Preview

Nephrology and Dialysis

Advanced search

The role of the kidney in hormonal mechanisms of homeostasis

Abstract

The main function of the kidneys is the maintenance of water-salt homeostasis. Hormonal mechanisms of kidney function allow it to participate in the regulation of many body functions. This is achieved by the consistent work of transport systems of the kidneys, and the hormonal (endocrine, paracrine, autocrine) mechanisms. In a brief overview we show the involvement of the kidneys in some physiological and pathological processes which require precise coordination of hormonal and transport systems of the kidneys and the whole body. The peculiarity of involvement of the kidney through angiotensin II in the development of the fetus during pregnancy is described. Flexibility and plasticity of regulation of water-salt metabolism in various forms of pathology can be attributed to these functions of the kidneys to the category of homeostasis.

About the Authors

Y. Y. Bagrov
I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Science, St. Petersburg
Russian Federation


N. B. Manusova
I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Science, St. Petersburg
Russian Federation


References

1. Багров Я.Ю., Манусова Н.Б. Влияние аденозина и допамина на регуляцию водно-солевого обмена амебы A. proteus // Цитология. 2014. T. 56(4). С. 271-276.

2. Baumgartner I., Lerman L.O. Renovascular hypertension: screening and modern management // Eur. Heart J. 2011. Vol. 32(13). P. 1590-1598.

3. Bech J.N., Starklint J., Bentzen H. et al. Renal and hormonal effects of systemic nitric oxide inhibition in patients with congestive heart failure and in healthy control subjects // J. Card. Fail. 2013. Vol. 19(11). P. 776-785.

4. Bunn H.F. Erythropoietin // Cold Spring Harb Perspect. Med. 2013. Vol. 3(3). P. 011619.

5. Cea L.B. Natriuretic peptide family: new aspects // Curr. Med. Chem. Cardiovasc. Hematol. Agents. 2005. Vol. 3(2). P. 87-98.

6. Cerqueira-Gomes M., Polónia J., Brandão F., Ramalhão C. Neuro-hormonal mechanisms in heart failure - from physiopathology to treatment // Rev. Port. Cardiol. 2001. Vol. 20 Suppl 5. P. 99-122.

7. Chappell M.C., Marshall A.C., Alzayadneh E.M., et al. Update on the Angiotensin Converting Enzyme 2-Angiotensin-(1-7)-Mas Receptor Axis: Fetal Programing, Sex Differences, and Intracellular Pathways // Front Endocrinol (Lausanne). 2014. Vol. 9(4). P. 201-205.

8. Citarella M.R., Choi M.R., Gironacci M.M. et al. Urodilatin and dopamine: a new interaction in the kidney // Regul. Pept. 2009. Vol. 153(1-3). P. 19-24.

9. Corriden R., Insel P.A. Basal release of ATP: an autocrine-paracrine mechanism for cell regulation // Sci. Signal. 2010. Vol. 12. 3(104). re1.

10. Elesgaray R., Caniffi C., Savignano L. et al. Renal actions of atrial natriuretic peptide in spontaneously hypertensive rats: the role of nitric oxide as a key mediator // Am. J. Physiol. Renal Physiol. 2012. Vol. 302(11). F1385-F1394.

11. Davison J.M., Lindheimer M.D. Volume homeostasis and osmoregulation in human pregnancy // Baillieres Clin. Endocrinol. Metab. 1989. Vol. 3(2). P. 451-472.

12. Desir G.V. Role of renalase in the regulation of blood pressure and the renal dopamine system // Curr. Opin. Nephrol. Hypertens. 2011. Vol. 20(1). P. 31-36.

13. DiBona G.F. Nervous kidney. Interaction between renal sympathetic. Hypertension // 2000. Vol. 36 (6). P. 1083-1088.

14. Di Sole F. Adenosine and renal tubular function // Curr. Opin. Nephrol. Hypertens. 2008. Vol. 17(4). P. 399-407.

15. Ferrario C.M., Trask A.J., Jessup J.A. Advances in biochemical and functional roles of angiotensin-converting enzyme 2 and angiotensin-(1-7) in regulation of cardiovascular function // Am. J. Physiol. Heart Circ. Physiol. 2005. Vol. 289(6). H2281-H2290.

16. Francois H., Makhanova N., Ruiz P. et al. A role for the thromboxane receptor in L-NAME hypertension // Am. J. Physiol. Renal Physiol. 2008. Vol. 295(4). F1096-F1102.

