Экспериментальные модели острого почечного повреждения
https://doi.org/10.28996/1680-4422-2017-2-287-294
Аннотация
Для изучения патогенетических механизмов острого почечного повреждения (ОПП) различной этиологии и оценки эффективности нефропротективных мероприятий было разработано значительное количество экспериментальных работ на животных, которые воссоздают клиническое течение различных форм почечной недостаточности. Детальное описание имеющихся моделей ОПП у животных позволит понять специфику проведения конкретного эксперимента и правильно интерпретировать полученные результаты. Введение глицерина индуцирует повреждение почек, которое возникает при рабдомиолизе. Использование в эксперименте лекарственных средств таких, как гентамицин, цисплатин, ифосфамид, диклофенак, стимулирует развитие ОПП, которое наблюдается при назначении соответствующего препарата в медицинской практике. Модель контраст-индуцированной ОПП имитирует у животных почечную недостаточность, возникающую во время ангиографических исследований с использованием радиоконтрастных веществ. Для создания модели ОПП, связанной с действием вредных факторов, распространенных в окружающей среде, используют соли урана, хрома. Почечные дисфункции, возникающие при воздействии загрязненной воды, симулируются введением нитрилотриацетата и 1,2-дихлорвинил-L-цистеина. Нарушение функции почек при генерализованной инфекции изучается на модели сепсис-индуцированной ОПП. Различные экспериментальные модели ишемически-реперфузионного (И/Р) ОПП симулируют гемодинамические нарушения, происходящие при снижение почечного кровотока. В данной работе представлен детальный протокол экспериментальной модели И/Р ОПП у крыс вследствие билатерального клипирования почечных ножек с описанием технических вопросов, возможных вариантов модели, их особенностей а также решение сложностей, которые могут встретиться во время проведения эксперимента.
Ключевые слова
Об авторах
К. С. КомиссаровРоссия
В. С. Пилотович
Россия
М. Ю. Юркевич
Россия
М. В. Дмитриева
Россия
М. М. Зафранская
Россия
Список литературы
1. Куценко С.А. Основы токсикологии: Учебное пособие. СП(б): Фолиант, 2004. 720 с.
2. Arany I., Safirstein R.L. Cisplatin nephrotoxicity. Semin Nephrol. 2003. 23(5): 460-464.
3. Asif A., Garces G., Preston R.A., et al. Current trials of interventions to prevent radiocontrast-induced nephropathy. Am J Ther. 2005. 12(2): 127-132.
4. Augusti P.R., Conterato G.M., Somacal S., et al. Effect of astaxanthin on kidney function impairment and oxidative stress induced by mercuric chloride in rats. Food Chem Toxicol. 2008. 46(1): 212-219.
5. Bagshaw SM. Acute kidney injury care bundles. Nephron. 2015. 13 (4): 247-251.
6. Baker RC, Armstrong MA, Young B. et al. Methylprednisolone increases urinary nitrate concentrations and reduces subclinical renal injury during infrarenal aortic ischemia reperfusion. Ann Surg. 2006. 244(5): 821-826.
7. Bhalodia Y, Kanzariya N, Patel R. et al. Renoprotective activity of benin case cerifera fruit extract on ischemia/reperfusion-induced renal damage in rat. Iran J Kidney Dis. 2009. 3(2): 80-85.
8. Blantz R.C. The mechanism of acute renal failure after uranyl nitrate. J Clin Invest. 1975. 55(3): 621-635.
9. Bulger R.E. Renal damage caused by heavy metals. Toxicol Pathol. 1986. 14(1): 58-65.
10. Chen N., Aleksa K., Woodland C., et al. N-Acetylcysteine prevents ifosfamide induced nephrotoxicity in rats. Br J Pharmacol. 2008. 153(7): 1364-1372.
11. Chen Y., Sun С., Lin Y., et al. Adipose-derived mesenchymal stem cells protects kidneys against ischemia-reperfusion injury through suppressing oxidative stress and inflammatory reaction. J Tranplant Med. 2011. 5(9): 51-70.
