Микробиота кишечника и заболевания почек. Обзор литературы
https://doi.org/10.28996/2618-9801-2024-3-283-302
Аннотация
Технологические достижения последних лет привели к значительному росту понимания роли микробных сообществ, населяющих организм человека. Микробиота кишечника представляет собой одну из самых разнообразных микробиот организма человека и включает более 35 000 видов бактерий с 10 миллионами генов. По этой причине многие авторы называют микробиоту кишечника дополнительным органом. Микроорганизмы, населяющие кишечник, представляют собой динамическую экосистему, состав которой тем не менее относительно постоянен у каждого человека, но в то же время существенно зависит от экзо- и эндогенных факторов. Коллективно они функционируют как «второй геном», оказывая глубокое влияние на метаболические пути хозяина, управляя сложным гомеостатическим равновесием организма. Исследования механизмов, лежащих в основе взаимодействия «микроб–хозяин» как в здоровом состоянии, так и в ходе заболевания, являются предметом научного интереса во всем мире. Микробиота кишечника заметно изменяется при ХБП, а накопленные данные подтверждают теорию о том, что дисбиоз в значительной степени способствует прогрессированию почечной недостаточности. Уремические токсины кишечного происхождения, снижение синтеза короткоцепочечных жирных кислот, изменение pH кишечной среды, нарушение кишечного барьера и, как следствие, нарастание системного воспаления – неполный перечень патологических процессов, происходящих при непосредственном участии кишечной микробиоты. Описанные изменения у пациентов с заболеваниями почек требуют дальнейшего изучения их взаимосвязи с патогенезом, механизмами прогрессирования заболевания. Используемые для изучения состава микробиома: метагеномный и метатранскриптомный анализы, дополненные анализом белков, метаболитов и иммунома, а также механистическими экспериментами в модельных системах значительно улучшили нашу способность понимать структуру и функции микробиома, существенно расширяя наши знания о микробных сообществах и их влиянии на метаболизм. Целью множества исследований в настоящее время является рассмотрение этой двунаправленной связи между представителями микробиоты и хозяином и потенциальных вмешательств, которые могут помочь в восстановлении мутуалистических отношений.
Ключевые слова
Об авторах
Е. В. ШутовРоссия
Шутов Евгений Викторович – доктор медицинских наук, руководитель межокружного нефрологического центра
125284, Москва, 2-й Боткинский проезд, д. 5
125284, Москва, 2-ой Боткинский проезд, д. 5, корпус 11
С. А. Большаков
Россия
Большаков Степан Алексеевич – младший научный сотрудник, врач-терапевт
125284, Москва, 2-й Боткинский проезд, д. 5
Т. А. Макарова
Россия
Макарова Татьяна Александровна – врач-нефролог
125284, Москва, 2-й Боткинский проезд, д. 5
И. А. Федосеева
Россия
Федосеева Ирина Анатольевна – врач-нефролог
125284, Москва, 2-й Боткинский проезд, д. 5
Д. А. Теплюк
Россия
Теплюк Дарья Андреевна – врач-гастроэнтеролог
125284, Москва, 2-й Боткинский проезд, д. 5
119991, Москва, ул. Трубецкая, д. 8, стр. 2
Ч. С. Павлов
Россия
Павлов Чавдар Савович – доктор медицинских наук, заведующий кафедрой терапии
125284, Москва, 2-й Боткинский проезд, д. 5
119991, Москва, ул. Трубецкая, д. 8, стр. 2
С. М. Сороколетов
Россия
Сороколетов Сергей Михайлович – доктор медицинских наук, заместитель главного врача по терапевтической помощи
125284, Москва, 2-й Боткинский проезд, д. 5
Список литературы
1. Jandhyala S., Talukdar R., Subramanyam C. et al. Role of the normal gut microbiota. World J. Gastroenterol. 2015. 21:8787-8803. doi: 10.3748/wjg.v21.i29.8787.
2. Ley R., Peterson D., Gordon J. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell. 2006. 124:837-848. doi: 10.1016/j.cell.2006.02.017.
3. Ramezani A., Raj D. The gut microbiome, kidney disease, and targeted interventions. J Am Soc Nephrol. 2014. 25:657-670. doi: 10.1681/ASN.2013080905
4. Sender R., Fuchs S., Milo R. Revised Estimates for the Number of Human and Bacteria Cells in the Body. PLoS Biol. 2016. 14(8):e1002533. doi: 10.1371/journal.pbio.1002533.
5. Kuczynski J., Lauber C., Walters W. et al. Experimental and analytical tools for studying the human microbiome. Nat Rev Genet. 2012. 13:47-58. doi: 10.1038/2Fnrg3129
6. Conlan S., Kong H., Segre J. Species-level analysis of DNA sequence data from the NIH Human Microbiome Project. PLoS One. 2012. 7(10):e47075. doi: 10.1371/journal.pone.0047075.
7. Peterson J., Garges S., Giovanni M. et al. The NIH Human Microbiome Project. Genome Res. 2009. 19:2317-2323. doi: 10.1101/2Fgr.096651.109
8. Blaser M. Harnessing the power of the human microbiome. Proc Natl Acad Sci USA. 2010. 107:6125-6126. doi: 10.1073/2Fpnas.1002112107
9. Grice E., Segre J. The human microbiome: our second genome. Annu. Rev. Genom. Hum. Genet. 2012. 13:151-170. doi: 10.1146/annurev-genom-090711-163814
10. Ursell L., Clemente J., Rideout J. et al. The interpersonal and intrapersonal diversity of human-associated microbiota in key body sites. J Allergy Clin Immunol. 2012. 129:1204-1208. doi: 10.1016/j.jaci.2012.03.010.
11. Johnson C., Versalovic J. The human microbiome and its potential importance to pediatrics. Pediatrics. 2012. 129:950-960. doi: 10.1542/peds.2011-2736.
