Preview

Нефрология и диализ

Расширенный поиск

Роль почек в поддержании кальциевого и магниевого гомеостаза и при его нарушениях (Часть I)

https://doi.org/10.28996/2618-9801-2018-2-150-169

Аннотация

Обзор посвящен проблеме кальциевого и магниевого гомеостаза и его регуляции в организме человека. С учетом последних достижений молекулярной биологии рассматривается процесс пассивного и активного переноса Ca2+ и Mg2+ в различных органах, сложные процессы регуляции их кишечной абсорбции, костной минерализации, передвижения в различных отделах почки. Обсуждается роль клаудинов в обеспечении транспорта двухвалентных катионов в толстом восходящем отделе петли Генле. Рассматриваются особенности топологи клаудинов, обусловливающие функционирование плотных межклеточных контактов в канальцах почек и их значение для процесса парацеллюлярной реабсорбции Ca2+ и Mg2+. Описывается роль каналов семейства TRP в реабсорбции Ca2+ и Mg2+ в дистальных извитых канальцах. Подчеркивается особая роль каналов TRPV5 и TRPV6 в активном трансцеллюлярном переносе этих катионов, что имеет важное значение в регуляции кальциевого и магниевого гомеостаза. Приводятся современные взгляды на топологию и функциональное значение кальций-чувствительных рецепторов, локализованных в паращитовидных железах и нефроне, в регуляции внеклеточного уровня двухвалентных катионов. Отмечается появление агонистов и антагонистов кальций-чувствительных рецепторов и их потенциальная роль в коррекции нарушений кальциевого обмена. Обсуждаются вопросы регуляции почечного транспорта Ca2+ и Mg2+.

Об авторах

Я. Ф. Зверев
ГБОУ ВПО "Алтайский государственный медицинский университет" Минздрава РФ
Россия


В. М. Брюханов
ГБОУ ВПО "Алтайский государственный медицинский университет" Минздрава РФ
Россия


А. Я. Рыкунова
КГБУЗ "Краевая клиническая больница" Минздрава РФ
Россия


Список литературы

1. Robertson W.G., Marshall R.W. Calcium measurements in serum and plasma - Total and ionized. CRC Crit. Rev. Clin. Lab. Sci. 1979; 11: 271-304.

2. Брюханов В.М., Зверев Я.Ф. Гомеостаз кальция и магния в норме и при патологии. Барнаул, ИП Колмогоров И.А., 2014; 187 c.

3. Blaine J., Chonchol M., Levi M. Renal control of calcium, phosphate, and magnesium homeostasis. Clin. J. Am. Soc. Nephrol. 2015; 10: 1257-1272.

4. Dimke H., Hoenderop J.G., Bindels R.J. Hereditary tubular transport disorders: implica-tions for renal handling of Ca2+ and Mg2+. Clin. Sci. 2010; 118: 1-18.

5. Riccardi D, Brown E.M. Physiology and pathophysiology of the calcium-sensing receptor in the kidney. Am. J. Physiol. Renal Physiol. 2010; 298 (3): F485-F499.

6. Peacock M. Calcium metabolism in health and disease. CJASN. 2010; (5 Suppl): S23-S30.

7. Miller R.T. Control of renal calcium, phosphate, electrolyte, and water excretion by the calcium-sensing receptor. Best Practice & Res Clin. Endocrinol. & Metabolism. 2013; 27: 345:358.

8. Na T., Peng J-B. TRPV5: A Ca2+ channel for the fine-tuning of Ca2+ reabsorption. In: Mammalian Transient Receptor Potential (TRP) Cation Channels. Nilius B., Flockerzi V. eds. Handbook of Experimental Pharmacology 222. Springer-Verlag. Berlin Heidelberg. 2014; P. 322-357.

9. Bronner F., Pansu D. Nutritional aspects of calcium absorption. J. Nutr. 1999; 129: 9-12.

10. McCormick CC. Passive diffusion does not play a major role in the absorption of dietary calcium in normal adults. J. Nutr. 2001; 132: 3428-3430.

11. Bianco S.D., Peng J.R., Takanaga H. et al. Marked disturbance of calcium homeostasis in mice with targeted disruption of the Trpv6 calcium channel gene. J. Bone Miner. Res.2007; 22: 274-285.

12. Benn B.S., Ajibade D., Porta A. et al. Active intestinal calcium transport in the absence of transient receptor potential vanilloid type 6 and calbindin-D9k. Endocrinology. 2008; 149: 3196-3205.

13. Wasserman R.H., Fullmer C.S. Vitamin D and intestinal calcium transport: facts speculations and hypotheses. J. Nutr. 1995; 125: 1971S-1979S.

14. Hoenderop J.G., van Leeuwen J.P., van der Eerden B.C. et al. Renal Ca2+ wasting hyperabsorption and reduced bone thickness in mice lacking TRPV5. J. Clin. Invest. 2003; 112: 1906-1914.

15. Keller J., Schinke T. The role of the gastrointestinal tract in calcium homeostasis and bone remodeling. Osteoporos. Int. 2013; 24: 27137-2748.

16. Talmage R.V., Mobley H.T. Calcium homeostasis: Reassessement of the actions of para-thyroid hormone. Gen. Comp. Endocrinol. 2008; 156: 1-8.

17. van der Eerden B.C., Hoenderop J.G., de Vries T.J. et al. The epithelial Ca2+ channel TRPV5 is essential for proper osteoclastic bone resorption. Proc. Natl. Acad. Sci. U S A 2005; 102 (48): 17507-17512.

18. Masuyama R., Vriens J., Voets T. et al. TRPV4-mediated calcium influx regulates terminal differentiation of osteoclasts. Cell. Metab. 2008; 8 (3): 257-265.

