Preview

Nephrology and Dialysis

Advanced search

High-frequency ultrasound Doppler system for study of renal blood flow during ischemia/reperfusion of kidney

Abstract

Ischemic injury of the kidney is the leading cause of acute kidney failure (AKF). Using high frequency Doppler technique we explored the central and renal hemodynamics after 40-min ischemia followed by reperfusion (I/R) of the rat kidney. One minute after I/R an essential drop of a total renal blood flow (70% of pre-ischemic values), lowering of the terminal diastolic blood flow rate (67% of pre-ischemic values) and rise of the renal artery resistance index (0,76 before I/R and 0,92 after I/R) were observed. These changes were retained for at least 30 min. At the same time, the changes of the blood flow indexes in abdominal aorta were not significant. Ischemic preconditioning of the kidney (4 cycles of 5-min ischemia followed by 5-min reperfusion each) totally prevented the changes of hemodynamics caused by 40-min I/R. The study of venous output showed very high sensitivity of a renal blood flow to short-term episodes of ischemia.

About the Authors

S. S. Jankauskas
Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University; Research Institute of Mitoengineering, Lomonosov Moscow State University
Russian Federation


D. D. Matsievsky
Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow
Russian Federation


E. Y. Plotnikov
Research Institute of Mitoengineering, Lomonosov Moscow State University; Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University
Russian Federation


D. B. Zorov
Research Institute of Mitoengineering, Lomonosov Moscow State University; Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University
Russian Federation


References

1. Ермоленко В.М. Острая почечная недостаточность // Нефрология: Руководство для врачей / Под ред. И.Е. Тареевой. М.: Медицина, 2000. С. 580-595.

2. Мациевский Д.Д. Ультразвук в экспериментальных исследованиях макро- и микроциркуляции // Бюлл. эксп. биол. мед. 2003. Т. 7. С. 115-118.

3. Мациевский Д.Д. Измерение кровотока в исследованиях макро- и микроциркуляции // Бюлл. эксп. биол. мед. 2004. Т. 12. С. 612-616.

4. Мациевский Д.Д., Тимкина М.И. Применение высокочастотной ультразвуковой доплеровской системы с миниатюрным датчиком для изучения динамических процессов в терминальном сосудистом русле // Региональное кровообращение и микроциркуляция. 2003. Т. 4. С. 71-79.

5. Ярмагомедов А.А. Острая почечная недостаточность // Диализный альманах / Ред. Е. Стецюк, С. Лашутин, В. Чупрасов. СПб.: Элби-СПб, 2005. С. 107-135.

6. Ahmeda A.F., Johns E.J. The regulation of blood perfusion in the renal cortex and medulla by reactive oxygen species and nitric oxide in the anaesthetised rat // Acta. Physiol. 2012. Vol. 204. P. 443-450.

7. Ajis A., Bagnall N.M., Collis M.G. et al. Effect of endothelin antagonists on the renal haemodynamic and tubular responses to ischemia-reperfusion injury in anaesthetised rats // Exp. Physiol. 2003. Vol. 88 (4). P. 483-490.

8. Bonventre J.V., Zuk A. Ischemic acute renal failure: an inflammatory disease? // Kidney Int. 2004. Vol. 66. P. 480-485.

9. Defraigne J.O., Pincemail J., Detry O. et al. Preservation of cortical microcirculation after kidney ischemia-reperfusion: value of an iron chelator // Ann. Vasc. Surg. 1994. Vol. 8 (5) P. 457-467.

10. De Greef K.E., Ysebaert D.K., Dauwe S. et al. Anti-B7-1 blocks mononuclear cell adherence in vasa recta after ischemia // Kidney Int. 2001. Vol. 60 (4). P. 1415-1427.

11. Dikalova A.E., Bikineyeva A.T., Budzyn K. et al. Therapeutic targeting of mitochondrial superoxide in hypertension // Circ. Res. 2010. Vol. 107 (1). P. 106-116.

12. Er F., Nia A.M., Dopp H. et al. Ischemic preconditioning for prevention of contrast medium-induced nephropathy: randomized pilot RenPro Trial (Renal Protection Trial) // Circulation. 2012. Vol. 126 (3). P. 296-303.

13. Hussein A.-A.M., Barakat N., Awadalla A. et al. Systemic and renal haemodynamic changes in renal ischemia/reperfusion injury: impact of erythropoietin // Can. J. Physiol. Pharmacol. 2012. Vol. 90. P. 1535-1543.

14. Kim J., Jang H.S. and Park K.M. Reactive oxygen species generated by renal ischemia and reperfusion trigger protection against subsequent renal ischemia and reperfusion injury in mice. // Am. J. Physiol. Renal. Physiol. 2010. Vol. 298 (1). P. F158-F166.

15. Knight S., Johns E.J. Effect of COX inhibitors and NO on renal hemodynamics following ischemia-reperfusion injury in normotensive and hypertensive rats // Am. J. Physiol. Renal Physiol. 2005. Vol. 289. P. F1072-F1077.