12. Choo J., Leong L., Rogers G. Sample storage conditions significantly influence faecal microbiome profiles. Sci Rep. 2015. 17:5:16350. doi: 10.1038/srep16350.
13. Clooney A., Fouhy F., Sleator R. et al. Comparing Apples and Oranges?: Next Generation Sequencing and Its Impact on Microbiome Analysis. PLoS One. 2016. 11(2):e0148028. doi: 10.1371/journal.pone.0148028.
14. Han D., Gao P., Li R. et al. Multicenter assessment of microbial community profiling using 16S rRNA gene sequencing and shotgun metagenomic sequencing. Journal of Advanced Research. 2020. 26:111-121. doi: 10.1016/j.jare.2020.07.010.
15. Lim M., Song E., Kim S. et al. Comparison of DNA extraction methods for human gut microbial community profiling. Systematic and applied microbiology. Syst Appl Microbiol. 2018. 41(2):151-157. doi: 10.1016/j.syapm.2017.11.008.
16. Sinha R., Abu-Ali G., Vogtmann E. et al. Quality Control (MBQC) project consortium. Nat Biotechnol. 2017 Nov;35(11):1077-1086. doi: 10.1038/nbt.3981.
17. Watson E., Giles J., Scherer B. et al. Human faecal collection methods demonstrate a bias in microbiome composition by cell wall structure. Scientific Reports. 2019. 9(1):16831. doi: 10.1038/s41598-019-53183-5.
18. Tourlousse D., Narita K., Miura T. et al. Validation and standardization of DNA extraction and library construction methods for metagenomics-based human fecal microbiome measurements. Microbiome. 2021. 9(1):95. doi: 10.1186/s40168-021-01048-3.
19. Yang F., Sun J., Luo H. et al. Assessment of fecal DNA extraction protocols for metagenomic studies. GigaScience. 2020. № 7 (9). C. 1-12. doi: 10.1093/gigascience/giaa071
20. Ye S., Siddle K., Park D. et al. Benchmarking Metagenomics Tools for Taxonomic Classification. Cell. 2019. № 4 (178). C. 779. doi: 10.1016/j.cell.2019.07.010
21. Rinninella E., Raoul P., Cintoni M. et al. What is the Healthy Gut Microbiota Composition? A Changing Ecosystem across Age, Environment, Diet, and Diseases. Microorganisms. 2019. 7:14. doi:10.3390/microorganisms7010014.
22. Auchtung, T., Fofanova Y., Stewart J. et al. Investigating colonization of the healthy adult gastrointestinal tract by fungi. mSphere. 2018. 3(2):e00092-18. doi: 10.1128/mSphere.00092-18.
23. Lozupone C., Stombaugh J., Gordon J. et al. Diversity, stability and resilience of the human gut microbiota. Nature. 2012. 489:220-230. doi: 10.1038/nature11550.
24. Flint H., Scott K., Louis P. et al. The role of the gut microbiota in nutrition and health. Nat. Rev. Gastroenterol. Hepatol. 2012. 9:577-589. doi: 10.1038/nrgastro.2012.156.
25. Milani C., Duranti S., Bottacini F. et al. The first microbial colonizers of the human gut: composition, activities, and health implications of the infant gut microbiota. Microbiol. Mol. Biol. Rev. 2017. 81:e00036-00017. doi: 10.1128/MMBR.00036-17.
26. Yatsunenko T., Rey F., Manary M. et al. Human gut microbiome viewed across age and geography. Nature. 2012. 486:222-227. doi: 10.1038/nature11053
27. Guigoz Y., Doré J., Schiffrin E. The inflammatory status of old age can be nurtured from the intestinal environment. Curr. Opin. Clin. Nutr. Metab. Care. 2008. 11:13-20. doi: 10.1097/MCO.0b013e3282f2bfdf.
28. Wu G., Chen J., Hoffman C. et al. Linking long-term dietary patterns with gut microbial enterotypes. Science. 2011. 334:105-108. doi: 10.1126/science.1208344
29. Ou J., Carbonero F., Zoetendal E. et al. Diet, microbiota, and microbial metabolites in colon cancer risk in rural Africans and African Americans. Am. J. Clin. Nutr. 2013. 98:111-120. doi: 10.3945/ajcn.112.056689
30. Arumugam M., Raes J., Pelletier E. et al. Enterotypes of the human gut microbiome. Nature. 2011. № 7346 (473). C. 174. doi: 10.1038/nature09944.
31. Costea P., Hildebrand F., Manimozhiyan A. et al. Enterotypes in the landscape of gut microbial community composition. Nature microbiology. 2018. № 1 (3). C. 8. doi: 10.1038/s41564-017-0072-8.
32. Bulygin I., Shatov V., Rykachevskiy A et al. Absence of enterotypes in the human gut microbiomes reanalyzed with non-linear dimensionality reduction methods. PeerJ. 2023. (9). doi:10.7717/peerj.15838.
33. Chen T.., Long W., Zhang C. et al. Fiber-utilizing capacity varies in Prevotella - versus Bacteroides-dominated gut microbiota. Scientific Reports. 2017.№1 (7). doi:10.1038/s41598-017-02995-4.
34. Cheng M., Ning K. Stereotypes About Enterotype: the Old and New Ideas. Genomics, Proteomics & Bioinformatics. 2019. № 1 (17). C. 4. doi:10.1016/j.gpb.2018.02.004.
35. Minot S., Bryson A., Chehoud C. et al. Rapid evolution of the human gut virome. Proc. Natl. Acad. Sci. U. S. A. 2013. 110:12450-12455. doi:10.1073/pnas.1300833110
36. Iliev I.D., Leonardi I. Fungal dysbiosis: immunity and interactions at mucosal barriers. Nat. Rev. Immunol. 2017. 17:635-646. doi:10.1038/nri.2017.55
37. Kamada N., Chen G., Inohara N. et al. Control of Pathogens and Pathobionts by the Gut Microbiota. Nature immunology. 2013. № 7 (14). C. 685. doi:10.1038/ni.2608.