17. Gersak K., Cvijic M., Cerar L.K. Angiotensin II receptor blockers in pregnancy: a report of five cases // Reprod. Toxicol. 2009. Vol. 28(1). P. 109-112.

18. Harris R.C. Physiologic and pathophysiologic roles of cyclooxygenase-2 in the kidney // Trans. Am. Clin. Climatol. Assoc. 2013. Vol. 124. P. 139-115.

19. Irani R.A., Zhang Y., Blackwell S.C., et al. The detrimental role of angiotensin receptor agonistic autoantibodies in intrauterine growthrestriction seen in preeclampsia // J. Exp. Med. 2009. Vol. 206(12). P. 2809-2822.

20. Karthikeyan V.J., Ferner R.E., Baghdadi S., et al. Are angiotensin-converting enzyme inhibitors and angiotensin receptor blockers safe in pregnancy: a report of ninety-one pregnancies // J. Hypertens. 2011. Vol. 29(2). P. 396-399.

21. Kim G.H. Renal Effects of Prostaglandins and Cyclooxygenase-2 Inhibitors // Electrolyte Blood Press. 2008. Vol. 6 (1). P. 35-41.

22. Kohan D.E. Inscho E.W, Wesson D., Pollock D.M. Physiology of endothelin and the kidney // Compr. Physiol. 2011. Vol. 1(2). P. 883-919.

23. Lu J., Ling Z., Chen W., Du H. Effects of renal sympathetic denervation using saline-irrigated adiofrequency ablation catheter on the activity of the rennin-angiotensin system andendothelin-1 // J.Renin Angiotensin Aldosteron Syst. 2014. Feb 4. Epub ahead of print.

24. Lumbers E.R., Pringle K.G. Roles of the circulating renin-angiotensin-aldosterone system in human pregnancy // Am. J. Physiol. Regul. Integr. Comp. Physiol. 2014. Vol. 306(2). R91-R101.

25. Mamenko M., Zaika O., Pochynyuk O. Direct regulation of ENaC by bradykinin in the distal nephron. Implications for renal sodium handling // Curr. Opin. Nephrol. Hypertens. 2014. Vol. 23(2). P. 122-129.

26. Meyer M., Richter R., Forssmann W.G. Urodilatin, a natriuretic peptide with clinical implications // Eur J Med Res. 1998. Vol. 21. 3(1-2). P. 103-110.

27. Riepe F.G. Pseudohypoaldosteronism // Endocr. Dev. 2013. Vol. 24. P. 86-95.

28. Rocha E Silva M, Beraldo W.T., Rosenfeld G. Bradykinin, hypotensive and smooth muscle stimulating factor released from plasma globulin by snake venoms and by trypsin // Am. J. Physiol. 1949. Vol. 156(2). P. 261-273.

29. Seki H. The role of the renin-angiotensin system in the pathogenesis of preeclampsia - new insights into the renin-angiotensin system in preeclampsia // Med. Hypotheses. 2014. Vol. 82(3). P. 362-367.

30. Seyberth H.W., Schlingmann K.P. Review Bartter - and Gitelman-like syndromes: salt-losing tubulopathies with loop or DCT defects // Pediatr. Nephrol. 2011. Vol. 26(10). P. 1789-1802.

31. Spaggiari E., Heidet L., Grange G., et al. Renin-Angiotensin System Blockers Study Group. Prognosis and outcome of pregnancies exposed to renin-angiotensin system blockers // Prenat. Diagn. 2012. Vol. 32(11). P. 1071-1076.

32. Tkachenko O, Shchekochikhin D, Schrier RW. Hormones and Hemodynamics in Pregnancy // Int. J. Endocrinol. Metab. 2014. Vol. 12(2). e14098.

33. Tower C.L., Lui S., Charlesworth N.R., et al. Differential expression of angiotensin II type 1 and type 2 receptors at the maternal-fetal interface: potential roles in early placental development // Reproduction 2010. Vol. 140(6). P. 931-942.

34. Yang R., Smolders I., Dupont A.G. Blood pressure and renal hemoэdynamic effects of angiotensin fragments // Hypertens. Res. 2011. Vol. 34(6). P. 674-683.

35. Zimmerman D., Burns K.D. Angiotensin-(1-7) in kidney disease: a review of the controversies // Clin. Sci. (Lond). 2012. Vol. 123(6). P. 333-346.


Review

For citations:


Bagrov Y.Y., Manusova N.B. The role of the kidney in hormonal mechanisms of homeostasis. Nephrology and Dialysis. 2014;16(3):322-327. (In Russ.)

Views: 69


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1680-4422 (Print)
ISSN 2618-9801 (Online)