16. Kribben A., Wieder E.D., Wetzels J.F. et al. Evidence for role of cytosolic free calcium in hypoxia-induced proximal tubule injury. // J. Clin. Invest., 1994. Vol. 93 (5). P. 1922-1929.

17. Lameire N. The Pathophysiology of acute renal failure // Crit. Care Clin. 2005. Vol. 21. P. 197-210.

18. Lee H.T., Emala C.W. Protective effects of renal ischemic preconditioning and adenosine pretreatment: role of A(1) and A(3) receptors // Am. J. Physiol. Renal. Physiol. 2000. Vol. 278 (3). P. F380-F387.

19. Lee J., Kim M., Park C. et al. Influence of ascorbic acid on BUN, creatinine, resistive index in canine renal ischemia-reperfusion injury // J. Vet. Sci. 2006. Vol. 7 (1). P. 79-81.

20. Lopau K., Kleinert D., Erler J. et al. Tacrolimus in acute renal failure: does L-arginine-infusion prevent changes in renal hemodynamics? // Transpl. Int. 2000. Vol. 13 (6). P. 436-442.

21. Lopau K., Hefner L., Bender G. et al. Haemodynamic effects of valsartan in acute renal ischaemia/reperfusion injury // Nephrol. Dial. Transplant. 2001. Vol. 16 (8). P. 1592-1597.

22. Nitescu N., Grimberg E., Ricksten S.-E. Effects of N-acetyl-L-cysteine on renal haemodynamics and function in early ischaemia-reperfusion injury in rats // Clin. Exp. Pharmacol. Physiol. 2006. Vol. 33. P. 53-57.

23. Ogawa T., Nussler A.K., Tuzuner E. et al. Contribution of nitric oxide to the protective effects of ischemic preconditioning in ischemia-reperfused rat kidneys // J. Lab. Clin. Med. 2001. Vol. 138 (1). P. 50-58.

24. Olof P., Hellberg A., Källskog O. et al. Red cell trapping and postischemic renal blood flow. Differences between the cortex, outer and inner medulla // Kidney Int. 1991. Vol. 40 (4). P. 625-631.

25. Plotnikov E.Y., Kazachenko A.V., Vyssokikh M.Y. et al. The role of mitochondria in oxidative and nitrosative stress during ischemia/reperfusion in the rat kidney // Kidney Int., 2007. Vol. 72 (12). P. 1493-1502.

26. Plotnikov E.Y., Chupyrkina A.A., Jankauskas S.S. et al. Mechanisms of nephroprotective effect of mitochondria-targeted antioxidants under rhabdomyolysis and ischemia/reperfusion. // Biochim. Biophys. Acta. 2011. Vol. 1812 (1). P. 77-86.

27. Pryor W.A., Squadrito G.L. The chemistry of peroxynitrite: a product from the reaction of nitric oxide with superoxide // Am. J. Physiol., 1995. Vol. 268. P. L699-722.

28. Regner K.R., Zuk A., Van Why S.K. et al. Protective effect of 20-HETE analogues in experimental renal ischemia reperfusion injury // Kidney Int. 2009. Vol. 75 (5). P. 511-517.

29. Ringaard S., Christiansen T., Bak M. et al. Measurement of renal vein blood flow in rats by high-field magnetic resonance // Kidney Int. 1997. Vol. 52 (5). P. 1359-1363.

30. Schrier R.W., Wang W., Poole B. et al. Acute renal failure: definitions, diagnosis, pathogenesis, and therapy // J. Clin. Invest. 2004. Vol. 114. P. 5-14.

31. Shi H., Patschan D., Epstein T. et al. Delayed recovery of renal regional blood flow in diabetic mice subjected to acute ischemic kidney injury // Am. J. Physiol. Renal. Physiol. 2007. Vol. 293. P. F1512-F1517.

32. Solez L., Morel-Maroger L., Sraer J. The morphology of «acute tubular necrosis» in man: analysis of 57 renal biopsies and comparison with the glycerol model // Medicine (Baltimore). 1979. Vol. 58. P. 362-376.

33. Tumlin J., Stacul F., Adam A. et al. Pathophysiology of Contrast-Induced Nephropathy // The Am. J. Cardiol. 2006. Vol. 98. P. 14K-20K.

34. Zimmerhackl L.B., Fretschner M., Steinhausen M. Cyclosporin Reduces Renal Blood Flow Through Vasoconstriction of Arcuate Arteries in the Hydronephrotic Rat Model // Klin. Wochenschr. 1990. Vol. 68. P. 166-174.

35. Zimmerman R.F., Ezeanuna P.U., Kane J.C. et al. Ischemic preconditioning at a remote site prevents acute kidney injury in patients following cardiac surgery // Kidney Int. 2011. Vol. 80 (8). P. 861-867.


Review

For citations:


Jankauskas S.S., Matsievsky D.D., Plotnikov E.Y., Zorov D.B. High-frequency ultrasound Doppler system for study of renal blood flow during ischemia/reperfusion of kidney. Nephrology and Dialysis. 2014;16(1):169-175. (In Russ.)

Views: 27


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1680-4422 (Print)
ISSN 2618-9801 (Online)