38. Panda S., Guarner F., Manichanh C. Structure and functions of the gut microbiome. Endocrine, metabolic & immune disorders drug targets. 2014. № 4 (14). C. 290-299. doi:10.2174/1871530314666140714120744.
39. Clarke G., Stilling R.M., Kennedy P.J. et al. Minireview: Gut microbiota: The neglected endocrine organ. Mol. Endocrinol. 2014. 28:1221-1238. doi:10.1210/me.2014-1108
40. Salvadori M., Tsalouchos A. Microbiota, renal disease and renal transplantation. World J. Transplant. Baishideng Publishing Group Inc, 2021. Vol. 11, № 3. P. 16. doi:10.5500/wjt.v11.i3.16.
41. Gao Y., Li W., Huang X. et al. Advances in Gut Microbiota-Targeted Therapeutics for Metabolic Syndrome. Microorganisms. 2024. 12(5):851. doi:10.3390/microorganisms12050851.
42. Farahbod K., Slouha E., Gerts A. et al. The Effects of Diet Intervention on the Gut Microbiota in Type 2 Diabetes Mellitus: A Systematic Review. Cureus. 2024. 16(3):e56737. doi:10.7759/cureus.56737
43. Liu X., Liu D., Tan C. et al. Gut microbiome-based machine learning for diagnostic prediction of liver fibrosis and cirrhosis: a systematic review and meta-analysis. BMC Med Inform Decis Mak. 2023. 23(1):294. doi:10.1186/s12911-023-02402-1
44. Simenhoff L., Dunn R., Zollner G. et al. Biomodulation of the toxic and nutritional effects of small bowel bacterial overgrowth in end-stage kidney disease using freeze-dried Lactobacillus acidophilus. Miner Electrolyte Metab. 1996; 22:92-96.
45. Wu W., Gao S., Chou C., et al. Integrative metagenomic and metabolomic analyses reveal severity-specific signatures of gut microbiota in chronic kidney disease. Theranostics. 2020. 10:5398-5411. doi:10.7150/thno.41725
46. Al Khodor S., Shatat F. Gut microbiome and kidney disease: A bidirectional relationship. Pediatr. Nephrol. 2017. 32:921-931. doi:10.1007/s00467-016-3392-7
47. Yang T., Richards E., Pepine C. et al. The gut microbiota and the brain-gut-kidney axis in hypertension and chronic kidney disease. Nat. Rev. Nephrol. 2018. 14:442-456. doi:10.1038/s41581-018-0018-2
48. Stanford J., Charlton K., Stefoska-Needham A. et al. The gut microbiota profile of adults with kidney disease and kidney stones: a systematic review of the literature. BMC Nephrol. 2020. 21:215. doi:10.1186/s12882-020-01805-w
49. Vaziri N., Wong J., Pahl M et al. Chronic kidney disease alters intestinal microbial flora. Kidney Int. 2013. 83:308-315. doi:10.1038/ki.2012.345
50. Chen Y., Chen D., Chen L. et al. Microbiome–metabolome reveals the contribution of gut –kidney axis on kidney disease. J. Transl. Med. 2019. 17:5. doi:10.1186/s12967-018-1756-4
51. Ren Z., Fan Y., Li A. et al. Alterations of the human gut microbiome in chronic kidney disease. Adv Sci. 2020. 7:2001936. doi:10.1002/advs.202001936.
52. Shah B., Allegretti S., Nigwekar U. et al. Blood microbiome profile in CKD: a pilot study. CJASN. 2019. 14:692-701. doi:10.2215/CJN.12161018.
53. Merino-Ribas A., Araujo R., Pereira L., et al. Vascular calcification and the gut and blood microbiome in chronic kidney disease patients on peritoneal dialysis: a pilot study. Biomolecules. 2022. 12:867. doi:10.3390/biom12070867
54. Sciarra F., Franceschini E., Campolo F., et al. The diagnostic potential of the human blood microbiome: are we dreaming or awake? Int J Mol Sci. 2023. 24:10422. doi:10.3390/ijms241310422
55. Lelouvier B., Servant F., Païssé S. et al. Changes in blood microbiota profiles associated with liver fibrosis in obese patients: a pilot analysis. Hepatology. 2016. 64:2015-27. doi:10.1002/hep.28829.
56. Kramer H., Kuffel G., Thomas-White K., et al. Diversity of the midstream urine microbiome in adults with chronic kidney disease. Int Urol Nephrol. 2018. 50:1123-30. doi:10.1007/s11255-018-1860-7.
57. Magliocca G., Mone P., Di lorio R. et al. Short-chain fatty acids in chronic kidney disease: focus on inflammation and oxidative stress regulation. Int. J. Mol. Sci. 2022. 23. doi:10.3390/ijms23105354
58. Castillo-Rodriguez E., Fernandez-Prado R., Esteras R. et al. Impact of Altered Intestinal Microbiota on Chronic Kidney Disease Progression. Toxins (Basel). 2018. 10(7):300. doi: 10.3390/toxins10070300.
59. Popkov V., Zharikova A., Demchenko E. et al. Gut microbiota as a source of uremic toxins. Int. J. Mol. Sci. 2022. 23. doi:10.3390/ijms23010483
60. Lisowska-Myjak B. Uremic toxins and their effects on multiple organ systems. Nephron Clin. Pract. 2014. 128:303-311. doi:10.1159/000369817
61. Cunha R., Azevedo C., Falconi C. et al. The interplay between uremic toxins and albumin, membrane transporters and drug interaction. Toxins. 2022. 14:177. doi:10.3390/toxins14030177
62. Evenepoel P, Meijers B., Bammens B. et al. Uremic toxins originating from colonic microbial metabolism. Kidney Int. 2009. 76:S12-S19. doi:10.1038/ki.2009.402.