12. Chertow G.M, Levy E.M, Hammermeister K.E, et al. Independent association between acute renal failure and mortality following cardiac surgery. Am J Med. 1998. 104(5): 343-348.
13. Dai R, Dheen S.T, Tay S.S. Induction of cytokine expression in rat post-ischemic sinoatrial node (SAN). Cell Tissue Res. 2002. 310(1): 59-66.
14. Darnerud P.O., Brandt I., Feil V.J., et al. S-(1,2-dichlorovinyl-L-cysteine (DCVC) in the mouse kidney: correlation between tissue-binding and toxicity. Toxicol Appl Pharmacol. 1988. 95(3): 423-434.
15. Damianovich M, Ziv I, Heyman SN. ApoSence: a novel technology for functional molecular imaging of cell death in models of acute renal tubular necrosis. Eur J Nucl Med Mol Imaging. 2006. 33(3): 281-291.
16. De-Rosa C.T., Johnson B.L., Fay M., et al. Public health implications hazardous waste sites: findings, assessment and research. Food Chem Toxicol. 1996. 34(11): 1131-1138.
17. Domingo J.L. Chemical toxicity of uranium. Toxic Ecotoxic News. 1995. 2(1): 74-78.
18. Efrati S., Berman S., Siman-Tov Y., et al. N-acetylcysteine attenuates NSAID induced rat renal failure by restoring intrarenal prostaglandin synthesis. Nephrol Dial Transplant. 2007. 22(7): 1873-1881.
19. Erdem A., Gundogan N.U., Usubutun A., et al. The protective effect of taurine against gentamicin-induced acute tubular necrosis in rats. Nephrol Dial Transplant. 2000. 15(8): 1175-1182.
20. Ewald K.A., Calabrese E.J. Lead reduces the nephrotoxicity of mercuric chloride. Ecotoxicol Environ Saf. 2001. 48(2): 215-218.
21. Ferrari S., Pieretti F., Verri E., et al. Prospective evaluation of renal function in pediatric and adult patients treated with high-dose ifosfamide, cisplatin and high-dose methotrexate. Anticancer Drugs. 2005. 16(7): 733-738.
22. Foglieni C, Fulgenzi A, Ticozzi P. et al. Protective effect of EDTA preadministration on renal ischemia. BMC Nephrol. 2006. 15(7):5-16.
23. Ghosh J., Das J., Manna P., et al. Acetaminophen induced renal injury via oxidative stress and TNF-a production: therapeutic potential of arjunolic acid. Toxicology. 2010. 268(1): 8-18.
24. Hamazaki S., Okada S., Ebina Y., et al. Acute renal failure and glucosuria induced by ferric nitrilotriacetate in rats. Toxicol Appl Pharmacol. 1985. 77(2): 267-274.
25. Helmholz H.F. Renal changes in the rabbit resulting from intravenous injection of hypertonic solution of sucrose. J Pediat. 1933. 3(1): 144-157.
26. Hengy B., Hayi-Slayman D., Page M., et al. Acute renal failure after acetaminophen poisoning: report of three cases. Can J Anaesth. 2009. 56(10): 770-774.
27. Heyman S.N., Lieberthal W., Rogiers P., et al. Animal models of acute tubular necrosis. Curr Opin Crit Care. 2002. 8(6): 526-534.
28. Honore PM, Jacobs R, Hendricks I, et al. Prevention and treatment of sepsis-induced acute kidney injury: an update. Ann Intensive Care. 2015 Dec. 5(1): 51-61.
29. Hu J., Zhang L., Wang N., et al. Mesenchemal stem cells attenuate ischemic acute kidney injury by inducing regulatory T cells through splenocyte interactions. Kidney Int. 2013. 84 (3): 521-531.
30. Humes H.D., Sastrasinh M., Weinberg J.M. Calcium is a competitive inhibitor of gentamicin-renal membrane binding interactions and dietary calcium supplementation protects against gentamicin nephrotoxicity. J Clin Invest. 1984. 73(1): 134-147.
31. Inoue M., Akimoto T., Saito O., et al. Successful relatively low-dose corticosteroid therapy for diclofenac induced acute interstitial nephritis with severe renal failure. Clin Exp Nephrol. 2008. 12(4): 296-299.
32. Jacob R. Acute renal failure. Indian J Anaesth. 2003. 47(5): 367-372.
33. Jesmin S., Gando S., Zaedi S., et al. Protease-activated receptor 2 blocking peptide counteracts endotoxininduced inflammation and coagulation and ameliorates renal fibrin deposition in a rat model of acute renal failure. Shock. 2009. 32(6): 626-632.
34. Khan M.R., Siddiqui S., Parveen K., et al. Nephroprotective action of tocotrienol-rich fraction (TRF) from palm oil against potassium dichromate (K2Cr2O7)-induced acute renal injury in rats. Chem Biol Interact. 2010. 186(2): 228-238.
35. Kusaka J., Koga H., Hagiwara S. et al. Age-dependent responses to renal ischemia-reperfusion injury. J Surg Res. 2012. 172 (1): 153-158.
36. Lameire N., Van Biesen W., Vanholder R. The changing epidemiology of acute renal failure. Nat Clin Pract Nephrol. 2006. 2(8): 64-377.
37. Lee H.T., Jan M., Bae S.C., et al. A1 adenosine receptor knockout mice are protected against acute radiocontrast nephropathy in vivo. Am J Physiol Renal Physiol. 2006. 290 (6): 1367-1375.
38. Lieberthal W, Levine JS. Mechanisms of apoptosis and its potential role in renal tubular epithelial cell injury. Am J Physiol. 1996. 271(3): 477-488.
39. Lock E.A., Ishmael J. The acute toxic effects of paraquat and diquat on the rat kidney. Toxicol Appl Pharmacol. 1979. 50(1): 67-76.
40. Massermann J.H. Effects of the intravenous administration of hypertonic solution of sucrose with special reference to cerebrospinal fluid pressure. Bull Johns Hopkins Hosp. 1935. 57(20): 12-17.
41. Mathew T.H. Drug-induced renal disease. Med J Aust. 1992. 156(10): 724-728.
42. Matthijsen RA, Huugen D, Hoebers NT. et al. Myeloperoxidase is critically involved in the induction of organ damage after renal ischemia reperfusion. Am J Pathol. 2007. 171(6): 1743-1752.
43. McWhinnie D.L. Morphometric analysis of cellular infiltration assessed by monoclonal antibody labeling in sequential human renal allograft biopsies. Transplantation. 1986. 42 (4): 352-358.
44. Mitazaki S, Kato N, Suto M, et al. Interleukin-6 deficiency accelerates cisplatin-induced acute renal failure but not systemic injury. Toxicology. 2009. 265(3): 115-121.
45. Mullin E.M., Bonar R.A., Paulson D.F. Acute tubular necrosis. An experimental model detailing the biochemical events accompanying renal injury and recovery. Invest Urol. 1976. 13(4): 289-294.
46. Mwengee W., Butler T., Mgema S., et al. Treatment of plague with gentamicin or doxycycline in a randomized clinical trial in Tanzania. Clin Infect Dis. 2006. 42(5): 614-621.
47. Nakamura A., Niimi R., Yanagawa Y. Protection from sepsis-induced acute renal failure by adenoviral-mediated gene transfer of β2-adrenoreceptor. Nephrol Dial Transplant. 2010. 25(3): 730-737.
48. Palani S., Kumar R.P., Kumar B.S. Effect of the ethanolic extract of Indigofera barberi (L.) in acute acetaminophen induced nephrotoxic rats. New Biotechnol. 2009. 25(Suppl. 2): 14-24.
49. Park K.M., Kim J.I., Ahn Y., et al. Testosterone is responsible for enhanced susceptibility of males to ischemic renal injury. J Biol Chem. 2004. 279(50): 52282-52292.
50. Rosen S., Neyman S.N. Difficulties in understanding human “acute tubular necrosis”: limited data and flawed animal models. Kidney Int. 2001. 60(4): 1220-1224.
51. Ruetten H., Thiemermann C., Vane J.R. Effects of the endothelin receptor antagonist, SB 209670, on circulatory failure and organ injury in endotoxic shock in the anaesthetized rat. Br J Pharmacol. 1996. 118(1): 198-204.
52. Selby N.M., Shaw S., Woodier N., et al. Gentamicin-associated acute kidney injury. Q J Med. 2009. 102(12): 873-880.
53. Shanley P.F., Rosen M.D., Brezis M. et al. Topography of focal proximal tubular necrosis after ischemia with reflow in the rat kidney. Am J Patho. 1986. 122(3): 462-468.
54. Singh A.P., Muthuraman A., Jaggi A.S., et al. Animal model of acute renal failure. Pharmacological Reports. 2012. 64 (21): 31-44.
55. Stevens P.E., Tamimi W.A., Al - Hosani M.K., et al. Non - special management of acute renal failure. QJM. 2011. 94(10): 533-540.
56. Thiel G., Wilson D.R., Arce M.L., et al. Glycerol induced hemoglobinuric acute renal failure in the rat. Nephron. 1967. 4(5): 276-297.
57. Troyer D.A., Kreisberg J.I., Venkatachalam M.A. Lipid alterations in LLC-PK1 cells exposed to mercuric chloride. Kidney Int. 1986. 29(2): 530-538.
58. Umemura T., Hasegawa R., Sai-Kato K., et al. Prevention by 2-mercaptoethane sulfonate and N-acetylcysteine of renal oxidative damage in rats treated with ferric nitrilotriacetat. Jpn J Cancer Res. 1996. 8(9): 882-886.
59. Vanholder R., Sever M.S., Erek E., et al. Rhabdomyolysis. J Am Soc Nephrol. 2000. 11(8): 1553-1561.
60. Wan B., Hao L., Qiu Y., et al. Blocking tumor necrosis factor-a inhibits folic acid-induced acute renal failure. Exp Mol Pathol, 2006. 81(3): 211-216.
61. Wei Q., Dong Z. Mouse model of ischemic acute kidney injury: technical notes and tricks. Am J Physiol Renal Physiol. 2012. 303(11): 487-494.
62. Willox J.C., McAllister E.J., Sangster G., et al. Effects of magnesium supplementation in testicular cancer patients receiving cisplatin: a randomised trial. Br J Cancer. 1986. 54(1): 19-23.
63. Yang Q., Liu D., Long Y., et al. Acute renal failure during sepsis: Potential role of cell cycle regulation. J Infect. 2009. 58(6): 459-464.
64. Yesilyurt A., Aydýn Erden I., Bilgic I., et al. The protective effect of erdosteine on radiocontrast induced nephrotoxicity in rats. Environ Toxicol. 2011. 26(4): 395-402.
65. Zager RA, Altschuld R. Body temperature: An important deterrenal of severity of ischemic renal injury. Am J Physiol. 1986. 251(1): 87-93.
66. Zhang J., Lu H. Ifosfamide induces acute renal failure via inhibition of the thioredoxin reductase activity. Free Radic Biol Med. 2007. 43(12): 1574-1583.
Рецензия
Для цитирования:
Комиссаров К.С., Пилотович В.С., Юркевич М.Ю., Дмитриева М.В., Зафранская М.М. Экспериментальные модели острого почечного повреждения. Нефрология и диализ. 2017;19(2):287-294. https://doi.org/10.28996/1680-4422-2017-2-287-294
For citation:
Komissarov K.S., Pilotovich V.S., Yurkevich M.Yu., Dmitrieva M.V., Zafranskaya M.M. Experimental models of acute renal injury. Nephrology and Dialysis. 2017;19(2):287-294. (In Russ.) https://doi.org/10.28996/1680-4422-2017-2-287-294