Preview

Nephrology and Dialysis

Advanced search

Primary hyperoxaluria type 1 in children: the first successful experience of combined liver and kidney transplantation. A review and clinical cases

https://doi.org/10.28996/2618-9801-2021-2-225-235

Abstract

Primary hyperoxaluria type 1 (PH1) is a rare autosomal recessive disorder caused by defects in the AGXT gene that encodes the hepatic peroxisomal enzyme alanine glyoxylate aminotransferase (AGT), which leads to increased production of oxalates. PH1 is characterized by the development of nephrocalcinosis/urolithiasis with rapid progression to end-stage renal disease (ESRD) in childhood. Combined liver-kidney transplantation (CLKT) is one of the methods to save the life of a patient with PH1 and ESRD, and/or significantly improve his quality of life. CLKT is a rarely performed complex surgical intervention in children (no more than 30 operations in the world per year). It includes the simultaneous transplantation of a part or whole of the liver and kidney from one donor to one recipient. The paper presents clinical cases of 2 children from the same family with an identical homozygous mutation in the AGXT gene (NM_000030.2: c.1 -? _ 358+? Del in exons 1_2 encoding the NP_000021.1: EX1_EX2del protein). The phenotypic manifestations of the disease were different: in an older child - severe nephrocalcinosis/urolithiasis with access to hemodialysis at the age of 9.5 years, in a younger child - recurrent urolithiasis (from 5 years old) with stable kidney function. The first child, after being for 2 years on programmed hemodialysis, underwent CLKT from a deceased donor. In the early postoperative period, the child required hemodialysis due to a delayed renal graft function. Despite several surgical complications (on the 11th day - intraabdominal bleeding, on the 12th day - stenosis by 80-90% in hepatic artery anastomosis), which were successfully eliminated, the function of the transplanted kidney recovered on the 14th day, and on the 30th day the child was discharged from the hospital. For the last 3.5 years after the operation, the child has a satisfactory function of the transplanted organs. This clinical case confirms the possibility of a successful simultaneous liver and kidney transplantation in a child with end-stage renal disease. In the second child, since the diagnosis of PH1 at the age of 7.7 years and the beginning of conservative therapy, there is a regular discharge of calculi with episodes of renal colic and obstruction of the urinary tract. Despite this, stable kidney function has been maintained over the past 5 years.

About the Authors

S. V. Baiko
Belarusian State Medical University
Russian Federation


S. V. Korotkov
Minsk Scientific-Practical Center of Surgery, Transplantation and Hematology
Russian Federation


I. P. Shturich
Minsk Scientific-Practical Center of Surgery, Transplantation and Hematology
Russian Federation


E. V. Dorichenko
2nd City Children’s Hospital
Russian Federation


A. E. Shcherba
Minsk Scientific-Practical Center of Surgery, Transplantation and Hematology
Russian Federation


A. V. Kalachik
Minsk Scientific-Practical Center of Surgery, Transplantation and Hematology
Russian Federation


O. O. Rummo
Minsk Scientific-Practical Center of Surgery, Transplantation and Hematology
Russian Federation


References

1. Cochat P., Rumsby G. Primary hyperoxaluria. N. Engl. J. Med. 2013; 369: 649-658.

2. Hoppe B. An update on primary hyperoxaluria. Nat. Rev. Nephrol. 2012; 8(8): 467-475.

3. Cochat P., Hulton S.A., Acquaviva C. et al. Primary hyperoxaluria Type 1: indications for screening and guidance for diagnosis and treatment. Nephrol. Dial. Transplant. 2012; 27(5): 1729-1736.

4. Milliner D.S., Harris P.C., Cogal A.G. et al. Primary Hyperoxaluria Type 1. GeneReviews® [Электронный ресурс]. URL: https://www.ncbi.nlm.nih.gov/books/NBK1283/ (дата обращения: 09.05.2020).

