0362

12. Mc Pherron A.C., Lawler A.M., Lee S.J. Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature. 1997; 387 (6628): 83-90. DOI:10,1038 / 387083a0

13. Baczek J., Silkiewicz M., Wojszel Z. B. Myostatin as a Biomarker of Muscle Wasting and other Pathologies-State of the Art and Knowledge Gaps. Nutrients. 2020;11;12(8):2401. doi: 10.3390/nu12082401

14. Watanabe H., Enoki Y., Maruyama T. Sarcopenia in Chronic Kidney Disease: Factors, Mechanisms, and Therapeutic Interventions. Biol Pharm Bull. 2019;42(9):1437-1445. doi: 10.1248/bpb.b19-00513

15. Кузярова А.С., Гасанов М.З., Батюшин М.М. и др. Молекулярные основы мышечного истощения: роль миостатина и протеинкиназы β в прогрессировании белково-энергетической недостаточности у пациентов на гемодиализе. Архив внутренней медицины. 2019;9(2):126-132. https://doi.org/10.20514/2226-6704-2019-9-2-126-132

16. Leong S.C., Sirich T.L. Indoxyl Sulfate-Review of Toxicity and Therapeutic Strategies. Toxins. 2016; 8 (358): 1-13. doi:10.3390/toxins8120358

17. Enoki Y., Watanabe H., Arake R. et al. Indoxyl sulfate potentiates skeletal muscle atrophy by inducing the oxidative stress-mediated expression of myostatin and atrogin-1. Sci Reports. 2016; v.6: 32084. DOI:10,1038 / srep32084

18. Рагулина В.А. Эндотелиопротективные и кардиопротективные эффекты некоторых производных 3-гидроксипиридина при моделировании эндртоксин-индуцированной модели эндотелиальной дисфункции. Международный журнал прикладных и фундаментальных исследований. 2016;6(1):70-73. URL: https://www.applied-research.ru/ru/article/view?id=9552

19. Колесниченко П.Д., Щеблыкина О.В., Нестерова Н.И. и др., Аддитивное нейропротективное действие производных 3-гидроксипиридина и эритропоэтина человека на модели геморрагического инсульта у крыс. Фармация и фармакология. 2020;8(3):169-180. https://doi.org/10.19163/2307-9266-2020-8-3-169-180

20. Овсянникова О.А., Карпеева Д.В., Осипенко М.Д. Влияние препарата «Этоксидол» на количество эритробластических островков в условиях воздействия серосодержащего газа на разных этапах постнатального онтогенеза. Кубанский научный медицинский вестник. 2017;1 (162): 99-103.

21. Кукес В.Г., Прокофьев А.Б., Чеча О.А. и др. Влияние антиоксидантов на напряжение кислорода в крови у пациентов с хронической сердечной недостаточностью. Международный журнал прикладных и фундаментальных исследований. 2016. № 6-1. С. 56-58.


Review

For citations:


Furalyov V.A., Kukes V.G., Gazdanova A.A. A study of cytotoxic effect of the uremic toxin indoxyl sulfate on myoblasts in vitro, the expression of myostatin mRNA in myoblast cell culture, and the possibility of exogenous regulation. Nephrology and Dialysis. 2021;23(2):219-224. (In Russ.) https://doi.org/10.28996/2618-9801-2021-2-219-224

Views: 1038


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1680-4422 (Print)
ISSN 2618-9801 (Online)