63. Wu I., Lin C., Chang L. et al. Gut microbiota as diagnostic tools for mirroring disease progression and circulating nephrotoxin levels in chronic kidney disease: discovery and validation study. Int J Biol Sci. 2020. 16:420-434. doi:10.7150/ijbs.37421.
64. Schepers E., Meert N., Glorieux G. et al. Pcresylsulphate, the main in vivo metabolite of p-cresol, activates leucocyte free radical production. Nephrol Dial Transplant. 2007. 22(2):592-596. doi: 10.1093/ndt/gfl584
65. Poveda J., Sanchez-Nino M., Glorieux G. et al. P-Cresyl sulphate has pro-inflammatory and cytotoxic actions on human proximal tubular epithelial cells, Nephrol. Dial. Transpl. 2014. 29(1):56-64. doi:10.1093/ndt/gft367.
66. Sun C., Chang S., Wu M. Suppression of Klotho expression by protein-bound uremic toxins is associated with increased DNA methyltransferase expression and DNA hypermethylation. Kidney Int. Elsevier. 2012. Vol. 81, № 7. P. 640-650. doi:10.1038/ki.2011.445.
67. Shiba T., Kawakami K., Sasaki T. et al. Effects of intestinal bacteria-derived p-cresyl sulfate on Th1-type immune response in vivo and in vitro. Toxicol Appl Pharmacol. 2014. 274:191-199. doi:10.1016/j.taap.2013.10.016.
68. Mutsaers H., Caetano-Pinto P., Seegers A. et al. Proximal tubular efflux transporters involved in renal excretion of p-cresyl sulfate and p-cresyl glucuronide: Implications for chronic kidney disease pathophysiology. Toxicol. Vitr. Pergamon, 2015. Vol. 29, № 7. P. 1868-1877. doi:10.1016/j.tiv.2015.07.020.
69. Tan X., Cao X., Zou J. et al. Indoxyl sulfate, a valuable biomarker in chronic kidney disease and dialysis. Hemodial. Int. 2017. 21:161-167. doi:10.1111/hdi.12483
70. Enomoto A., Takeda M., Tojo A. et al. Role of organic anion transporters in the tubular transport of indoxyl sulfate and the induction of its nephrotoxicity. J. Am. Soc. Nephrol. Lippincott Williams and Wilkins. 2002. 13(7):1711-1720. doi:10.1097/01.asn.0000022017.96399.b2.
71. Stockinger B., Meglio P., Gialitakis M. et al. The aryl hydrocarbon receptor: multitasking in the immune system. Annu Rev Immunol. 2014. 32:403-432.36. doi:10.1146/annurev-immunol-032713-120245.
72. Lemos D., McMurdo M., Karaca G. et al. Interleukin-1β activates a MYC-dependent metabolic switch in kidney stromal cells necessary for progressive tubulointerstitial fibrosis. J Am Soc Nephrol. 2018. 29:1690-1705. doi:10.1681/ASN.2017121283.
73. Lee C., Kuo C., Chen Y. et al. Factors associated with blood concentrations of indoxyl sulfate and p—cresol in patients undergoing peritoneal dialysis peritoneal dialysis international. J Int Soc Peritoneal Dialysis. 2010. 30:456-463. doi:10.3747/pdi.2009.00092.
74. Pletinck A., Glorieux G., Schepers E. et al. Protein-bound uremic toxins stimulate crosstalk between leukocytes and vessel wall. J Am Soc Nephrol. 2013. 24(1981):1994. doi:10.1681/ASN.2012030281.
75. Shimizu H., Bolati D., Adijiang A. et al. NF-κb plays an important role in indoxyl sulfate-induced cellular senescence, fibrotic gene expression, and inhibition of proliferation in proximal tubular cells. Am. J. Physiol. - Cell Physiol. American Physiological Society Bethesda, MD, 2011. 301(5):1201-1212. doi:10.1152/ajpcell.00471.
76. de Melo M., Curi T., Miyasaka C. et al. Effect of indole acetic acid on oxygen metabolism in cultured rat neutrophil. General Pharmacol Vascul Syst. 1998. 31:573-578. doi:10.1016/s0306-3623(98)00032-9.
77. Salopek-Sondi B., Piljac-Žegarac J., Magnus V. et al. Free radical–scavenging activity and DNA damaging potential of auxins IAA and 2-methyl-IAA evaluated in human neutrophils by the alkaline comet assay. J Biochem Mol Toxicol. 2010. 24:165-173. doi:10.1002/jbt.20323.
78. Dou L, Sallée M., Cerini C. et al. The cardiovascular effect of the uremic solute indole-3 acetic acid. J Am Soc Nephrol. 2015. 26:876-887. doi:10.1681/ASN.2013121283.
79. Pallister T., Jackson M., Martin T. et al. Hippurate as a metabolomic marker of gut microbiome diversity: Modulation by diet and relationship to metabolic syndrome. Sci. Reports 2017 71. Nature Publishing Group, 2017. 7(1):1-9. doi:10.1038/s41598-017-13722-4.
80. Sun B., Wang X., Liu X. et al. Hippuric Acid Promotes Renal Fibrosis by Disrupting Redox Homeostasis via Facilitation of NRF2–KEAP1–CUL3 Interactions in Chronic Kidney Disease. Antioxidants 2020. 9(9):783. doi: 10.3390/antiox9090783.