19. Dimke H., Hoenderop J.G., Bindels R.J.M. Molecular basis of epithelial Ca2+ and Mg2+ transport: insights from the TRP channel family. J. Physiol. 2011; 589: 1535-1542.

20. Suki W.N. Calcium transport in the nephron. Am. J. Physiol. 1979; 237: F1-F6.

21. Seldin D.W. Renal handling of calcium. Nephron. 1999; 81 (Suppl 1): 2-7.

22. Ng R.C., Rouse D., Suki W.N. Calcium transport in the rabbit superficial proximal convoluted tubule. J. Clin. Invest. 1984; 74: 834-842.

23. Le Grimellec C. Micropuncture study along the proximal convoluted tubule. Electrolyte reabsorption in first convolutions. Pflugers Arch. 1975; 354: 133-150.

24. Suki W.N., Schwettmann R.S., Rector F.C., Seldin D.W. Effect of chronic mineralocorticoid administration on calcium excretion in the rat. Am. J. Physiol. 1968; 215: 71-74.

25. Hou J., Rajagopal M., Yu A.S.L. Claudins and the kidney volume 75: annual review of physiology. Annu. Rev. Physiol. 2013; 75: 479-501.

26. Muto S., Hata M., Taniguchi J. et al. Claudin-2-deficient mice are defective in the leaky and cation-selective paracellular permeability properties of renal proximal tubules. Proc. Natl. Acad. Sci. U S A. 2010; 107: 8011-8016.

27. Felsenfeld A., Rodriguez M., Levine B. New insights in regulation of calcium homeostasis. Curr. Opin. Nephrol. Hypertens. 2013; 22 (4): 371-376.

28. Hou J. New light on the role of claudins in the kidney. Organogenesis. 2012; 8 (1): 1-9.

29. Bleich V., Shan Q., Himmerkus N. Calcium regulation of tight junction permeability. Ann. N. Y. Acad. Sci. 2012; 1258: 93-99.

30. Yu A.S.L. Claudins and the kidney. J. Am. Soc. Nephrol. 2015; 26: 11-19.

31. Machen T.E., Erlij D., Wooding F.B. Permeable junctional complexes. The movement of lanthanum across rabbit gallbladder and intestine. J. Cell. Biol. 1972; 54: 302-312.

32. Марков А.Г. Белки плотных контактов клаудины: молекулярное звено парацеллюлярного транспорта. Рос. физиол. журн. им. И.М.Сеченова. 2013; 99 (2): 175-195.

33. Furuse M., Fujita K., Hiiragi T. et al. Claudin-1 and -2: novel integral membrane proteins localizing at tight junctions with no sequence similarity to occluding. J. Cell. Biol. 1998; 141: 1539-1550.

34. Mineta K., Yamamoto Y., Yamazaki Y. et al. Predicted expansion of the claudin multigene family. FEBS Lett. 2011; 585: 606-612.

35. Tsukita S., Furuse M., Itoh M. Multifunctional strands in tight junctions. Nat. Rev. Mol. Cell. Biol. 2001; 2: 285-293.

36. Lal-Nag M., Morin P.J. The claudins. Genome Biol. 2009; 10 (8): 235 (Published online) URL: 10.1186/gb-2009-10-8-235.

37. Günzel D., Yu A.S.L. Function and regulation of claudins in the thick ascending limb of Henle. Pflugers Arch. 2009; 458 (1): 77-88.

38. Angelow S., Ahlstrom R., Yu A.S.L. Biology of claudins. Am. J. Physiol. Renal Physiol. 2008; 295: 867-876.

39. Terry S., Nie M., Matter K., Balda M.S. Rho signaling and tight junction functions. Physiology. 2010; 25: 16-26.

40. McCarthy K.M., Francis S.A., McCormack J.M. et al. Inducible expression of claudin-1-myc but not occluding-VSV-G results in aberrant tight junction strand formation in MDCK cells. J. Cell. Sci. 2000; 113 (Pt 19): 3387-3398.

41. Itallie C.M., Fanning A.S., Anderson J.M. eversal of charge selectivity in cation or anion-selective epithelial lines by expression of different claudins. Am. J. Physiol. Renal Physiol. 2003; 285: F1078-F1084.

42. Yu A.S., Enck A.H., Lencer W.I., Schneeberger E.E. Claudin-8 expression in Madin-Darby canine kidney cells augments the paracellular barrier to cation permeation. J. Biol. Chem. 2003; 278: 17350-17359.

43. Wen H., Watry D.D., Marcondes M.C., Fox H.S. Selective decrease in paracellular conductance of tight junctions: role of the first extracellular domain of claudin-5. Mol. Cell. Biol. 2004; 24: 8408-8417.

44. Angelow S., El-Husseini R., Kanzawa S.A., Yu A.S. Renal localization and function of the tight junction protein, claudin-19. Am. J. Physiol. Renal Physiol. 2007; 293: F166-F177.

45. Nakano Y., Kim S.H., Kim H.M. et al. A claudin-9-based ion permeability barrier is essential for hearing. PLOS Genet. 2009; 5: e1000610 (Published online) URL: 10.1371/journal.pgen.1000610.

46. Simon D.B., Lu Y., Choate K.A. et al. Paracellin-1, a renal tight junction protein, required for paracellular Mg2+ resorption. Science. 1999; 285: 103-106.

47. Kiuchi-Saishin Y., Gotoh S., Furuse M. et al. Differential expression patterns of claudins, tight junction membrane proteins, in mouse nephron segments. J. Am. Soc. Nephrol. 2002; 13: 875-886.

48. Konrad M., Schaller A., Seelow D. et al. Mutations in the tight-junction gene claudin 19 (CLDN19) are associated with renal magnesium wasting, renal failure, and severe ocular in-volvement. Am. J. Hum. Genet. 2006; 79: 949-957.