5. Байко С.В. Первичная гипероксалурия: диагностика, лечение, исходы. Практическая медицина. 2020; 18(6): 49-57.

6. Tang X., Bergstralh E.J., Mehta R.A. et al. Nephrocalcinosis is a risk factor for kidney failure in primary hyperoxaluria. Kidney Int. 2015; 87(3): 623-631.

7. Milliner D.S., Wilson D.M., Smith L.H. Phenotypic expression of primary hyperoxaluria: comparative features of types I and II. Kidney Int. 2001; 59(1): 31-36.

8. Fang X., He L., Xu G. et al. Nine novel HOGA1 gene mutations identified in primary hyperoxaluria type 3 and distinct clinical and biochemical characteristics in Chinese children. Pediatr. Nephrol. 2019; 34:1785-1790.

9. Hopp K., Cogal A.G., Bergstralh E.J. et al. Phenotype-Genotype Correlations and Estimated Carrier Frequencies of Primary Hyperoxaluria. JASN. 2015; 26(10): 2559-2570.

10. Williams E.L., Acquaviva C., Amoroso A. et al. Primary hyperoxaluria type 1: update and additional mutation analysis of the AGXT gene. Hum. Mutat. 2009; 30(6): 910-917.

11. Stenson P.D., Mort M., Ball E.V. et al. The human gene mutation database: Towards a comprehensive repository of inherited mutation data for medical research, genetic diagnosis and next generation sequencing studies. Hum. Genet. 2017; 136(6): 665-677.

12. Папиж С.В., Приходина Л.С., Захарова Е.Ю. и др. Клинико-генетическая гетерогенность первичной гипероксалурии 1-го типа. Клиническая нефрология. 2011; 4: 63-69.

13. Байко С.В., Сукало А.В. Заместительная почечная терапия (ЗПТ) у детей в Республике Беларусь 2007-2016 гг. Анализ антропометрических данных пациентов на диализе и после трансплантации почки (Отчет по данным национального детского регистра ЗПТ). Нефрология и диализ. 2018; 20(1): 25-40. DOI: 10.28996/1680-4422-2018-1-25-40

14. Harambat J., Fargue S., Acquaviva C. et al. Genotype-phenotype correlation in primary hyperoxaluria type 1: the p.Gly170Arg AGXT mutation is associated with a better out-come. Kidney Int. 2010; 77(5): 443-449.

15. Hoppe B. Evidence of true genotype-phenotype correlation in primary hyperoxaluria type 1. Kidney Int. 2010; 77(5):383-385.

16. Cochat P., Liutkus A., Fargue S. et al. Primary hyperoxaluria type 1: still challenging! Pediatr. Nephrol. 2006; 21(8): 1075-1081.

17. Millan M.T., Berquist W.E., So S.K. et al. One hundred percent patient and kidney allograft survival with simultaneous liver and kidney transplantation in infants with primary hyperoxaluria: a single-center experience. Transplantation. 2003; 76(10): 1458-1463.

18. Cochat P., Koch Nogueira P.C., Mahmoud M.A. et al. Primary hyperoxaluria in infants: medical, ethical, and economic issues. J. Pediatr. 1999; 135(6): 746-750.

19. Hoppe B., Langman C.B. A United States survey on diagnosis, treatment, and outcome of primary hyperoxaluria. Pediatr. Nephrol. 2003; 18(10): 986-991.

20. van Woerden C.S., Groothoff J.W., Wanders R.J. et al. Primary hyperoxaluria type 1 in The Netherlands: prevalence and outcome. Nephrol. Dial. Transplant. 2003; 18(2): 273-279.

21. Harambat J., van Stralen K.J., Espinosa L. et al. Characteristics and outcomes of children with primary oxalosis requiring renal replacement therapy. Clin. J. Am. Soc. Nephrol. 2012; 7(3): 458-465.

22. Bhasin B., Ürekli H.M., Atta M.G. Primary and secondary hyperoxaluria: Understanding the enigma. World J. Nephrol. 2015; 4(2):235-244.

23. Hoppe B., Kemper M.J., Bökenkamp A. et al. Plasma calcium-oxalate saturation in children with renal insufficiency and in children with primary hyperoxaluria. Kidney Int. 1998; 54(3): 921-925.

24. Приходина Л.С. Первичная гипероксалурия, 2020. [Электронный ресурс]. URL: https://www.youtube.com/watch?v=xT-ViiRjvEE (дата обращения: 14.05.2020).

25. Hoppe B., Beck B.B., Milliner D.S. The primary hyperoxalurias. Kidney Int. 2009; 75(12): 1264-1271.

26. Williams E.L., Bagg E.A., Mueller M. et al. Performance evaluation of Sanger sequencing for the diagnosis of primary hyperoxaluria and comparison with targeted next generation sequencing. Mol. Genet. Genomic. Med. 2015; 3(1): 69-78.

27. Hoppe B., Latta K., von Schnakenburg C. et al. Primary hyperoxaluriathe German experience. Am. J. Nephrol. 2005; 25(3): 276-281.

28. Milliner D.S., Eickholt J.T., Bergstralh E.J. et al. Results of long-term treatment with orthophosphate and pyridoxine in patients with primary hyperoxaluria. N. Engl. J. Med. 1994; 331(23): 1553-1558.

29. Danpure C.J. Primary hyperoxaluria: from gene defects to designer drugs? Nephrol. Dial. Transplant. 2005; 20(8): 1525-1529.

30. Monico C.G., Rossetti S., Olson J.B. et al. Pyridoxine effect in type I primary hyperoxaluria is associated with the most common mutant allele. Kidney Int. 2005; 67(5): 1704-1709.

31. Hoyer-Kuhn H., Kohbrok S., Volland R. et al. Vitamin B6 in primary hyperoxaluria I: first prospective trial after 40 years of practice. Clin. J. Am. Soc. Nephrol. 2014; 9(3): 468-477.

32. Fargue S., Rumsby G., Danpure C.J. Multiple mechanisms of action of pyridoxine in primary hyperoxaluria type 1. Biochim Biophys Acta. 2013; 1832(10): 1776-1783.

33. Grateau G., Grünfeld J.P., Beurton D. et al. Post-surgical deterioration of renal function in primary hyperoxaluria. Nephrol. Dial. Transplant. 1987; 1(4): 261-264.

34. Al-Abadi E., Hulton S.A. Extracorporal shock wave lithotripsy in the management of stones in children with oxalosis-still the first choice? Pediatr. Nephrol. 2013; 28(7): 1085-1089.

35. Gambaro G., Favaro S., D'Angelo A. Risk for renal failure in nephrolithiasis. Am. J. Kidney Dis. 2001; 37(2): 233-243.

36. Bergstralh E.J., Monico C.G., Lieske J.C. et al. Transplantation outcomes in primary hyperoxaluria. Am. J. Transplant. 2010; 10(11): 2493-2501.

37. Jeyarajah D.R., McBride M., Klintmalm G.B. et al. Combined liver-kidney transplantation: what are the indications? Transplantation. 1997; 64(8):1091-1096.

38. Brinkert F., Ganschow R., Helmke K. et al. Transplantation procedures in children with primary hyperoxaluria type 1: outcome and longitudinal growth. Transplantation. 2009; 87(9): 1415-1421.

39. Compagnon P., Metzler P., Samuel D. et al. Long-term results of combined liver-kidney transplantation for primary hyperoxaluria type 1: the French experience. Liver Transpl. 2014; 20(12): 1475-1485.

40. Niaydet P. Primary hyperoxaluria. [Электронный ресурс]. URL: https://www.uptodate.com/contents/primary-hyperoxaluria (дата обращения: 16.03.2020).

41. Malla I., Lysy P.A., Godefroid N. et al. Two-step transplantation for primary hyperoxaluria: cadaveric liver followed by living donor related kidney transplantation. Pediatr. Transplant. 2009; 13(6): 782-784.

42. Cochat P., Fargue S., Harambat J. Primary hyperoxaluria type 1: strategy for organ transplantation. Curr. Opin. Organ. Transplant. 2010; 15(5): 590-593.

43. Sasaki K., Sakamoto S., Uchida H. et al. Two-step transplantation for primary hyperoxaluria: a winning strategy to prevent progression of systemic oxalosis in early onset renal insufficiency cases. Pediatr. Transplant. 2015; 19(1): E1-6.

44. Kemper M.J. Concurrent or sequential liver and kidney transplantation in children with primary hyperoxaluria type 1? Pediatr. Transplant. 2005; 9(6): 693-696.

45. Xiang J., Chen Z., Xu F. et al. Outcomes of liver-kidney transplantation in patients with primary hyperoxaluria: an analysis of the scientific registry of transplant recipients data-base. BMC Gastroenterol. 2020; 20(1): 208.

46. Gruessner R.W. Preemptive liver transplantation from a living related donor for primary hyperoxaluria type I. N. Engl. J. Med. 1998; 338(26): 1924.

47. Galanti M., Contreras A. Excellent renal function and reversal of nephrocalcinosis 8 years after isolated liver transplantation in an infant with primary hyperoxaluria type 1. Pediatr. Nephrol. 2010; 25(11): 2359-2362.

48. Cochat P., Schärer K. Should liver transplantation be performed before advanced renal insufficiency in primary hyperoxaluria type 1? Pediatr. Nephrol. 1993; 7(2): 212-218.

49. Kemper M.J. The role of preemptive liver transplantation in primary hyperoxaluria type 1. Urol. Res. 2005; 33(5): 376-379.

50. Scheinman J.I. Liver transplantation in oxalosis prior to advanced chronic kidney disease. Pediatr. Nephrol. 2010; 25(11): 2217-2222.

51. Cochat P., Groothoff J. Primary hyperoxaluria type 1: practical and ethical issues. Pediatr. Nephrol. 2013; 28(12): 2273-2281.

52. Squires J., Nguyen C. Complexity of pre-emptive liver transplantation in children with primary hyperoxaluria type 1. Pediatr. Transplant. 2016; 20(5): 604-606.

53. Knoll G., Cockfield S., Blydt-Hansen T. et al. Canadian Society of Transplantation consensus guidelines on eligibility for kidney transplantation. CMAJ. 2005; 173(10):1181-1184.

54. Lorenz E.C., Lieske J.C., Seide B.M. et al. Sustained pyridoxine response in primary hyperoxaluria type 1 recipients of kidney alone transplant. Am. J. Transplant. 2014; 14(6): 1433-1438.

55. Grenda R., Kaliciński P. Combined and sequential liver-kidney transplantation in children. Pediatr Nephrol. 2018; 33(12): 2227-2237.

56. Preka E., Samyn M., Mamode N. et al. Combined liver and kidney transplant for primary hyperoxaluria - another way to do it. Arch. Dis. Child. 2019; 104: A96-A97.

57. Lee E., Ramos-Gonzalez G., Rodig N. et al. Bilateral native nephrectomy to reduce oxalate stores in children at the time of combined liver-kidney transplantation for primary hyperoxaluria type 1. Pediatr. Nephrol. 2018; 33(5): 881-887.


Review

For citations:


Baiko S.V., Korotkov S.V., Shturich I.P., Dorichenko E.V., Shcherba A.E., Kalachik A.V., Rummo O.O. Primary hyperoxaluria type 1 in children: the first successful experience of combined liver and kidney transplantation. A review and clinical cases. Nephrology and Dialysis. 2021;23(2):225-235. (In Russ.) https://doi.org/10.28996/2618-9801-2021-2-225-235

Views: 301


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1680-4422 (Print)
ISSN 2618-9801 (Online)