81. Saar-Kovrov V., Zidek W., Orth-Alampour S. et al. Reduction of protein-bound uraemic toxins in plasma of chronic renal failure patients: A systematic review. J. Intern. Med. John Wiley & Sons, Ltd, 2021. 290(3):499-526. doi:10.1111/joim.13248
82. Manor O., Zubair N., Conomos M. et al. A multi-omic association study of trimethylamine N-oxide. Cell Rep. 2018. 24:935-946. doi:10.1016/j.celrep.2018.06.096
83. Lakshmi G., Yadav A., Mehlawat N. et al. Gut microbiota derived trimethylamine N-oxide (TMAO) detection through molecularly imprinted polymer based sensor. Sci. Rep. 2021. 11:1338. doi:10.1038/s41598-020-80122-6
84. Tang W., Wang Z., Kennedy D. et al. Gut Microbiota-Dependent Trimethylamine N-Oxide (TMAO) Pathway Contributes to Both Development of Renal Insufficiency and Mortality Risk in Chronic Kidney Disease. Circ. Res. Lippincott Williams & WilkinsHagerstown. 2015. 116(3):448–455. doi:10.1161/CIRCRESAHA.116.305360.
85. Sun G., Yin Z., Liu N. et al. Gut microbial metabolite TMAO contributes to renal dysfunction in a mouse model of diet-induced obesity. Biochem. Biophys. Res. Commun. Academic Press. 2017. 493(2):964–970. doi:10.1016/j.bbrc.2017.09.108.
86. Tain Y., Hsu C. Toxic Dimethylarginines: Asymmetric Dimethylarginine (ADMA) and Symmetric Dimethylarginine (SDMA). Toxins. Multidisciplinary Digital Publishing Institute. 2017. 9(3):92. doi:10.3390/toxins9030092.
87. Caglar K., Yilmaz M., Sonmez A. et al. ADMA, proteinuria, and insulin resistance in non-diabetic stage I chronic kidney disease. Kidney Int. Elsevier. 2006. 70(4):781–787. doi:10.1038/sj.ki.5001632.
88. Eiselt J., Rajdl D., Racek J. et al. Asymmetric Dimethylarginine and Progression of Chronic Kidney Disease - a One-Year Follow-Up Study. Kidney Blood Press. Res. S. Karger AG. 2014. 39(1):50–57. doi:10.1159/000355776.
89. Zhang D., Liu J., Liu S. et al. The differences of asymmetric dimethylarginine removal by different dialysis treatments. Ren. Fail. Ren Fail. 2010. 32(80:935–940. doi:10.3109/0886022X.2010.502281.
90. Yu F., Feng X., Li X. et al. Gut-derived metabolite phenylacetylglutamine and white matter hyperintensities in patients with acute ischemic stroke. Front. Aging Neurosci. 2021. 13675158. doi:10.3389/fnagi.2021.675158
91. Ramezani A., Massy Z., Meijers B. et al. Role of the gut microbiome in uremia: a potential therapeutic target. Am. J. Kidney Dis. 2016. 67:483-498. doi:10.1053/j.ajkd.2015.09.027.
92. Gryp T., Vanholder R., Vaneechoutte M. et al. p-Cresyl Sulfate. Toxins. 2017. 9(2):52. doi:10.3390/toxins9020052.
93. Wyatt R., Julian B. IgA nephropathy. N Engl J Med. 2013. 368:2402-2414. doi:10.1056/NEJMra1206793
94. Suzuki H., Kiryluk K., Novak J. et al. The pathophysiology of IgA nephropathy. J Am Soc Nephrol. 2011. 22:1795-1803. doi:10.1681/ASN.2011050464
95. Floege J., Feehally J. The mucosa-kidney axis in IgA nephropathy. Nat Rev Nephrol. 2016. 12(3):147-56. doi:10.1038/nrneph.2015.208.
96. Olive C., Allen A., Harper S. et al. Expression of the mucosal y T cell receptor V region repertoire in patients with IgA nephropathy. Kidney Int. 1997. 52(4):1047-1053. doi:10.1038/ki.
97. Mccarthy D., Julie K., Cheryl W. et al. Mice overexpressing BAFF develop a commensal flora-dependent, IgA-associated nephropathy. J Clin Invest. 2011. 121(10):3991. doi:10.1172/JCI45563
98. Hu X., Du J., Xie Y. et al. Fecal microbiota characteristics of Chinese patients with primary IgA nephropathy: a crosssectional study. BMC Nephrol. 2020. 21:97. doi:10.1186/s12882-020-01741-9
99. De Angelis M., Montemurno E., Piccolo M. et al. Microbiota and metabolome associated with immunoglobulin a nephropathy (IgAN) PLoS ONE. 2014. 9:e99006. doi:10.1371/journal.pone.0099006
100. Qin W., Zhong X., Fan J. et al. External suppression causes the low expression of the Cosmc gene in IgA nephropathy. Nephrol Dialysis Transpl Off Publ Eur Dialysis Transpl Assoc Eur Renal Assoc. 2008. 23:1608-1614. doi:10.1093/ndt/gfm781.
101. Ju T, Cummings R. A unique molecular chaperone Cosmc required for activity of the mammalian core 1 beta 3-galactosyltransferase. Proc Natl Acad Sci USA. 2002. 99:16613-16618. doi:10.1073/pnas.262438199.
102. Zhong Z., Tan J., Tan L. et al. Modifications of gut microbiota are associated with the severity of IgA nephropathy in the Chinese population. Int Immunopharmacol. 2020. 89:107085. doi:10.1016/j.intimp.2020.107085
103. Gleeson P., Benech N., Chemouny J. et al. The gut microbiota posttranslationally modifies IgA1 in autoimmune glomerulonephritis. Sci. Transl. Med. American Association for the Advancement of Science. 2024. 16(740):eadl6149. doi:10.1126/scitranslmed.adl6149.
104. Zhu Y., He H., Sun W. et al. IgA nephropathy: gut microbiome regulates the production of hypoglycosilated IgA1 via the TLR4 signaling pathway. Nephrol. Dial. Transplant. 2024. gfae052. doi:10.1093/ndt/gfae052.