49. Ohta H., Adachi H., Takiguchi M. et al. Restricted localization of claudin-16 at the tight junction in the thick ascending limb of Henle’s loop together with claudins 3, 4 and 10 in bovine nephrons. J. Vet. Med. Sci. 2006; 68: 453-463.

50. Van Itallie C.M., Rogan S., Yu A.S. et al. Two splice variants of claudin-10 in the kidney create paracellular pores with different ion selectivities. Am. J. Physiol. Renal Physiol. 2006; 291: F1288-F1299.

51. Angelow S., Yu A.S.L. Claudins and paracellular transport: an update. Curr. Opin. Nephrol.Hypertens. 2007; 16: 459-464.

52. Muto S, Hata M., Taniguchi J. et al. Claudin-2-deficient mice are defective in the leaky and cation-selective paracellular permeability properties of renal proximal tubules. Proc. Natl. Acad. Sci. U S A. 2010; 107: 8011-8016.

53. Colegio O.R., Itallie C., Rahner C., Anderson J.M. Claudin extracellular domains determine paracellular charge selectivity and resistance but not tight junction fibril architecture. Am. J. Physiol. Cell. Physiol. 2003; 284: C1346-C1354.

54. Colegio O.R., Itallie C.M., McCrea H.J. et al. Claudins create charge-selective channels in the paracellular pathway between epithelial cells. Am. J. Physiol. Cell. Physiol. 2002; 283: C142-C147.

55. Hou J., Renigunta A., Gomes A.S. et al.Claudin-16 and claudin-19 interaction is required for their assembly into tight junction and for renal reabsorption of magnesium. Proc. Natl. Acad. Sci. U S A. 2009; 106 (36): 15350-15355.

56. Gong Y., Renigunta V., Himmerkus N. et al. Claudin-14 regulates renal Ca++ transport in response to CaSR signaling via a novel microRNA pathway. EMBO J. 2012; 31 (8): 1999-2012.

57. Ben-Yosef T., Belyantseva I.A., Saunders T.L. et al. Claudin 14 knockout mice, a model for autosomal recessive deafness DFNB29, are deaf due to cochlear hair cell degeneration. Hum. Mol. Genet. 2003; 12: 2049-2061.

58. Elkouby-Naor L., Abassi Z., Lagziel A. et al. Double gene deletion reveals lack of cooperation between claudin11 and claudin 14 tight junction proteins. Cell. Tissue Res. 2008; 333: 427-438.

59. Enck A.H., Berger U.V., Yu A.S. Claudin-2 is selectively expressed in proximal nephron in mouse kidney. Am. J. Physiol. Renal Physiol. 2001; 281: F966-F974.

60. Yu A.S., Cheng M.H., Angelow S. et al. Molecular basis for cation selectivity in claudin-2-based paracellular pores: identification of an electrostatic interaction site. J. Gen. Physiol. 2009; 133: 111-127.

61. Reilly R.F., Ellison D.H. Mammalian distal tubule: physiology, pathophysiology, and molecular anatomy. Physiol. Rev. 2000; 80: 277-313.

62. Agus Z.S., Chiu P.J., Goldberg M. Regulation of urinary calcium excretion in the rat. Am. J. Physiol. 1977; 232: F545-F549.

63. Hoenderop J.G.J., Bindels R.J.M. Epithelial Ca2+ and Mg2+ channels in health and disease. JASN. 2005; 16 (1): 15-26.

64. Романенко С.В., Костюк П.Г., Костюк Е.П. Трансмембранна кальцiєва сигналiзацiя - роль у ноцицепцiї. Журн. Акад. Мед. Наук України. 2008; 14 (1): 3-25.

65. Васильева И.О., Негуляев Ю.А., Марахова И.И., Семенова СБ. TRPV5 и TRPV6 кальциевые каналы в Т клетках человека. Цитология. 2008; 50 (11): 953-957.

66. Voets T., Prenen J., Vriens J. et al. Molecular determinants of permeation through the cation channel TRPV4. J. Biol. Chem. 2002; 277 (37): 33704-33710.

67. Hoenderop J.G., Bindels R.J. Calciotropic and magnesiotropic TRP channels. Physiology (Bethesda). 2008; 23: 32-40.

68. Hoenderop J.G., van der Kemp A.W., Hartoq A. et al. Molecular identification of the apical Ca2+ channel in 1,25-dihydroxyvitamin D3-responsive epithelia. J. Biol.Chem. 1999; 274 (13): 8375-8378.

69. Peng J.B., Chen X.Z., Berger U.V. et al. Molecular cloning and characterization of channel-like transporter mediating intestinal calcium absorption. J. Biol. Chem. 1999; 274 (32): 22739-22746.

70. Muller D., Hoenderop J.G., Merkx G.F. et al. Gene structure and chromosomal mapping of human epithelial calcium channel. Biochem. Biophys. Res. Commun. 2000; 275: 47-52.

71. Peng J.B., Brown E.M., Hediger M.A. Structural conservation of the genes encoding CaT1, CaT2 and related cation channels. Genomics. 2001; 76: 99-109.

72. Weber K., Erben R.G., Rump A., Adamski J. Gene structure and regulation of the murine epithelial calcium channels ECaC1 and 2. J. Physiol (Lond). 2001; 537: 747-761.

73. Nijenhuis T., Hoenderop J.G.J., van der Kemp A.W.C.M., Bindels R.J.M. Localization and regulation of the epithelial Ca2+ channel TRPV6 in the kidney. J. Am. Soc.Nephrol. 2003; 14 (11): 2731-2740.

74. Voets T., Janssens A., Droogmans G., Nilius B. Outer pore architecture of a Ca2+-selective TRP channel. J. Biol. Chem. 2004; 279: 15223-15230.

