Preview

Nephrology and Dialysis

Advanced search

IgA nephropathy: clinical course characteristics and prognosis

https://doi.org/10.28996/2618-9801-2025-3-242-257

Abstract

IgA nephropathy (IgAN), first described in 1968, is the most common primary glomerulonephritis worldwide. The prevalence of the disease is highest in Asia compared with Europe and North America, with the possible underdiagnosis in regions such as Africa.

Typically, debuting in young patients, IgAN is one of the major causes of the development of end-stage chronic kidney disease, which requires the use of renal replacement therapy. However, recent studies have shown a rising incidence among older individuals, often with more severe outcomes.

The time course and prognosis of IgAN remain difficult to predict due to the pronounced polymorphism of clinical manifestations and morphological features, apparently reflecting a wide range of possible etiopathogenesis mechanisms. This literature review discusses current approaches to evaluating clinical symptoms and biomarkers in relation to pathomorphological features and disease prognosis. Traditionally, severe proteinuria has been regarded as the only reliable predictor of poor outcomes and the main indication for active treatment. However, recently evidence highlights the prognostic significance of proteinuria of any level, including persistent microhematuria, suggesting the need to reconsider current therapeutic paradigm. Two long-standing debates over the prognostic role of macrohematuria also remain unresolves. In addition, the review addresses the prognostic value of nephrotic syndrome depending on specific histological patterns, such as IgAN with minimal change disease or endocapillary proliferation. Based on published data, clinical variants of IgAN and their associations with disease outcomes are analyzed. The first results of cluster analysis, which have identified distinct disease phenotypes with differing risks of progression and treatment response, are also presented.

About the Authors

M. L. Zubkin
G.N. Gabrichevsky Research Institute for Epidemiology and Microbiology; Branch of the S.M. Kirov Military Medical Academy; Moscow Clinical Research Center Hospital 52
Russian Federation

Mikhail L. Zubkin.

125212, 10, admiral Makarov str., Moscow; 7, Malaya Cherkizovskaya str., 107392, Moscow; 3, Pekhotnaya str., 123182, Moscow



V. I. Chervinko
G.N. Gabrichevsky Research Institute for Epidemiology and Microbiology; Branch of the S.M. Kirov Military Medical Academy; Moscow Clinical Research Center Hospital 52
Russian Federation

Valeriy I. Chervinko.

125212, 10, admiral Makarov str., Moscow; 7, Malaya Cherkizovskaya str., 107392, Moscow; 3, Pekhotnaya str., 123182, Moscow



D. A. Soldatov
G.N. Gabrichevsky Research Institute for Epidemiology and Microbiology; Moscow Clinical Research Center Hospital 52
Russian Federation

Danil A. Soldatov.

125212, 10, admiral Makarov str., Moscow; 3, Pekhotnaya str., 123182, Moscow



E. S. Stolyarevich
Moscow Clinical Research Center Hospital 52; Russian University of Medicine (ROSUNIMED), Chair of Nephrology
Russian Federation

Ekaterina S. Stolyarevich.

3, Pekhotnaya str., 123182, Moscow; 3, Rachmanovsky alley, Moscow, 127994



E. V. Kryukov
S.M. Kirov Military Medical Academy
Russian Federation

Evgeniy V. Kryukov.

6, Akad. Lebedeva str., 194044, St. Petersburg



N. F. Frolova
Moscow Clinical Research Center Hospital 52; Russian University of Medicine (ROSUNIMED), Chair of Nephrology
Russian Federation

Nadiya F. Frolova.

3, Pekhotnaya str., 123182, Moscow; 3, Rachmanovsky alley, Moscow, 127994



References

1. Berger J, Hinglais N. [Intercapillary deposits of IgA-IgG]. J Urol Nephrol (Paris). 1968;74:694-695. (in French)

2. Lai KN, Tang SC, Schena FP. et al. IgA Nephropathy. Nat Rev Dis Primers. 2016;2:16001. DOI: 10.1038/nrdp.2016.1

3. Schena FP, Nistor I. Epidemiology of IgA Nephropathy: A Global Perspective. Semin Nephrol. 2018;38(5):435-442. DOI: 10.1016/j.semnephrol.2018.05.013

4. Zhang Z, Zhang Y, Zhang H. IgA Nephropathy: A Chinese Perspective. Glomerular Dis. 2021;2(1):30-41. DOI: 10.1159/000520039

5. Filippone EJ, Gulati R, Farber JL. Contemporary review of IgA nephropathy. Front Immunol. 2024;15:1436923. DOI: 10.3389/fimmu.2024.1436923

6. Guidelines: Glomerular diseases: immunoglobulin A nephropathy. 2024. 79s. (In Russian)

7. Dobronravov V.A., Muzhetskaya T.O., Lin D.I., Kochoyan Z.Sh. Immunoglobulin A-nephropathy in Russian population: clinical and morphological presentation and long-term prognosis. Nephrology (Saint-Petersburg) 2019;23(6):45-60. DOI: 10.36485/1561-6274-2019-23-6-45-60 (In Russian)

8. Zhang H, Barratt J. Is IgA nephropathy the same disease in different parts of the world? Semin Immunopathol. 2021;43(5):707-715. DOI: 10.1007/s00281-021-00884-7

9. Barbour SJ, Cattran DC, Kim SJ et al. Individuals of pacific asian origin with IgA nephropathy have an increased risk of progression to end-stage renal disease. Kidney Int. 2013; 84(5):1017-1024. DOI: 10.1038/ki.2013.210

10. Roberts ISD. Pathology of IgA nephropathy: A global perspective. Nephrology (Carlton). 2024;29(2):71-74. DOI: 10.1111/nep.14343

11. Xu L, Zhou X, Zhang H. An update on the genetics of IgA nephropathy. J Clin Med. 2023;13(1):123. DOI: 10.3390/jcm13010123

12. Kiryluk K, Sanchez-Rodriguez E, Zhou X et al. Genome-wide association analyses define pathogenic signaling pathways and prioritize drug targets for IgA nephropathy. Nat Genet. 2023;55(7):1091-1105. DOI: 10.1038/s41588023-01422-x

13. Li M, Yu X. Genetic determinants of IgA nephropathy: Eastern perspective. Semin Nephrol. 2018;38(5):455-460. DOI: 10.1016/j.semnephrol.2018.05.015

14. Sallustio F, Serino G, Cox SN et al. Aberrantly methylated DNA regions lead to low activation of CD4+ T-cells in IgA nephropathy. Clin Sci (Lond). 2016;130(9):733-746. DOI: 10.1042/CS20150711

15. Serino G, Sallustio F, Cox SN et al. Abnormal miR-148b expression promotes aberrant glycosylation of IgA1 in IgA nephropathy. J Am Soc Nephrol. 2012;23(5):814-824. Doi: 10.1681/ASN.2011060567

16. Yao X, Zhai Y, An H et al. MicroRNAs in igA nephropathy. Ren Fail. 2021;43(1):1298-1310. DOI: 10.1080/0886022X.2021.1977320

17. Knoop T, Vikse BE, Mwakimonga A et al. Long-term outcome in 145 patients with assumed benign immunoglobulin A nephropathy. Nephrol Dial Transplant. 2017;32(11):1841-1850. DOI: 10.1093/ndt/gfx242

18. Gutierrez E, Zamora I, Ballarin JA et al. Long-term outcomes of IgA nephropathy presenting with minimal or no proteinuria. J Am Soc Nephrol. 2012;23(10):1753-1760. DOI: 10.1681/ASN.2012010063

19. Faucon A-L, Lando S, Chrysostomou C et al. Primary glomerular diseases and long-term adverse health outcomes: A nationwide cohort study. J Intern Med. 2024;297(1):22-35. DOI: 10.1111/joim.20024

20. Moriyama T, Tanaka K, Iwasaki C et al. Prognosis in IgA nephropathy: 30-year analysis of 1,012 patients at a single center in Japan. PloS One. 2014;9(3):e91756. DOI: 10.1371/journal.pone.00917564

21. Shen X, Chen P, Liu M et al. Long-term outcomes of IgA nephropathy in China. Nephrol Dial Transplant. 2025;40(6):1137-1146. DOI: 10.1093/ndt/gfae252

22. Pitcher D, Braddon F, Hendry B et al. Long-term outcomes in IgA nephropathy. Clin J Am Soc Nephrol. 2023;18(6):727-738. DOI: 10.2215/CJN.0000000000000135

23. Barratt J, Lafayette RA, Rovin BH, Fellström B. Budesonide delayed-release capsules to reduce proteinuria in adults with primary immunoglobulin A nephropathy. Exp Rev Clin Immunol. 2023;19(7):699-710. DOI: 10.1080/1744666X.2023.2206119

24. Trimarchi H, Haas M, Coppo R. Crescents and IgA Nephropathy: A Delicate Marriage. J Clin Med. 2022;11(13):3569. DOI: 10.3390/jcm11133569

25. Sevillano AM, Diaz M, Caravaca-Fontan F et al., Barrios C. и др. IgA nephropathy in elderly patients. Spanish Group for the Study of Glomerular Diseases (GLOSEN). Clin J Am Soc Nephrol. 2019;14(8):1183-1192. DOI: 10.2215/CJN

26. Wyatt RJ, Julian BA. IgA nephropathy. N Engl J Med. 2013;368(25):2402-2414. DOI: 10.1056/NEJMra1206793

27. Li LS, Liu ZH. Epidemiologic data of renal diseases from a single unit in China: Analysis based on 13,519 renal biopsies. Kidney Int. 2004;66(3):920-923. DOI: 10.1111/j.1523-1755.2004.00837.x

28. Le W, Liang S, Hu Y et al. Long-term renal survival and related risk factors in patients with IgA nephropathy: Results from a cohort of 1155 cases in a Chinese adult population. Nephrol. Dial. Transplant. 2012;27(4):1479-1485. DOI: 10.1093/ndt/gfr527

29. Weng M, Lin J, Chen Y et al. Time-Averaged Hematuria as a Prognostic Indicator of Renal Outcome in Patients with IgA Nephropathy. J Clin Med. 2022;11(22):6785. DOI: 10.3390/jcm11226785

30. Park YH, Choi JY, Chung HS et al. Hematuria and proteinuria in a mass school urine screening test. Pediatr Nephrol. 2005;20(8):1126-1130. DOI: 10.1007/s00467-005-1915-8

31. Honda M, Yanagihara T, Gotoh Y. School urinary screening program in Japan: history, outcomes, perspectives. Kidney Res Clin Pract. 2024;43(3):287-298. DOI:10.23876/j.krcp.23.127

32. Han SH, Kang EW, Park JK et al. Spontaneous remission of nephrotic syndrome in patients with IgA nephropathy. Nephrol Dial Transplant. 2011;26(5):1570-1575. DOI: 10.1093/ndt/gfq559

33. Kim J, Kim JH, Lee SC et al. Clinical features and outcomes of IgA nephropathy with nephrotic syndrome. Clin J Am Soc Nephrol. 2012;7(3):427-436. DOI: 10.2215/CJN.04820511

34. Herlitz LC, Bomback AC, Stokes MB et al. IgA Nephropathy with Minimal Change Disease. Clin J Am Soc Nephrol. 2014;10;9(6):1033-1039. DOI: 10.2215/CJN.11951113

35. Wang TY, Chang FP, Yang AH et al. Key pathological features characterize minimal change disease-like IgA nephropathy. PLoS One. 2023;18(7):e0288384. DOI: 10.1371/journal.pone.0288384

36. Qin J, Yang Q, Tang X et al. Clinicopathologic features and treatment response in nephrotic IgA nephropathy with minimal change disease. Clin Nephrol. 2013;79(1):37-44. DOI: 10.5414/CN107682

37. Cattran DC, Floege J, Coppo R. Evaluating progression risk in patients with immunoglobulin A nephropathy. Kidney Int Rep 2023;8(12):2515-2528. https://doi.org/10.1016/j.ekir.2023.09.020

38. Goto M, Wakai K, Kawamura T et al. A scoring system to predict renal outcome in IgA nephropathy: A nationwide 10-year prospective cohort study. Nephrol Dial Transplant. 2009;24(10):3068-3074. DOI: 10.1093/ndt/gfp273

39. Berthoux F, Mohey H, Laurent B et al. Predicting the risk for dialysis or death in IgA nephropathy. J Am Soc Nephrol. 2011;22(4):752-761. DOI: 10.1681/ASN.2010040355

40. Cattran DC, Coppo R, Cook HT et al. Working Group of the International Ig ANN, the Renal Pathology Society. The Oxford classification of IgA nephropathy: rationale, clinicopathological correlations, and classification. Kidney Int. 2009;76(5):534-545. DOI: 10.1038/ki.2009.243

41. Trimarchi H, Barratt J, Cattran DC et al. Oxford classification of IgA nephropathy 2016: an update from the IgA nephropathy classification working group. Kidney Int. 2017;91(5):1014-1021. DOI: 10.1016/j.kint.2017.02.003

42. Bellur SS, Lepeytre F, Vorobyeva O et al. Evidence from the Oxford Classification cohort supports the clinical value of subclassification of focal segmental glomerulosclerosis in IgA nephropathy. Kidney Int. 2017;91(1):235-243. DOI: 10.1016/j.kint.2016.09.029

43. Howie AJ and Lalayiannis AD. Systematic Review of the Oxford Classification of IgA Nephropathy: Reproducibility and Prognostic Value. Kidney360. 2023;4(8):1103-1111. DOI: 10.34067/KID.0000000000000195

44. Herlitz LC. Reproducibility of Oxford Scoring in IgA Nephropathy: Is the Noise Due to an Educational Gap? Kidney360. 2023;4(8):1017-1018. DOI: 10.34067/KID.0000000000000234

45. Lafayette RA, Reich HN, Stone AM, Barratt J. One-year estimated GFR slope independently predicts clinical benefit in immunoglobulin A nephropathy. Kidney Int Rep. 2022;7(12):2730-2733. DOI: 10.1016/j.ekir.2022.09.017

46. Barbour SJ, Cattran DC, Espino-Hernandez G et al. Identifying the ideal metric of proteinuria as a predictor of renal outcome in idiopathic glomerulonephritis. Kidney Int 2015;88:1392-1401. DOI: 10.1038/ki.2015.241

47. Reich HN, Troyanov S, Scholey JW, Cattran DC. Toronto Glomerulonephritis Registry. Remission of proteinuria improves prognosis in IgA nephropathy. J Am Soc Nephrol. 2007;18(12):3177-3183. DOI: 10.1681/ASN.2007050526

48. Inker LA, Mondal H, Greene T et al. Early change in urine protein as a surrogate end point in studies of IgA nephropathy: An individual-patient meta-analysis. Am J Kidney Dis. 2016;68(3):392-401. DOI: 10.1053/j.ajkd.2016.02.042

49. Thompson A, Carroll K, Inker L et al. Proteinuria reduction as a surrogate end point in trials of IgA nephropathy. Clin J Am Soc Nephrol. 2019;14(3):469-481. DOI: 10.2215/CJN.08600718

50. Rovin BH, Adler SG, Barratt J et al. (Kidney Disease: Improving Global Outcomes (KDIGO) Glomerular Diseases Work Group). KDIGO 2021 clinical practice guideline for the management of glomerular diseases. Kidney Int. 2021;100(4S):1-276. DOI: 10.1016/j.kint.2021.05.021

51. Tang C, Chen P, Si FL et al. Time-Varying Proteinuria and Progression of IgA Nephropathy: A Cohort Study. Am J Kidney Dis. 2024;84(2):170-178. DOI: 10.1053/j.ajkd.2023.12.016

52. Huang N, Li J, Ai Z et al. Differences of clinicopathological characteristics and outcomes of IgA nephropathy patients with and without nephrotic syndrome. Int Urol Nephrol. 2024;56(9):3003-3011. DOI: 10.1007/s11255-024-04040-6

53. Li H, Wang F, Jia J et al. The difference between patients with nephrotic syndrome and nephrotic-range proteinuria in IgA nephropathy: A propensity score matched cohort study. BMC Nephrol. 2022;23(1):163. DOI: 10.1186/s12882-022-02799-3

54. Jiang Y, Chen P, Zhao W et al. Distinct characteristics and prognosis of IgA nephropathy patients with nephrotic syndrome: A propensity score-matched cohort study. Front Med (Lausanne). 2024;11:1344219. DOI: 10.3389/fmed.2024.1344219

55. Schena FP. Survey of the Italian Registry of Renal Biopsies. Frequency of the renal diseases for 7 consecutive years. The Italian Group of Renal Immunopathology. Nephrol Dial Transplant 1997;12(3):418-426. DOI: 10.1093/ndt/12.3.418

56. Zand L, Fervenza FC, Coppo R. Microscopic hematuria as a risk factor for IgAN progression: considering this biomarker in selecting and monitoring patients. Clin Kidney J. 2023;16(2):ii19-ii27. DOI: 10.1093/ckj/sfad232

57. Coppo R., Fervenza F.C. Persistent Microscopic Hematuria as a Risk Factor for Progression of IgA Nephropathy: New Floodlight on a Nearly Forgotten Biomarker. J Am Soc Nephrol. 2017;28(10):2831-2834. DOI: 10.1681/ASN.2017060639

58. D'Amico G, Ferrario F, Colasanti G et al. IgA-mesangial nephropathy (Berger's disease) with rapid decline in renal function. Clin Nephrol 1981;16(5):251-257

59. Bennett WM, Kincaid-Smith P. Macroscopic hematuria in mesangial IgA nephropathy: correlation with glomerular crescents and renal dysfunction. Kidney Int. 1983;23(2):393-400. DOI: 10.1038/ki.1983.32

60. Ibels LS, Györy AZ. IgA nephropathy: analysis of the natural history, important factors in the progression of renal disease, and a review of the literature. Medicine (Baltimore). 1994;73(2):79-102

61. Tanaka K, Moriyama T, Iwasaki C et al. Effect of hematuria on the outcome of IgA nephropathy with mild proteinuria. Clin. Exp. Nephrol. 2015;19(5):815-821. DOI: 10.1007/s10157-014-1068-9

62. Iwasaki C, Moriyama T, Tanaka K et al. Effect of hematuria on the outcome of immunoglobulin A nephropathy with proteinuria. J Nephropathol 2016;5(2):72-78. DOI: 10.15171/jnp.2016.12

63. Vivante A, Calderon-Margalit R, Skorecki K. Hematuria and risk for end-stage kidney disease. Curr Opin Nephrol Hypertens. 2013;22(3):325-330. DOI: 10.1097/MNH.0b013e32835f7241

64. Yu GZ, Guo L, Dong JF et al. Persistent Hematuria and Kidney Disease Progression in IgA Nephropathy: A Cohort Study. Am J Kidney Dis. 2020;76(1):90-99. DOI: 10.1053/j.ajkd.2019.11.008

65. He P, Wang H, Huang C, He L. Hematuria was a high risk for renal progression and ESRD in immunoglobulin А nephropathy: A systematic review and meta-analysis. Ren Fail. 2021;43(1):488-499. DOI: 10.1080/0886022X.2021.1879852

66. Huang Z, Zhang J, Chen B et al. Clinical Significance of Persistent Hematuria Degrees in Primary IgA Nephropathy: A Propensity Score-Matched Analysis of a 10-Year Follow-Up Cohort. Am J Nephrol. 2023;54(1-2):62-73. DOI: 10.1159/000529650

67. Bobart SA, Alexander MP, Shawwa K et al. The association of microhematuria with mesangial hypercellularity, endocapillary hypercellularity, crescent score and renal outcomes in immunoglobulin A nephropathy. Nephrol Dial Transplant, 2021;36(5):840-847. DOI: 10.1093/ndt/gfz267

68. Nagai M, Kobayashi N, Izumi N et al. Pre-treatment hematuria and crescents predict estimated glomerular filtration rate trajectory after methylprednisolone pulse therapy with tonsillectomy for IgA nephropathy. J Nephrol. 2022;35(2):441-449. DOI: 10.1007/s40620-021-01064-4

69. Sevillano AM, Gutierrez JAM, Yuste C et al. Remission of Hematuria Improves Renal Survival in IgA Nephropathy. J Am Soc Nephrol. 2017;28(10):3089-3099. DOI: 10.1681/ASN.2017010108

70. Floege J, Bernier-Jean A, Barratt J, Rovin B. Treatment of patients with IgA nephropathy: a call for a new paradigm. Kidney Int. 2025;107(4):640-651. DOI: 10.1016/j.kint.2025.01.014

71. Praga M, Caravaca-Fontan F, Da Silva I et al. Tailored management strategies for IgA nephropathy based on clinical presentations. Nephrol Dial Transplant. 2025;40(5):874-883 DOI: 10.1093/ndt/gfae289

72. D’Amico G. Natural history of idiopathic IgA nephropathy and factors predictive of disease outcome. Semin. Nephrol. 2004;24(3):179-196. DOI: 10.1016/j.semnephrol.2004.01.001

73. Beukhof JR, Kardaun O, Schaafsma W et al. Toward individual prognosis of IgA nephropathy. Kidney Int. 1986;29(2):549-556. DOI: 10.1038/ki.1986.33

74. Le W, Liang S, Chen H et al. Long-term outcome of IgA nephropathy patients with recurrent macroscopic hematuria. Am J Nephrol. 2014;40(1):43-50. DOI: 10.1159/000364954

75. Praga M, Gutierrez-Millet V, Navas JJ et al. Acute worsening of renal function during episodes of macroscopic hematuria in IgA nephropathy. Kidney Int 1985;28(1):69-74. DOI: 10.1038/ki.1985.120

76. Moreno JA, Martin-Cleary C, Gutierrez E et al. AKI Associated with Macroscopic Glomerular Hematuria: Clinical and Pathophysiologic Consequences. Clin J Am Soc Nephrol. 2012;7(1):175-184. DOI: 10.2215/CJN.01970211

77. Gutierrez E, Gonzalez E, Hernandez E et al. Factors that determine an incomplete recovery of renal function in macrohematuria-induced acute renal failure of IgA nephropathy. Clin J Am Soc Nephrol. 2007;2(1):51-57. DOI: 10.2215/CJN.02670706

78. Wang Y, Wen Q, Lian X et al. Machine learning-based unsupervised phenotypic clustering analysis of patients with IgA nephropathy: Distinct therapeutic responses of different groups. Chin Med J (Engl). 2025; Online ahead of print. DOI: 10.1097/CM9.0000000000003422

79. Barbour SJ, Espino-Hernandez G, Reich HN et al. The MEST score provides earlier risk prediction in lgA nephropathy. Kidney Int. 2016;89(1):167-175. DOI: 10.1038/ki.2015.322

80. Chen H, Liu Y, Wei L et al. The effect of fibrinoid necrosis on the clinical features and outcomes of primary IgA nephropathy. BMC Nephrol. 2023;24(1):366. DOI: 10.1186/s12882-023-03419-4

81. Lee J, Jang S, Cho N et al. Severity of foot process effacement is associated with proteinuria in patients with IgA nephropathy. Kidney Res Clin Pract. 2020;39(3):295-304. DOI: 10.23876/j.krcp.20.017

82. Hara M, Yanagihara T, Kihara I. Cumulative excretion of urinary podocytes reflects disease progression in IgA nephropathy and schönlein-henoch purpura nephritis. Clin J Am Soc Nephrol. 2007;2(2):231-238. DOI: 10.2215/CJN.01470506

83. Working Group of the International IgA Nephropathy Network and the Renal Pathology Society; Cattran DC, Coppo R, Cook HT et al. The oxford classification of IgA nephropathy: Rationale, clinicopathological correlations, and classification. Kidney Int. 2009;76(5):534-545. DOI: 10.1038/ki.2009.243

84. Coppo R, Troyanov S, Bellur S et al. Validation of the oxford classification of IgA nephropathy in cohorts with different presentations and treatments. Kidney Int. 2014;86(4):828-836. DOI: 10.1038/ki.2014.63

85. Chang A, Kowalewska J, Smith KD et al. A clinicopathologic study of thrombotic microangiopathy in the setting of IgA nephropathy. Clin Nephrol. 2006;66(6):397-404. DOI: 10.5414/CNP66397

86. El Karoui K, Hill GS, Karras A et al. A clinicopathologic study of thrombotic microangiopathy in IgA nephropathy. J Am Soc Nephrol. 2012;23(1):137-148. DOI: 10.1681/ASN.2010111130

87. Asrar I, Hussain M, Afzal A et al. Blind Spot in the Radar of MEST-C Score: Type and Severity of Tubulointerstitial Nephritis in IgA Nephropathy. Int J Nephrol. 2023;2023:1060526. DOI: 10.1155/2023/1060526.

88. Rankin AJ, Kipgen D, Geddes CC et al. Assessment of active tubulointerstitial nephritis in non-scarred renal cortex improves prediction of renal outcomes in patients with IgA nephropathy. Clin Kidney J. 2018;12(3):348-354. DOI: 10.1093/ckj/sfy093.

89. Sun Q, Zhang Z, Zhang H, Liu X. Aberrant IgA1 glycosylation in IgA nephropathy: A systematic review. PloS One. 2016;11(11):e0166700. DOI: 10.1371/journal.pone.0166700

90. Moldoveanu Z, Suzuki H, Reily C et al. Experimental evidence of pathogenic role of IgG autoantibodies in IgA nephropathy. J Autoimmun. 2021;118:102593. DOI: 10.1016/j.jaut.2021.102593

91. Berthoux F, Suzuki H, Thibaudin L et al. Autoantibodies targeting galactose-deficient IgA1 associate with progression of IgA nephropathy. J Am Soc Nephrol. 2012; 23(9) 1579-1587. DOI: 10.1681/ASN.2012010053

92. Zhao N, Hou P, Lv J et al. The level of galactose-deficient IgA1 in the sera of patients with IgA nephropathy is associated with disease progression. Kidney Int. 2012;82(7):790-796. DOI:10.1038/ki.2012.197

93. Maixnerova D, Ling C, Hall S et al. Galactose-deficient IgA1 and the corresponding IgG autoantibodies predict IgA nephropathy progression. PLoS ONE. 2019;14(2):e0212254. DOI: 10.1371/journal.pone.0212254

94. Berthelot L, Robert T, Vuiblet V et al. Recurrent IgA nephropathy is predicted by altered glycosylated IgA, autoantibodies and soluble CD89 complexes. Kidney Int. 2015;88(4):815-822. DOI: 10.1038/ki.2015.158

95. Oortwijn BD, Eijgenraam J, Rastaldi M et al. The role of secretory IgA and complement in IgA nephropathy. Semin Nephrol. 2008;28(1):58-65. DOI: 10.1016/j.semnephrol.2007.10.007

96. Liang Y, Zhang J, Zhou Y et al. Proliferation and cytokine production of human mesangial cells stimulated by secretory IgA isolated from patients with IgA nephropathy. Cell Physiol Biochem. 2015;36(5):1793-1808. DOI: 10.1159/000430151

97. TominoY, Suzuki S, Imai H et al. Measurement of serum IgA and C3 may predict the diagnosis of patients with IgA nephropathy prior to renal biopsy. J Clin Lab Anal. 2000;14(5):220-223. DOI: 10.1002/10982825(2000)14:5

98. Mizerska-Wasiak M, Małdyk J, Rybi-Szuminska A et al. Relationship between serum IgA/C3 ratio and severity of histological lesions using the oxford classification in children with IgA nephropathy. Pediatr Nephrol. 2015;30(7):1113-1120. DOI: 10.1007/s00467-014-3024-z

99. Chen P, Yu G, Zhang X et al. Plasma galactose-deficient IgA1 and C3 and CKD progression in IgA nephropathy. Clin J Am Soc Nephrol. 2019;14(10):1458-1465. DOI: 10.2215/CJN.13711118

100. Maeda A, Gohda T, Funabiki K et al. Significance of serum IgA levels and serum IgA/C3 ratio in diagnostic analysis of patients with IgA nephropathy. 2003;17(3):73-76. DOI: 10.1002/jcla.10071

101. Kawasaki Y, Maeda R, Ohara S et al. Serum IgA/C3 and glomerular C3 staining predict severity of IgA nephropathy. Pediatr Int. 2018;60(2):162-167. DOI: 10.1111/ped.13461

102. Hou J, Fu S, Wang X et al. A noninvasive artificial neural network model to predict IgA nephropathy risk in Chinese population. Sci Rep. 2022;12(1):8296. DOI: 10.1038/s41598-022-11964-5

103. Xu Z, Zhan H, Zhan J et al. New biomarkers in IgA nephropathy. Clin Immunol. 2025;274:110468. DOI: 10.1016/j.clim.2025.110468

104. Zhang Y, Duan SW, Chen P et al. Relationship between serum C3/C4 ratio and prognosis of immunoglobulin A nephropathy based on propensity score matching. Chin Med J (Engl). 2020;133(6):631-637. DOI: 10.1097/CM9.0000000000000674

105. Wu D, Li X, Yao X et al. Mesangial C3 deposition and serum C3 levels predict renal outcome in IgA nephropathy. Clin Exp Nephrol. 2021;25:641-651. DOI: 10.1007/s10157-021-02034-7

106. Medjeral-Thomas NR, Lomax-Browne HJ, Beckwith H et al. Circulating complement factor H–related proteins 1 and 5 correlate with disease activity in IgA nephropathy. Kidney Int. 2017;92(4):942-952. DOI: 10.1016/j.kint.2017.03.043.

107. Roos A, Rastaldi MP, Calvaresi N et al. Glomerular activation of the lectin pathway of complement in IgA nephropathy is associated with more severe renal disease. J Am Soc Nephrol. 2006;17(6):1724-1734. DOI: 10.1681/ASN.2005090923

108. Faria B, Canao P, Cai Q et al. Arteriolar C4d in IgA nephropathy: A cohort study. Am J Kidney Dis. 2020;76(5):669-678. DOI: 10.1053/j.ajkd.2020.03.017

109. Espinosa M, Ortega R, Sanchez M et al.; Spanish Group for Study of Glomerular Diseases (GLOSEN): Association of C4d deposition with clinical outcomes in IgA nephropathy. Clin J Am Soc Nephrol. 2014;9(5):897-904. DOI: 10.2215/CJN.09710913

110. Oortwijn BD, Rastaldi MP, Roos A et al. Demonstration of secretory IgA in kidneys of patients with IgA nephropathy. Nephrol Dial Transplant. 2007;22(11):3191-3195. DOI: 10.1093/ndt/gfm346

111. Zhang J, Xu L, Liu G et al. The level of serum secretory IgA of patients with IgA nephropathy is elevated and associated with pathological phenotypes. Nephrol Dial Transplant. 2008;23(1):207-212. DOI: 10.1093/ndt/gfm492

112. Kouri NM, Stangou M, Lioulios G et al. Serum levels of miR-148b and let-7b at diagnosis may have important impact in the response to treatment and long-term outcome in IgA nephropathy. J Clin Med. 2021;10 (9):1987. DOI: 10.3390/jcm10091987

113. Serino G, Pesce F, Sallustio F et al. In a retrospective international study, circulating miR-148b and let-7b were found to be serum markers for detecting primary IgA nephropathy. Kidney Int. 2016;89(3):683-692. DOI: 10.1038/ki.2015.333

114. Wang G, Kwan BC, Lai FM et al. Intrarenal expression of microRNAs in patients with IgA nephropathy. Lab Invest. 2010;90(1):98-103. DOI: 10.1038/labinvest.2009.118

115. Barbour SJ, Coppo R, Zhang H et al. Evaluating a new international risk-prediction tool in IgA nephropathy. JAMA Intern Med. 2019;179:942-952. DOI: 10.1001/jamainternmed.2019.0600

116. Barbour SJ, Coppo R, Zhang H et al. Application of the International IgA Nephropathy Prediction Tool one or two years post-biopsy. Kidney Int. 2022;102(1):160-172. DOI: 10.1016/j.kint.2022.02.042


Review

For citations:


Zubkin M.L., Chervinko V.I., Soldatov D.A., Stolyarevich E.S., Kryukov E.V., Frolova N.F. IgA nephropathy: clinical course characteristics and prognosis. Nephrology and Dialysis. 2025;27(3):242-257. (In Russ.) https://doi.org/10.28996/2618-9801-2025-3-242-257

Views: 22


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1680-4422 (Print)
ISSN 2618-9801 (Online)