105. Chemouny J., Gleeson P., Abbad L. et al. Modulation of the microbiota by oral antibiotics treats immunoglobulin a nephropathy in humanized mice. Nephrol Dial Transpl. 2019. 34(1135):1144. doi:10.1093/ndt/gfy323.
106. Han L., Fang X., He Y. et al. Forefronts symposium iga nephropathy, the gut microbiota, and gut−kidney crosstalk. Kidney Int Rep. 2016. 1(3):189-96. doi:10.1016/j.ekir.2016.08.002
107. Lauriero G., Abbad L., Vacca M. et al. Fecal Microbiota Transplantation Modulates Renal Phenotype in the Humanized Mouse Model of IgA Nephropathy. Front. Immunol. Frontiers Media S.A., 2021. 12:694787. doi:10.3389/fimmu.2021.694787.
108. Zhi W., Song W., Abdi Y. et al. Fecal Capsule as a Therapeutic Strategy in IgA Nephropathy: A Brief Report. Front. Med. Frontiers Media S.A. 2022. 9:914250. doi:10.3389/fmed.2022.914250.
109. Zhao J., Bai M., Yang X. et al. Alleviation of refractory IgA nephropathy by intensive fecal microbiota transplantation: the first case reports. Ren. Fail. Taylor & Francis. 2021. 43(1):928. doi:10.1080/0886022X.2021.1936038.
110. Xie Y., Bowe B., Mokdad A. et al. Analysis of the global burden of disease study highlights the global, regional, and national trends of chronic kidney disease. Kidney Int. 2018. 94(567):581. doi:10.1016/j.kint.2018.04.011.
111. Gross J., de Azevedo M., Silveiro S. et al. Diabetic nephropathy: diagnosis, prevention, and treatment. Diabetes Care. 2005. 28(164):176. doi:10.2337/diacare.28.1.164.
112. Urushihara M, Kagami S. Role of the intrarenal renin–angiotensin system in the progression of renal disease. Pediatr Nephrol. 2017. 32(1471):1479. doi:10.1007/s00467-016-3449-7
113. Chen-chen L., Ze-bo H., Wang R. et al. Gut microbiota dysbiosis-induced activation of the intrarenal renin–angiotensin system is involved in kidney injuries in rat diabetic nephropathy. Acta Pharmacol Sin. 2020. 41(1111):1118. doi:10.1038/s41401-019-0326-5
114. Pluznick J., Protzko R., Gevorgyan H. et al. Olfactory receptor responding to gut microbiota-derived signals plays a role in renin secretion and blood pressure regulation. Proc Natl Acad Sci. 2013. 110:4410-4415. doi:10.1073/pnas.1215927110
115. Hu Z., Lu J., Chen P. et al. Dysbiosis of intestinal microbiota mediates tubulointerstitial injury in diabetic nephropathy via the disruption of cholesterol homeostasis. Theranostics. 2020. 10:2803-2816. doi:10.7150/thno.40571
116. Lu J., Chen P., Zhang J. et al. GPR43 deficiency protects against podocyte insulin resistance in diabetic nephropathy through the restoration of AMPKα activity. Theranostics. 2021. 11:4728-4742. doi:10.7150/thno.56598
117. Dai H., Liu Q., Liu B. Research progress on mechanism of podocyte depletion in diabetic nephropathy. J Diabetes Res. 2017. 2017:2615286. doi:10.1155/2017/2615286
118. Najafian B., Mauer M. Progression of diabetic nephropathy in type 1 diabetic patients. Diabetes Res Clin Pract. 2009. 83(1):1-8. doi:10.1016/j.diabres.2008.08.024.
119. Thaiss C., Levy M., Grosheva I. et al. Hyperglycemia drives intestinal barrier dysfunction and risk for enteric infection. Science. 2018. 359:1376-1383. doi:10.1126/science.aar3318.
120. Cani P., Amar J., Iglesias M. et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes. 2007. 56:1761-1772. doi:10.2337/db06-1491.
121. Kikuchi K., Saigusa D., Kanemitsu Y. et al. Gut microbiome-derived phenyl sulfate contributes to albuminuria in diabetic kidney disease. Nat Commun. 2019. 10:1-17. doi:10.1038/s41467-019-09735-4.
122. Han S., Chen M., Cheng P. et al. A systematic review and meta-analysis of gut microbiota in diabetic kidney disease: Comparisons with diabetes mellitus, non-diabetic kidney disease, and healthy individuals. Front. Endocrinol. (Lausanne). Frontiers Media S.A. 2022. 13:1018093. doi:10.3389/fendo.2022.1018093.
123. Wu I., Lin L., Chang L. et al. Gut Microbiota as Diagnostic Tools for Mirroring Disease Progression and Circulating Nephrotoxin Levels in Chronic Kidney Disease: Discovery and Validation Study. Int. J. Biol. Sci. Ivyspring International Publisher. 2020. 16(3):420. doi:10.7150/ijbs.37421
124. Deng X., Zhang C., Wang P. et al. Cardiovascular Benefits of Empagliflozin Are Associated With Gut Microbiota and Plasma Metabolites in Type 2 Diabetes. J. Clin. Endocrinol. Metab. The Endocrine Society. 2022. 107(7):1888. doi:10.1210/clinem/dgac210.
125. Iatcu C., Steen A, Covasa M. Gut microbiota and complications of type-2 diabetes. Nutrients. 2022. 14:166. doi:10.3390/nu14010166
126. Paul P., Kaul R., Chaari A. Renal Health Improvement in Diabetes through Microbiome Modulation of the Gut–Kidney Axis with Biotics: A Systematic and Narrative Review of Randomized Controlled Trials. Int. J. Mol. Sci. MDPI. 2022. 23(23):14838. doi:10.3390/ijms232314838.
127. Abdollahi S., Mesgkini F., Clark C. et al. The effect of probiotics/synbiotics supplementation on renal and liver biomarkers in patients with type 2 diabetes: a systematic review and meta-analysis of randomised controlled trials. Br. J. Nutr. Cambridge University Press. 2022. 128(4):625-635. doi:10.1017/S0007114521003780.
128. Tarrahi M., Namjoo I., Borzoo-Isfahani M. et al. Can Probiotics Supplementation Improve Glycemic and Renal Status in Diabetic Nephropathy? A Systematic Review and Meta-Analysis of Clinical Trials. Endocrine, Metab. Immune Disord. - Drug Targets. Bentham Science Publishers. 2021. 22(1):143-158. doi:10.2174/1871530321666210121154037.
129. Dai Y., Quan J., Xiong L. et al. Probiotics improve renal function, glucose, lipids, inflammation and oxidative stress in diabetic kidney disease: a systematic review and meta-analysis. Ren. Fail. Taylor & Francis. 2022. 44(1):862-880. doi:10.1080/0886022X.2022.2079522.
130. Wei T., Na L., Yingying F. et al. Effect of probiotics supplementation on the risk of disease progression in elderly with diabetic nephropathy. Chinese J. Microecol. Chinese Journal of Microecology. 2020. 32(5):570-574.
131. Wang H., Wang D., Song H. et al. The effects of probiotic supplementation on renal function, inflammation, and oxidative stress in diabetic nephropathy: A systematic review and meta-analysis of randomized controlled trials. Mater. Express. American Scientific Publishers. 2021. 11(7):1122-1131.
132. Lau W., Kalantar-Zadeh K., Vaziri N. The gut as a source of inflammation in chronic kidney disease. Nephron. 2015. 130:92-98. doi:10.1159/000381990
133. Lau W., Vaziri N. The leaky gut and altered microbiome in chronic kidney disease. J. Ren. Nutr. 2017. 27:458-461. doi:10.1053/j.jrn.2017.02.010
134. He F., Ru X., Wen T. NRF2, a transcription factor for stress response and beyond. Int. J. Mol. Sci. 2020. 21:4777. doi:10.3390/ijms21134777
135. Stearns-Kurosawa D., Osuchowski M., Valentine C. et al. The Pathogenesis of Sepsis. Annu. Rev. Pathol. NIH Public Access. 2011. 6:19-48. doi:10.1146/annurev-pathol-011110-130327.
136. Wang I., Lai H., Yu C. et al. Real-time PCR analysis of the intestinal microbiotas in peritoneal dialysis patients. Appl Environ Microbiol. 2012. 78:1107-1112. doi:10.1128/AEM.05605-11
137. Simões-Silva L., Araujo R., Pestana M. et al. The microbiome in chronic kidney disease patients undergoing hemodialysis and peritoneal dialysis. Pharmacol Res. 2018. 130:143-151. doi:10.1016/j.phrs.2018.02.011
138. Juergensen P., Finkelstein F., Brennan R. et al. Pseudomonasperitonitis associated with continuous ambulatory peritoneal dialysis: a six-year study. Am J Kidney Dis. 1988. 11:413-417. doi:10.1016/s0272-6386(88)80054-4
139. Szeto C., Chow V., Chow K. et al. PK-T enterobacteriaceae peritonitis complicating peritoneal dialysis: a review of 210 consecutive cases. Kidney Int. 2006. 69(1245):1252. doi:10.1038/sj.ki.5000037
140. Bossola M., Sanguinetti M., Scribano D. et al. Circulating bacterial-derived DNA fragments and markers of inflammation in chronic hemodialysis patients. CJASN. 2009. 4:379-385. doi:10.2215/CJN.03490708
141. Imholz A., Koomen G., Struijk D. et al. Effect of an increased intraperitoneal pressure on fluid and solute transport during CAPD. Kidney Int. 1993. 44:1078-85. doi:10.1038/ki.1993.351.
142. Ribitsch W., Schneditz D., Franssen C.et al. Increased hepato-splanchnic vasoconstriction in diabetics during regular hemodialysis. PLoS ONE. 2015. 10:e0145411. doi:10.1371/journal.pone.0145411
143. Wu I., Hsu K., Hsu H. et al. Serum free p-cresyl sulfate levels predict cardiovascular and all-cause mortality in elderly hemodialysis patients–a prospective cohort study. Nephrology Dialysis Transpl Off Publ Eur Dialysis Transpl Assoc Eur Renal Assoc. 2012. 27:1169-75. doi:10.1093/ndt/gfr453
144. Parthasarathy G., Chen J., Chen X. et al. Relationship between microbiota of the colonic mucosa vs feces and symptoms, colonic transit, and methane production in female patients with chronic constipation. Gastroenterology. 2016. 150:367-379. e361. doi:10.1053/j.gastro.2015.10.005.
145. Quigley E.M.M. The enteric microbiota in the pathogenesis and management of constipation. Best Pract Res Clin Gastroenterol. 2011. 25:119-26. doi:10.1016/j.bpg.2011.01.003.
146. Lee J., Muthukumar T., Dadhania D. et al. Gut Microbial Community Structure and Complications Following Kidney Transplantation: A Pilot Study. Transplantation. NIH Public Access. 2014. 98(7):697. doi:10.1097/TP.0000000000000370.
147. Swarte J., Douwes R., Hu S. et al. Characteristics and Dysbiosis of the Gut Microbiome in Renal Transplant Recipients. J. Clin. Med. Multidisciplinary Digital Publishing Institute (MDPI). 2020. 9(2):386. doi:10.3390/jcm9020386.
148. Litvak Y., Byndloss M., Tsolis R. et al. Dysbiotic Proteobacteria expansion: a microbial signature of epithelial dysfunction. Curr. Opin. Microbiol. Curr Opin Microbiol. 2017. 39:1-6. doi:10.1016/j.mib.2017.07.003.
149. Zaza G., Gassa A., Felis G. et al. Impact of maintenance immunosuppressive therapy on the fecal microbiome of renal transplant recipients: Comparison between an everolimusand a standard tacrolimus-based regimen. PLoS One. PLOS. 2017. 12(5):e0178228. doi:10.1371/journal.pone.0178228.
150. Lee J., Muthukumar T., Dadhania D. et al. Gut Microbiota and Tacrolimus Dosing in Kidney Transplantation. PLoS One. PLOS. 2015. 10(3):e0122399. doi:10.1371/journal.pone.0122399.
151. Tourret J., Willing B., Dion S. et al. Immunosuppressive Treatment Alters Secretion of Ileal Antimicrobial Peptides and Gut Microbiota, and Favors Subsequent Colonization by Uropathogenic Escherichia coli. Transplantation. Transplantation. 2017. 101(1):74-82. doi:10.1097/TP.0000000000001492.
152. Fitzpatrick L., Small J., Hoerr R. et al. In vitro and in vivo effects of the probiotic Escherichia coli strain M-17: immunomodulation and attenuation of murine colitis. Br J Nutr. 2008. 100(530):541. doi:10.1017/S0007114508930373
153. Resta-Lenert S., Barrett K. Probiotics and commensals reverse TNF-alpha- and IFN-gamma-induced dysfunction in human intestinal epithelial cells. Gastroenterology. 2006. 130:731-46. doi:10.1053/j.gastro.2005.12.015
154. Zhang R., Li Z., Gu X. et al. Probiotic Bacillus subtilis LF11 protects intestinal epithelium against salmonella infection. Front Cell Infect Microbiol. 2022. 12:837886. doi:10.3389/fcimb.2022.837886
155. Cotter P., Hill C., Ross R. Bacteriocins: developing innate immunity for food. Nat Rev Microbiol. 2005. 3:777-88. doi:10.1038/nrmicro1273
156. Quigley E. Prebiotics and Probiotics in Digestive Health. Clinical gastroenterology and hepatology: the official clinical practice. J Am Gastroenterol Assoc. 2019. 17:333-44. doi:10.1016/j.cgh.2018.09.028.
157. Sarao L., Arora M. Probiotics, prebiotics, and microencapsulation: a review. Crit Rev Food Sci Nutr. 2017. 57:344-71. doi:10.1080/10408398.2014.887055
158. Corrêa-Oliveira R., Fachi J., Vieira A. et al. Regulation of immune cell function by short-chain fatty acids. Clin Transl Immunol. 2016. 5(4):e73. doi:10.1038/cti.2016.17.
159. Akbari P., Fink-Gremmels J., Willems R. et al. Characterizing microbiota-independent effects of oligosaccharides on intestinal epithelial cells: insight into the role of structure and size. Eur J Nutr. 2017. 56:1919-30. doi:10.1007/s00394-016-1234-9.
160. Meijers B., De Preter V., Verbeke K. et al. p -Cresyl sulfate serum concentrations in haemodialysis patients are reduced by the prebiotic oligofructose-enriched inulin. Nephrol Dial Transpl. 2010. 25:219-24. doi:10.1093/ndt/gfp414.
161. Rossi M., Johnson D., Xu H. et al. Dietary protein-fiber ratio associates with circulating levels of indoxyl sulfate and p-cresyl sulfate in chronic kidney disease patients. Nutr Metab Cardiovasc Dis. 2015. 25(860):865. doi:10.1016/j.numecd.2015.03.015.
162. Kelly J., Palmer S., Wai S. et al. Healthy dietary patterns and risk of mortality and ESRD in CKD: a meta-analysis of cohort studies. Clin J Am Soc Nephrol. 2017. 12:272-9. doi:10.2215/CJN.06190616.
163. Fujii H., Nishijima F., Goto S. et al. Oral charcoal adsorbent (AST-120) prevents progression of cardiac damage in chronic kidney disease through suppression of oxidative stress. Nephrol Dialysis Transpl Off Publ Eur Dialysis Transpl Assoc Eur Renal Assoc. 2009. 24(2089):2095. doi:10.1093/ndt/gfp007
164. Nakamura T., Sato E., Fujiwara N. et al. Oral adsorbent AST-120 ameliorates tubular injury in chronic renal failure patients by reducing proteinuria and oxidative stress generation. Metabolism. 2011. 60(2):260-4. doi:10.1016/j.metabol.2010.01.023.
165. Saulnier D., Spinler J., Gibson G. et al. Mechanisms of probiosis and prebiosis considerations for enhanced functional foods. Curr Opin Biotechnol. 2009. 20(135):141. doi:10.1016/j.copbio.2009.01.002
166. Guida B., Germanò R., Trio R. et al. Effect of short-term synbiotic treatment on plasma p-cresol levels in patients with chronic renal failure: a randomized clinical trial. Nutr Metab Cardiovasc Dis. 2014. 24:1043-9. doi:10.1016/j.numecd.2014.04.007.
167. Rossi M., Johnson D., Morrison M. et al. Synbiotics easing renal failure by improving gut microbiology (SYNERGY): a randomized trial. Clin J Am Soc Nephrol. 2016. 11:223-31. doi:10.2215/CJN.05240515
168. Yang C., Chen T., Lu W. et al. Synbiotics alleviate the gut indole load and dysbiosis in chronic kidney disease. Cells. 2021. 10:114. doi:10.3390/cells10010114.
169. Knight E., Stampfer M., Hankinson S. et al. The impact of protein intake on renal function decline in women with normal renal function or mild renal insufficiency. Ann Intern Med. 2003. 138:460-7. doi:10.7326/0003-4819-138-6-200303180-00009.
170. Ko G., Rhee C., Kalantar-Zadeh K. et al. The effects of high-protein diets on kidney health and longevity. J Am Soc Nephrol. 2020. 31:1667-79. doi:10.1681/ASN.2020010028.
171. Tovar-Palacio C., