Preview

Nephrology and Dialysis

Advanced search

Determinants of 28-day mortality in patients with aсute kidney injury following cardiac surgery

Abstract

Objective: to identify the important determinants of the 28-day mortality and to assess their explanatory power in adult patients in undergoing continuous renal replacement therapy (CRRT) for cardiac surgery-associated acute kidney injury AKI (CS-AKI). Material and methods: the retrospective cohort monocenter study covered 162 cardiac surgical patients over 18 years old operated under cardio-pulmonary bypass (CPB) and complicated by the development of AKI treated with CRRT. Study endpoints were 28-day and hospital mortality. Results: it was found that the most important determinants of 28-day mortality in patients undergoing cardiac surgery with the development AKI were the use of extracorporeal membrane oxygenation (ECMO), the duration of days with oliguria and the used intra-aortic balloon pumping (Odd Ratio 7.24; 6.55; 3.75; respectively). It was found that the ratio of the surface area of the haemofilter membrane to the body surface area as a significant determinant of mortality in cardiac patients with AKI (Odd Ratio 1.41). We found that the CRRT dose effluent is not associated with the 28-day mortality. Whereas, the maximum level of lactate during the CRRT had a good explanatory power (AUC 0.79) with sensitivity and specificity of 0.9/0.71. Daily fluid balance and the total balance of body fluids (delta) during CRRT verified as suitable determinants in predicting the 28-day mortality (AUC 0.784, AUC 0.786, respectively). Conclusion: in patients with severe CS-AKI requiring CRRT, 28-day mortality appears strongly associated with extrarenal (cardiovascular) factors, which determine the short-term outcomes. The ratio of surface area of haemofilter membrane/body surface area provided to be a factor modifying short-term mortality in patients with AKI.

About the Authors

S. V. Kolesnikov
Meshalkin State Research Institute of Circulation Pathology
Russian Federation


A. S. Borisov
Meshalkin State Research Institute of Circulation Pathology
Russian Federation


V. V. Lomivorotov
Meshalkin State Research Institute of Circulation Pathology
Russian Federation


References

1. Бикбов Б.Т., Томилина Н.А. К вопросу об эпидемиологии острого почечного повреждения в Российской Федерации: анализ данных регистра заместительной почечной терапии российского диализного общества за 2008-2012 гг. Нефрология и диализ. 2014. 16(4): 453-64. (Bikbov B.T., Tomilina N.A. Epidemiology of acute kidney injury in Russian Federation: analysis of the Russian registry of renal replacement therapy, 2008-2012. Nephr. Dialys. 2014. 16(4): 453-64. Transl. from Russian).

2. Колесников С.В., Борисов А.С. Нелинейный метод прогнозирования неблагоприятных ренальных исходов у пожилых кардиохирургических пациентов. Нефрология. 2013.Т.17. № 4. С. 77-82. (Kolesnikov S.V., Borisov A.S. Nonlinear method for predicting adverse renal outcomes in elderly cardiac surgery patients. Nephrologia. 2013. 17(4): 69-73. Transl. from Russian).

3. Паромов К.В., Ленькин А.И., Кузьков В.В., и др. Целенаправленная оптимизация гемодинамики в периоперационном периоде: возможности и перспективы. Патология кровообращения и кардиохирургия. 2014. №3. С. 59-66. (Paromov K.V., Lenkin A.I., Kuzkov V.V., et al. Goal-oriented optimization of hemodynamics during perioperative period: opportunities and future perspectives. Circulation Pathology and Kardiohirurgiya. 2014. (3): 59-66. Transl. from Russian).

4. Bellomo R., Ronco C., Kellum JA., et al. Acute renal failure - definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI). Group Crit. Care. 2004. 8(4): 204-212.

5. Billings F., Pretorius M., Schildcrout J., et al. Obesity and oxidative stress predict AKI after cardiac surgery. J. Am. Soc. Nephrol. 2012. 23(7): 1221-8.

6. Chao C., Wu V., Tsai H., et al. Impact of body mass on outcomes of geriatric postoperative acute kidney injury patients. Shock. 2014. 41(5): 400-5.

7. Cheng R., Hachamovitch R., Kittleson M., et al. Complications of extracorporeal membrane oxygenation for treatment of cardiogenic shock and cardiac arrest: a meta-analysis of 1,866 adult patients. Ann. Thorac. Surg. 2014. 97(2): 610-6.

8. Fortrie G., Stads S., Aarnoudse A., et al. Long-term sequelae of severe acute kidney injury in the critically ill patient without comorbidity: a retrospective cohort study. PLoS One. 2015. 10 (3): e0121482.doi:10.1371.

9. Honore P., Jacobs R., Joannes-Boyau O., et al. Newly designed CRRT membranes for sepsis and SIRS-a pragmatic approach for bedside intensivists summarizing the more recent advances: a systematic structured review. ASAIO J. 2013. 59(2): 99-106.

10. Joannes-Boyau O., Honore P., Perez P., et al. High-volume versus standard-volume haemofiltration for septic shock patients with acute kidney injury (IVOIRE study): a multicentre randomized controlled trial. Intensive Care Med. 2013. 39(9): 1535-1546.

11. Keshaviah P. The solute removal index a unified basis for comparing disparate therapies (Editorial). Perit. Dial. Int. 1995. 15: 101-4.

12. Koning M., Roest A., Vervloet M., et al. Determinants of outcome in non-septic critically ill patients with acute kidney injury on continuous venovenous hemofiltration. Nephron Extra. 2011. 1(1): 91-100.

13. Laukkanen A., Emaus L., Pettilä V., et al. Five-year cost-utility analysis of acute renal replacement therapy: a societal perspective. Intensive Care Med. 2013. 39: 406-13.

14. Lee J., Cho J., Chung B., et al. Classical indications are useful for initiating continuous renal replacement therapy in critically ill patients. Tohoku J. Exp. Med. 2014. 233 (4): 233-41.

15. Mosteller R. Simplified calculation of body surface area. N. Engl. J. Med. 1987. 317: 1098.

16. Ostermann M., Chang R. Correlation between parameters at initiation of renal replacement therapy and outcome in patients with acute kidney injury. Crit. Care. 2009. 13(6): R175.

17. Pickering J., James M., Palmer S. Acute kidney injury and prognosis after cardiopulmonary bypass: a meta-analysis of cohort studies. Am. J. Kidney Dis. 2015. 65(2): 283-93.

18. Pistolesi V., Di Napoli A., Fiaccadori E., et al. Severe acute kidney injury following cardiac surgery: short-term outcomes in patients undergoing continuous renal replacement therapy (CRRT). J. Nephrol. 2015. doi 10.1007/s40620-015-0213-1.

19. Poukkanen M., Vaara S., Reinikainen M., et al. Predicting one-year mortality of critically ill patients with early acute kidney injury: data from the prospective multicenter FINNAKI study. Critical Care. 2015. 19(125).doi. 10.1186/s13054-015-0848-2.

20. Ronco C., Cruz D. Hemodialysis: From Basic Research to Clinical Trials. Contribution to nephrology. 2008. 161. P. 111.

21. Schilder L., Nurmohamed S., Bosch F., et al. CASH study group. Citrate anticoagulation versus systemic heparinisation in continuous venovenous hemofiltration in critically ill patients with acute kidney injury: a multi-center randomized clinical trial. Crit. Care. 2014. 18(4): 472.

22. Shin M., Rhee H., Kim I., et al. RIFLE classification in geriatric patients with acute kidney injury in the intensive care unit. Clin. Exp. Nephrol. 2015. doi: 10.1007/s10157-015-1165-4.

23. Silversides J., Pinto R., Kuint R., et al. Fluid balance, intradialytic hypotension, and outcomes in critically ill patients undergoing renal replacement therapy: a cohort study. Crit. Care. 2014. 18(6): 624.

24. Singbartl K., Joannidis M. Short-term Effects of Acute Kidney Injury. Crit. Care Clin. 2015. 31(4): 751-62.

25. Sleeman P., Patel N., Lin H., et al. High fat feeding promotes obesity and renal inflammation and protects against post cardiopulmonary bypass acute kidney injury in swine. Crit. Care. 2013. 17(5): R262.

26. Souza S., Matos R., Barros L., et al. Inverse association between serum creatinine and mortality in acute kidney injury. J. Bras. Nefrol. 2014. 36(4): 469-75.

27. Tijink M., Kooman J., Wester M., et al. Mixed Matrix Membranes: A New Asset for Blood Purification Therapies. Blood Purif. 2014. 37: 1-3.

28. Uchino S., Bellomo R., Morimatsu H., et al. External validation of severity scoring systems for acute renal failure using a multinational database. Crit. Care. Med. 2005. 33: 1961-7.

29. Ulusoy S., Arı D., Ozkan G., Cansız M., et al. The Frequency and Outcome of Acute Kidney Injury in a Tertiary Hospital: Which Factors Affect Mortality? Artif. Organs. 2015. 39(7): 597-606.

30. Wang X., Jiang L., Wen Y., et al. Risk factors for mortality in patients with septic acute kidney injury in intensive care units in Beijing, China: a multicenter prospective observational study. Biomed. Res. Int.2014. 172620. doi: 10.1155/2014/172620.

31. Zhao H., Pan X., Gong Z., et al. Risk factors for acute kidney injury in overweight patients with acute type A aortic dissection: a retrospective study. J. Thorac. Dis. 2015. 7(8): 1385-90.


Review

For citations:


Kolesnikov S.V., Borisov A.S., Lomivorotov V.V. Determinants of 28-day mortality in patients with aсute kidney injury following cardiac surgery. Nephrology and Dialysis. 2016;18(3):300-308. (In Russ.)

Views: 37


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1680-4422 (Print)
ISSN 2618-9801 (Online)