75. Hoenderop J.G., Nilius B., Bindels R.J. Molecular mechanisms of active Ca2+ reabsorption in the distal nephron. Annu. Rev. Physiol. 2002; 64: 529-549.

76. Lambers T.T., Mahieu F., Oancea E. et al. Calbindin D28k dynamically controls TRPV5-mediated Ca2+ transport. EMBO J. 2006; 25: 2978-2988.

77. Lee C-T., Ng H-Y., Lee Y-T. et al. The role of calbindin-D28k on renal calcium and magnesium handling during treatment with loop and thiazide diuretics. Am. J. Physiol. Renal Physiol. 2016; 310: F230-F236.

78. Bindels R.J., Hartog A., Timmermans J., Van Os C.H. Active Ca2+ transport in primary cultures of rabbit kidney CCD: Stimulation by 1,25-dihydroxyvitamin D3 and PTH. Am. J. Physiol. 1991; 261 (5 Pt 2): F799-F807.

79. Gesek F.A., Friedman P.A. Calcitonin stimulates calcium transport in distal convoluted tubule cells. Am. J. Physiol. 1993; 264 (4 Pt 2): F744-F751.

80. Friedman P.A., Coutermarsh B.A., Kennedy S.M., Gesek FA. Parathyroid hormone stimulation of calcium transport is mediated by dual signaling mechanisms involving protein ki-nase A and protein kinase C. Endocrinology. 1996; 137 (1): 13-20.

81. Peng J.B., Zhuang L., Berger U.V. et al. CaT1 expression correlates with tumor grade in prostate cancer. Biochem. Biophys. Res. Commun. 2001; 282 (3): 729-734.

82. Van Cromphaut S.J., Dewerchin M., Hoenderop J.G. et al. Duodenal calcium absorption in vitamin D receptor-knockout mice: Functional and molecular aspects. Proc. Natl. Acad. Sci. U S A. 2001; 98 (23): 13324-13329.

83. Van Cromphaut S.J., Rummens K., Stockmans I. et al. Intestinal calcium transporter genes are upregulated by estrogens and the reproductive cycle trough vitamin D receptor-independent mechanisms. J. Bone Miner. Res. 2003; 18 (10): 1725-1736.

84. Hoenderop J.G., Dardenne O., van Abel M. et al. Modulation of renal Ca2+ transport protein genes by dietary Ca2+ and 25-hydroxyvitamin D3-1α-hydroxylase knockout mice. FASEB J. 2002; 16 (11): 1398-1406.

85. Hoenderop J.G., Chon H., Gkika D. et al. Regulation of gene expression by dietary Ca2+ in kidneys of 25-hydroxyvitamin D3-1α-hydroxylase knockout mice. Kidney Int. 2004; 65 (2): 531-539.

86. Van Abel M., Hoenderop J.G., Dardenne O. et al. 1,25-dihydroxyvitamin D3-independent stimulatory effect of estrogen on the expression of ECaC1 in the kidney. J. Am. Soc. Nephrol. 2002; 13 (8): 2102-2109.

87. Boros S., Bindels R.J., Hoenderop J.G. Active Ca2+ reabsorption in the connecting tubule. Pflugers Arch. 2009; 458 (1): 99-109.

88. Hsu Y.J., Dimke H., Schoeher J.P. et al. Testosterone increases urinary calcium excretion and inhibits expression of renal calcium transport proteins. Kidney Int. 2010; 77 (7): 601-608.

89. Brown E.M., Gamba G., Riccardi D. et al. Cloning and characterization of an extracellular Ca2+-sensing receptor from bovine parathyroid. Nature. 1993; 366: 575-580.

90. Tfelt-Hansen J., Brown E.M. The calcium-sensing receptor in normal physiology and pathophysiology: a review. Crit. Rev. Clin. Lab. Sci. 2005; 42: 35-70.

91. Nemeth E.F., Steffey M.E., Hammerland L.G. et al. Calcimimetics with potent and selective activity on the parathyroid calcium receptor. Proc. Natl. Acad. Sci. U S A. 1998; 95: 4040-4045.

92. Fudge N.J., Kovacs C.S. Physiological studies in heterozygous calcium sensing receptor (CaSR) gene-ablated mice confirm that the CaSR regulates calcitonin release in vivo. BMC Physiol. 2004; 4: 5.

93. Brauner-Osborne H., Wellendorph P., Jensen A.A. Structure, pharmacology and therapeutic prospects of family C G-protein coupled receptors. Curr. Drug Targets. 2007; 8: 169-184.

94. Aida K., Koishi S., Tawata M., Onaya T. Molecular cloning of a putative Ca(2+)-sensing receptor cDNA from human kidney. Biochem. Biophys. Res. Commun. 1995; 214 (2): 524-529.

95. Janicic N., Soliman E., Pausova Z. et al. Mapping of the calcium-sensing receptor gene (CASR) to human chromosome 3q13.3-21 by fluorescence in situ hybridization, and localization to rat chromosome 11 and mouse chromosome 16. Mamm. Genome. 1995; 6 (11): 798-801.

96. Garrett J.E., Capuano I.V., Hammerland L.G. et al. Molecular cloning and functional expression of human parathyroid calcium receptor cDNAs. J. Biol. Chem. 1995; 270 (21): 12919-12925.

97. Silve C., Petrel C., Leroy C. et al. Delineating a Ca2+ binding pocket within the venus flytrap module of the human calcium-sensing receptor J. Biol. Chem. 2005; 280: 37917-37923.

98. Huang C., Miller R.T. The calcium-sensing receptor and its interacting proteins. J. Cell. Mol. Med. 2007; 11: 923-934.

99. Conigrave A.D., Mun H.C., Brennan S.C. Physiological significance of l-amino acid sensing by extracellular Ca2+-sensing receptors. Biochem. Soc. Trans. 2007; 35: 1195-1198.

100. Hu J., Spiegel A.M. Naturally occurring mutations in the extracellular Ca2+-sensing receptor: implications for its structure and function. Trends Endocrinol. Metab. 2003; 14: 282-288.

101. Gowen M., Stroup G.B., Dodds R.A. et al. Antagonizing the parathyroid calcium receptor stimulates parathyroid hormone secretion and bone formation in osteopenic rats. J. Clin. Invest. 2000; 105: 1595-1604.

102. Brown E.M. Clinical lessons from the calcium-sensing receptor. Nat. Clin. Pract. Endocrinol. Metab. 2007; 3: 122-133.

103. Mithal A., Kifor O., Kifor I. et al. The reduced responsiveness of cultured bovine parathyroid cells to extracellular Ca2+ is associated with marked reduction in the expression of extracellular Ca(2+)-sensing receptor messenger ribonucleic acid and protein. Endocrinology. 1995; 136 (7): 3087-3092.

104. Garfia B., Canadillas S., Canalejo A. et al. Regulation of parathyroid vitamin D receptor expression by extracellular calcium. J. Am. Soc. Nephrol. 2002; 13: 2945-2952.

105. Riccardi D., Hall A.E., Chattopadhyay N. et al. Localization of extracellular Ca2+/polyvalent cation-sensing protein in rat kidney. Am. J. Physiol. Renal Physiol. 1998; 274: F611-F622.

106. Riccardi D., Lee W.C., Lee K. et al. Localization of the extracellular Ca2+-sensing receptor and PTH/PTHrP receptor in rat kidney. Am. J. Physiol. Renal Fluid Electrolyte Physiol. 1996; 271: F951-F956.

107. Topala C.N., Schoeber J.P., Searchfield L.E. Activation of the Ca2+-sensing receptor stimulates the activity of the epithelial Ca2+ channel TRPV5. Cell. Calcium 2009; 45: 331-339.

108. Renkema K.Y., Velic A., Dijkman H.B. et al. The calcium-sensing receptor promotes urinary acidification to prevent nephrolithiasis. J. Am. Soc. Nephrol. 2009; 20: 1705-1713.

109. Beierwaltes W.H. The role of calcium in the regulation of renin secretion. Am. J. Physiol. Renal Physiol. 2010; 298: F1-F11.

110. Egbuna O., Quinn S., Kantham L. et al. The full-length calcium-sensing receptor dampens the calcemic response to 1 alpha, 25(OH)2 vitamin D3 in vivo independent of parathyroid hormone. Am. J. Physiol. Renal Physiol. 2009; 297: F720-F728.

111. Riccardi D., Traebert M., Ward D.T. et al. Dietary phosphate and parathyroid hormone alter the expression of calcium-sensing receptor (CaR) and the Na+-dependent Pi transporter (NaPi-2) in the rat proximal tubule. Pflugers Arch. 2000; 441: 379-387.

112. Canaff L., Hendy G.N. Human calcium-sensing receptor gene. Vitamin D response elements in promoters P1 and P2 confer transcriptional responsiveness to 1,25-dihydrovitamin D. J. Biol. Chem. 2002; 277: 30337-30350.

113. Wang W.H., Lu M., Hebert S.C. Cytochrome P-450 metabolites mediate extracellular Ca2+-induced inhibition of apical K+ channels in the TAL. Am. J. Physiol. Cell. Physiol. 1996; 271: C103-C111.

114. Sands J.M., Naruse M., Baum M. et al. Apical extracellular calcium/polyvalent cation-sensing receptor regulates vasopressinelicited water permeability in rat kidney inner medullary collecting duct. J. Clin. Invest. 1997; 99: 1399-1405.

115. Valenti G., Procino G., Tamma G. et al. Minireview: aquaporin 2 trafficking. Endocrinology. 2005; 146: 5063-5070.

116. Pearce S.H., Williamson C., Kifor O. et al. A familial syndrome of hypocalcemia with hypercalciuria due to mutations in the calcium-sensing receptor. N. Engl. J. Med. 1996; 335: 1115-1122.

117. Alfadda T.I., Saleh A.M.A., Houiller P., Geibel J.P. Calcium-sensing receptor 20 years later. Am. J. Physiol. Cell. Physiol. 2014; 307: C221-C231.

118. Kantham L., Quinn S.J., Egbuna O.I. et al. The calcium-sensing receptor (CaSR) defends against hypercalcemia independently of its regulation of parathyroid hormone secretion. Am. J. Physiol. Endocrinol. Metab. 2009; 94: 4749-4756.

119. Geibel J.P., Hebert S.C. The function and roles of the extracellular Ca2+-sensing receptor along the gastrointestinal tract. Annu. Rev. Physiol. 2009; 71: 205-217.

120. Quarles L.D., Hartle J.E 2., Siddhanti S.R. et al. A distinct cation-sensing mechanism in MC3T3-E1 osteoblasts functionally related to the calcium receptor. J. Bone Miner. Res. 1997; 12 (3): 393-402.

121. Kameda T., Mano H., Yamada Y. et al. Calcium-sensing receptor in mature osteoclasts, which are bone-resorbing cells. Biochem. Biophys. Res. Commun. 1998; 245 (2): 419-422.

122. Yamaguchi T., Kifor O., Chattopadhyay N., Brown E.M. Expression of extracellular calcium (Ca2+o)-sensing receptor in the clonal osteoblast-like cell lines, UMR-106 and SAOS-2. Biochem. Biophys. Res. Commun. 1998; 243 (3): 753-757.

123. Dvorak M.M., Siddiqua A., Ward D.T. et al. Physiological changes in extracellular calcium concentration directly control osteoblast function in the absence of calciotropic hormones. Proc. Natl. Acad. Sci. U S A. 2004; 101: 5140-5145.

