The function profile of γδТ-lymphocytes in patients with IgA-nephropathy
https://doi.org/10.28996/2618-9801-2022-1-72-81
Abstract
About the Authors
D. . NizheharodavaRussian Federation
K. . Komissarov
Russian Federation
E. . Minchenko
Russian Federation
A. . Adamovich
Russian Federation
V. . Pilotovich
Russian Federation
M. . Zafranskaya
Russian Federation
References
1. Berger J., Hinglais N. Les dépôts intercapillaires d’IgA-IgG. J. Urol. Nephrol. 1968; 74: 694-695. PMID: 4180586.
2. Berger J. IgA glomerular deposits in renal disease. Transplant. Proc. 1969; 1: 939-944. PMID: 4107073.
3. Roberts I.S., Cook H.T., Troyanov S. et al. The Oxford classification of IgA nephropathy: pathology definitions, correlations, and reproducibility. Kidney Int. 2009; 76: 546-556. doi: 10.1038/ki.2009.168.
4. Ruszkowski J., Lisowska K., Pindel M. T cells in IgA nephropathy: role in pathogenesis, clinical significance and potential therapeutic target. Clin. Exp. Nephrol. 2019; 23: 291-303. doi: 10.1007/s10157-018-1665-0.
5. Barbour S.J., Espino-Hernandez G., Reich H.N. et al. The MEST score provides earlier risk prediction in lgA nephropathy. Kidney Int. 2016; 89: 167-75. doi: 10.1038/ki.2015.322.
6. Suzuki H., Kiryluk K., Novak J. et al. The pathophysiology of IgA nephropathy. J. Am. Soc. Nephrol. 2011; 22: 1795-803. doi: 10.1681/ASN.2011050464.
7. Kabelitz D. Gamma Delta T Cells (γδ T Cells) in Health and Disease: In Memory of Professor Wendy Havran. Cells. 2020; 9: 1-7. doi: 10.3390/cells9122564.
8. Chang S., Li X. The Role of Immune Modulation in Pathogenesis of IgA Nephropathy. Front. Med. 2020; 7(92): 1-15. doi: 10.3389/fmed.2020.00092.
9. Peters C., Kabelitz D., Wesch D. Regulatory functions of γδ T cells. Cell. Mol. Life Sci. 2018; 75(12): 1-14. DOI: 10.1007/s00018-018-2788-x.
10. Paul S., Giri S., Lal G. Role of gamma-delta (γδ) T Cells in autoimmunity. J. Leukoc. Biol. 2015; 97: 259-271. doi: 10.1189/jlb.3RU0914-443R.
11. Fichtner A.S., Ravens S., Prinz I. Human γδ TCR Repertoires in Health and Disease. Cells. 2020; 9(800): 1-14. doi: 10.3390/cells9040800.
12. Yeo S.C., Cheung C.K., Barratt J. New insights into the pathogenesis of IgA nephropathy. Pediatr. Nephrol. 2018; 33: 763-777. doi: 10.1007/s00467-017-3699-z.
13. Wu H., Clarkson A.R., Knight J.F. Restricted γδ T-cell receptor repertoire in IgA nephropathy renal biopsies. Kidney Int. 2001; 60: 1324-31. doi: 10.1046/j.1523-1755.2001.00937.x.
14. Levey A.S., Stevens L.A., Schmid C.H. et al. Chronic Kidney Disease Epidemiology Collaboration. A New Equation to Estimate Glomerular Filtration Rate. Ann. Intern. Med. 2009; 150(5): 604-612. doi: 10.7326/0003-4819-150-9-200905050-00006.
15. Trimarchi H. Oxford Classification of IgA nephropathy 2016: an update from the IgA Nephropathy Classification Working Group. Kidney Int. 2017; 91(5): 1014-1021. doi: 10.1016/j.kint.2017.02.003.
16. Suzuki H., Raska M., Yamada K. et al. Cytokines alter IgA1 O-glycosylation by dysregulating C1GalT1 and ST6GalNAc-II enzymes. J. Biol. Chem. 2014; 289: 5330-9. doi: 10.1074/jbc.M113.512277.
17. Lin J.-R., Wen J., Zhang H. et al. Interleukin-17 promotes the production of underglycosylated IgA1 in DAKIKI cells. Ren. Fail. 2018; 40: 60-7. doi: 10.1080/0886022X.2017.1419972.
18. Toyabe S., Harada W., Uchiyama M. Oligoclonally expanding gamma delta T lymphocytes induce IgA switching in IgA nephropathy. Clin. Exp. Immunol. 2001; 124: 110-7. doi: 10.1046/j.1365-2249.2001.01494.x.
19. Gibbings D., Befus A.D. CD4 and CD8: An inside-out coreceptor model for innate immune cells. J. Leukoc. Biol. 2009; 86: 251-259. doi: 10.1189/jlb.0109040.
20. Fonseca S., Pereira V., Lau C. Human Peripheral Blood Gamma Delta T Cells: Report on a Series of Healthy Caucasian Portuguese Adults and Comprehensive Review of the Literature. Cells. 2020; 9: 729. doi: 10.3390/cells9030729.
21. Montaldo E., Zotto G.D., Chiesa M.D. Human NK Cell Receptors/Markers: A Tool to Analyze NK Cell Development, Subsets and Function. Cytometry Part A. 2013; 83A: 702-713. doi: 10.1002/cyto.a.22302.
22. Van Acker H.H., Capsomidis A., Smits E.L. et al. CD56 in the Immune System: More Than a Marker for Cytotoxicity? Front. Immunol. 2017; 8: 892. doi: 10.3389/fimmu.2017.00892.
23. Vantourout P. and Hayday A. Six-of-the-best: unique contributions of γδ T cells to immunology. Nat. Rev. Immunol. 2013; 13(2): 88-100. doi:10.1038/nri3384.
24. Gogoi D. and Chiplunkar S.V. Targeting gamma delta T cells for cancer immunotherapy: Bench to bedside. Indian J. Med. Res. 2013; 138: 174-180. doi: PMID: 24434328.
25. Mahnke Y.D., Brodie T.M., Sallusto F. et al. The who’s who of T-cell differentiation: Human memory T-cell subsets. Eur. J. Immunol. 2013; 43: 2797-2809. doi: 10.1002/eji.201343751.
26. Lalor S.J. and McLoughlin R.M. Memory gd T Cells-Newly Appreciated Protagonists in Infection and Immunity. Trends Immunol. 2016; 37(10): 690-702. doi: 10.1016/j.it.2016.07.006.
27. Rosenkranz A., Knight S., Sethi S. et al. Regulatory interactions of αβ and γδ T cells in glomerulonephritis. Kidney Int. 2000; 58(3): 1055-1066. doi: 10.1046/j.1523-1755.2000.00263.x.
28. Falk M.C., Ng G., Zhang G.Y. et al. Infiltration of the kidney by αβ and γδ T cells: effect on progression in IgA nephropathy. Kidney Int. 1995; 47: 177-85. doi: 10.1038/ki.1995.21.
29. Lafayette R.A., Canetta P.A., Rovin B.H. et al. A randomized, controlled trial of rituximab in IgA nephropathy with proteinuria and renal dysfunction. J. Am. Soc. Nephrol. 2017; 28: 1306-13. doi: 10.1681/ASN.2016060640.
Review
For citations:
Nizheharodava D., Komissarov K., Minchenko E., Adamovich A., Pilotovich V., Zafranskaya M. The function profile of γδТ-lymphocytes in patients with IgA-nephropathy. Nephrology and Dialysis. 2022;24(1):72-81. (In Russ.) https://doi.org/10.28996/2618-9801-2022-1-72-81