124. Chang W., Tu C., Chen T.H. et al. The extracellular calcium-sensing receptor (CaSR) is a critical modulator of skeletal development. Sci. Signal. 2008; 1 (35): 1-13.

125. Kovacs C.S., Ho-Pao C.L., Hunzelman J.L. et al. Regulation of murine fetal-placental calcium metabolism by the calcium-sensing receptor. J. Clin. Invest. 1998; 101: 2812-2820.

126. VanHouten J., Dann P., McGeoch G. et al. The calcium-sensing receptor regulates mammary gland parathyroid hormone-related protein production and calcium transport. J. Clin. Invest. 2004; 113: 598-608.

127. McNeil S.E., Hobson S.A., Nipper V., Rodland K.D. Functional calcium-sensing receptors in rat fibroblasts are required for activation of SRC kinase and mitogen-activated protein kinase in response to extracellular calcium. J. Biol. Chem. 1998; 273 (2): 1114-1120.

128. Bikle D.D., Ratnam A., Mauro T. et al. Changes in calcium responsiveness and handling during keratinocyte differentiation. Potential role of the calcium receptor. J. Clin. Invest. 1996; 97 (4): 1085-1093.

129. Chakrabarty S., Wang H., Canaff L. et al. Calcium sensing receptor in human colon carcinoma: interaction with Ca(2+) and 1,25-dihydroxyvitamin D(3). Cancer Res. 2005; 65 (2): 493-498.

130. Chattopadhyay N., Ye C., Singh D.P. et al. Expression of extracellular calcium-sensing receptor by human lens epithelial cells. Biochem. Biophys. Res. Commun. 1997; 233 (3): 801-805.

131. Lin K.I., Chattopadhyay N., Bai M. et al. Elevated extracellular calcium can prevent apoptosis via the calcium-sensing receptor. Biochem. Biophys. Res. Commun. 1998; 249 (2): 325-331.

132. Van Den Hurk M.J., Jenks B.G., Roubos E.W., Scheenen W.J. The extracellular calcium-sensing receptor increases the number of calcium steps and action currents in pituitary melanotrope cells. Neurosci. Lett. 2005; 377 (2): 125-129.

133. Kato M., Dai R., Imamure M. et al. Calcium-evoked insulin release from insulinoma cells is mediated via calcium-sensing receptor. Surgery. 1997; 122 (6): 1203-1211.

134. Ray J.M., Squires P.E., Curtis S.B. et al. Expression of calcium sensing receptor on human antral gastrin cells in culture. J. Clin. Invest. 1997; 99 (10): 2328-2333.

135. Canaff L., Petit J.L., Kisiel M. et al. Extracellular calcium-sensing receptor is expressed in rat hepatocytes coupling to intracellular calcium mobilization and stimulation of bile flow. J. Biol. Chem. 2001; 276 (6): 4070-4079.

136. D’Souza-Li L. The calcium-sensing receptor and related diseases. Arq. Bras. Endocrinol. Metab. 2006; 50 (4): 628-639.

137. Jahnen-Dechent W., Ketteler M. Magnesium basics. Clin. Kidney J. 2012; 5 (Suppl 1): i3-i14.

138. de Baaij J.H.F., Hoenderop J.G.J., Bindels R.J. Magnesium in man: implications for health and disease. Physiol. Rev. 2015; 95. 1-46.

139. Спасов А.А. Магний в медицинской практике. Волгоград, Отрок, 2000; 272 c.

140. Fine K.D., Santa Ana C.A., Porter J.L., Fordtran J.S. Intestinal absorption of magnesium from food and supplements. J. Clin. Invest. 1991; 88: 396-402.

141. Kerstan D., Quamme G. Physiology and pathophysiology of intestinal absorption of magnesium. In: Massry SG, Morii H, Nishizawa Y, eds. Calcium in internal medicine. Springer-Verlag London, 2002; 171-183.

142. Konrad M., Weber S. Recent advances in molecular genetics of hereditary magnesium-losing disorders. J. Am. Soc. Nephrol. 2003; 14 (1): 249-260.

143. Schlingmann K.P., Weber S., Peters M. et al. Hypomagnesemia with secondary hypocalcemia is caused by mutations in TRPM6, a new member of the TRPM gene family. Nat. Genet. 2002; 31 (2): 166-170.

144. Walder R.Y., Landau D., Meyer P. et al. Mutation of TRPM6 causes familial hypomagnesemia with secondary hypocalcemia. Nat. Genet. 2002; 31 (2): 171-174.

145. Ryazanova L.V., Rondon L.J., Zierler S. et al. TRPM7 is essential for Mg(2+) homeostasis in mammals. Nat. Commun. 2010; 1: 109.

146. Boskey A.L., Rimnac C.M., Bansal M. et al. Effect of short-term hypomagnesemia on the chemical and mechanical properties of rat bone. J. Orthop. Res. 1992; 10 (6): 774-783.

147. Kenney M.A., McCoy H., Williams L. Effects of magnesium deficiency on strength, mass, and composition of rat femur. Calcif. Tissue Int. 1994; 54 (1): 44-49.

148. Liu C., Yeh J., Alola J. Magnesium directly stimulates osteoblast proliferation. J. Bone Miner. Res. 1988; 3: S104.

149. Rude R.K., Gruber H.E., Norton H.J. et al. Bone loss induced by dietary magnesium reduction to 10% of the nutrient requirement in rats is associated with increased release of sub-stance P and tumor necrosis factor-alpha. J. Nutr. 2004; 134: 79-85.

150. Quamme G.A. Laboratory evaluation of magnesium status. Renal function and free intracellular magnesium concentration. Clin. Lab. Med. 1993; 13: 209-223.

151. Kelepouris E., Agus Z.S. Hypomagnesemia: renal magnesium handling. Semin. Nephrol. 1998; 18: 58-73.

152. Quamme G.A., de Rouffignac C. Epithelial magnesium transport and regulation by the kidney. Front. Biosci. 2000; 5: D694-D711.

153. Leliévre-Pegorier M., Merlet-Bénichou C., Roinel N., de Rouffignac C. Developmental pattern of water and electrolyte transport in the superficial nephron. Am. J. Physiol. 1983; 244: F15-F21.

154. Wong N.L., Whiting S.J., Mizgala C.L., Quamme G.A. Electrolyte handling by the superficial nephron of the rabbit. Am. J. Physiol. 1986; 250: F590-F595.

155. Satoh J., Romero M.F. Ma2+ transport in the kidney. BioMetals. 2002; 15: 285-295.

156. Suki W.N., Rouse D., Ng R.C., Kokko J.P. Calcium transport in the thick ascending limb of Henle. Heterogeneity of function in the medullary and cortical segments. J. Clin. Invest. 1980; 66: 1004-1009.

157. Quamme G.A. Effect of furosemide on calcium and magnesium transport in the rat nephron. Am. J. Physiol. 1981; 241: F340-F347.

158. Quamme G.A. Renal magnesium handling: New insights in understanding old problems. Kidney Int. 1997; 52: 1180-1195.

159. Konrad M., Schaller A., Seelow D. et al. Mutations in the tight-junction gene claudin 19 (CLDN19) are associated with renal magnesium wasting, renal failure, and severe ocular involvement. Am. J. Hum. Genet. 2006; 79: 949-957.

160. Efrati E., Arsentiev-Rosenfeld J., Zelikovic I. The human paracellin-1gene (hPCLN-1): renal epithelial cell-specific expression and regulation. Am. J. Physiol. Renal. Physiol. 2005; 288 (2): F272-F283.

161. Breiderhoff T., Himmerkus N., Stuiver M. et al. Deletion of claudin-10 (Cldn 10) in the thick ascending limb impairs paracellular sodium permeability and leads to hyper-magnesemia and nephrocalcinosis. Proc. Natl. Acad. Sci. U S A. 2012; 109: 14241-14246.

162. Wright F.S. Increasing magnitude of electrical potential along the renal distal tubule. Am. J. Physiol. 1971; 220: 624-638.

163. Malnic G., Giebisch G. Some electrical properties of distal tubular epithelium in the rat. Am. J. Physiol. 1972; 223: 797-808.

164. Quamme G.A., Dirks J.H. Intraluminal and contraluminal magnesium on magnesium and calcium transfer in the rat nephron. Am. J. Physiol. 1980; 238: F187-F198.

165. Dai L.J., Ritchie G., Kerstan D. et al. Magnesium transport in the renal distal convoluted tubule. Physiol. Rev. 2001; 81 (1): 51-84.

166. Grubbs R.D. Inracellular magnesium and magnesium buffering. BioMetals. 2002; 15: 251-259.

167. Voets T., Nilius B., Hoefs S. et al. TRPM6 forms the Mg2+ influx channel involved in intestinal and renal Mg2+ absorption. J. Biol. Chem. 2004; 279: 19-25.

168. Schlingmann K.P., Weber S., Peters M. et al. Hypomagnesemia with secondary hypocalcemia is caused by mutations in TRPM6, a new member of the TRPM gene family. Nat. Genet. 2002; 31 (2): 166-170.

169. Walder R.Y., Landau D., Meyer P. et al. Mutation of TRPM6 causes familial hypomagnesemia with secondary hypocalcemia. Nat. Genet. 2002; 31 (2): 171-174.

170. Runnels L.W., Yue L., Clapham D.E. TRP-PLIK, a bifunctional protein with kinase and ion channel activities. Science 2001; 291 (5506): 1043-1047.

171. Chubanov V., Gudermann T., Schlingmann K.P. Essential role for TRPM6 in epithelial magnesium transport and body magnesium homeostasis. Pflugers Arch. 2005; 451 (1): 228-234.

172. Schlingmann K.P., Waldegger S., Konrad M. et al. TRPM6 and TRPM7 - Gatekeepers of human magnesium metabolism. Biochim. Biophys. Acta. 2007; 1772 (8): 813-821.

173. Groenestege W.M., Thébault S., van der Wijst J. et al. Impaired basolateral sorting of pro-EGF causes isolated recessive renal hypomagnesemia. J. Clin. Invest. 2007; 117 (8): 2260-2267.

174. Glaudemans B., Knoers N.V., Hoenderop J.G., Bindels R.J. New molecular players facilitating Mg(2+) reabsorption in the distal convoluted tubules. Kidney Int. 2010; 77 (1): 17-22.

175. Pham P-C.T., Pham P-A.T., Pham S.V. et al. Hypomagnesemia: a clinical perspective. Int. J. Nephrol. Renovasc. Dis. 2014; 7: 219-230.

176. Glaudemans B., van der Wijst J., Scola R.H. et al. A missense mutation in the Kv1.1 voltage-gated potassium channel-encoding gene KCNA1 is linked to human autosomal dominant hypomagnesemia. J. Clin. Invest. 2009; 119 (4): 936-942.

177. Romani A.M.P. Cellular magnesium homeostasis. Arch. Biochem. Biophys. 2011; 512 (1): 1-23.

178. Günther T., Vormann J., Förster R. Regulation of intracellular magnesium by Mg2+ efflux. Biochem. Biophys. Res. Commun. 1984; 119 (1): 124-131.

179. Günther T., Vormann J. Mg2+ efflux is accomplished by an amiloride-sensitive Na+/Mg2+ antiport. Biochem. Biophys. Res. Commun. 1985; 130 (2): 540-545.

180. Féray J.C., Garay R. A Na+-stimulated Mg2+-transport system in human red blood cells. Biochem. Biophys. Acta. 1986; 856 (1): 76-84.

181. Lüdi H., Schatzmann H.J. Some properties of a system for sodium-dependent outward movement of magnesium from metabolizing human red blood cells. J.Physiol. 1987; 390: 367-382.

182. Flatman P.W., Smith L.M. Magnesium transport in ferret red cells. J. Physiol. 1990; 431: 11-25.

183. Xu W., Willis J.S. Sodium transport through the amiloride-sensitive Na-Mg pathway of hamster red cells. J. Membr. Biol. 1994; 141 (3): 277-287.

184. Romani A., Mafella C., Scarpa A. Regulation of magnesium uptake and release in the heart and in isolated ventricular myocytes. Circ. Res. 1993; 72 (6): 1139-1148.

185. Fagan T.E., Romani A. Activation of Na(+)- and Ca(2+)-dependent Mg(2+) extrusion by alpha(1)- and beta-adrenergic agonists in rat liver cells. Am. J. Physiol. Gastrointest. Liver Physiol. 2000; 279 (5): G943-G950.

186. Günther T., Vormann J. Activation of Na+/Mg2+ antiport in thymocytes by cAMP. FEBS Lett. 1992; 297 (1-2): 132-134.

187. Wolf F.I., Di Francesco A., Covacci V. et al. Regulation of intracellular magnesium in ascites cells: involvement of different regulatory pathways. Arch. Biochem. Biophys. 1996; 331 (2): 194-200.

188. Fagan T.E., Romani A. alpha(1)-Adrenoceptor-induced Mg2+ extrusion from rat hepatocytes occurs via Na+-dependent transport mechanism. Am. J. Physiol. Gastrointest. Liver Physiol. 2001; 280 (6): G1145-G1156.

189. Cefaratti C., Romani A.M. Functional characterization of two distinct Mg(2+) extrusion mechanisms in cardiac sarcolemmal vesicles. Mol. Cell. Biochem. 2007; 303 (1-2): 63-72.

190. Cefaratti C., Ruse C. Protein kinase A dependent phosphorylation activates Mg2+ efflux in the basolateral region of the liver. Mol. Cell. Biochim. 2007; 297 (1-2): 209-214.

191. Günther T. Mechanisms and regulation of Mg2+ efflux and Mg2+ influx. Miner, Electrolyte Metab. 1993; 19 (4-5): 259-265.

192. Ebel H., Hollstein M., Gunther T. Role on the choline exchanger in Na(+)-independent Mg(2+) efflux from rat erythrocytes. Biochim. Biophys. Acta. 2002; 1559 (2): 135-144.

193. Stuiver M., Lainez S., Will C. et al. CNNM2, encoding a basolateral protein required for renal Mg2+ handling, is mutated in dominant hypomagnesemia. Am. J. Hum. Genet. 2011; 88 (3): 333-343.

194. de Baaij J.H., Stuiver M., Meij I.C. et al. Membrane topology and intracellular processing of cyclin M2 (CNNM2). J. Biol. Chem. 2012; 287 (17): 13644-13655.

195. Wang C.Y., Shi J.D., Yang P. et al. Molecular cloning and characterization of a novel gene family of four ancient conserved domain proteins (ACDP). Gene. 2003; 306: 37-44.

196. Wang C.Y., Yang P., Shi J.D. et al. Molecular cloning and characterization of the mouse Acdp gene family. BMC Genomics. 2004; 5: 7.

197. Goytain A., Quamme G.A. Functional characterization of ACDP2 (ancient conserved domain protein, a divalent metal transporter. Physiol. Genomics. 2005; 22: 382-389.

198. Quamme G.A. Control of magnesium transport in the thick ascending limb. Am. J. Physiol. 1989; 256: F197-F210.

199. Dai L.J., Quamme G.A. Intracellular Mg2+ and magnesium depletion in isolated renal thick ascending limb cells. J. Clin. Invest. 1991; 88: 1255-1264.

200. Dai L.J., Bapty B.W., Ritchie G., Quamme G.A. PGE2 stimulates Mg2+ uptake in mouse distal convoluted tubule cells. Am. J. Physiol. Renal Physiol. 1998. 275: F833-F839.

201. Dai L.J., Bapty B.W., Ritchie G. et al.Insulin stimulates Mg2+ uptake in mouse distal convoluted tubule cells. Am. J. Physiol. Renal Physiol. 1999. 277: F907-F913.

202. Yang T., Hassan S., Huang Y.G. et al. Expression of PTHrP, PTH/PTHrP receptor and Ca2+ sensing receptor along the rat nephron. Am. J. Physiol. Renal Physiol. 1997; 272: F751-F758.

203. Bapty B.W., Dai L.J, Ritchie G. et al. Extracellular Mg2+ and Ca2+ sensing in mouse distal convoluted tubule cells. Kidney Int. 1998; 53: 583-592.

204. Braüner-Osborne H., Jensen A.A., Sheppard P.O. et al. The agonist-binding domain of the calcium-sensing receptor is located at the amino-terminal domain. J. Biol. Chem. 1999; 274 (26): 18382-18386.


Рецензия

Для цитирования:


Зверев Я.Ф., Брюханов В.М., Рыкунова А.Я. Роль почек в поддержании кальциевого и магниевого гомеостаза и при его нарушениях (Часть I). Нефрология и диализ. 2018;20(2):150-169. https://doi.org/10.28996/2618-9801-2018-2-150-169

For citation:


Zverev J.F., Bryukhanov V.M., Rykunova A.Ya. Role of kidney in maintaining calcium and magnesium homeostasis and its disorders (Part I). Nephrology and Dialysis. 2018;20(2):150-169. (In Russ.) https://doi.org/10.28996/2618-9801-2018-2-150-169

Просмотров: 61


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1680-4422 (Print)
ISSN 2618-9801 (Online)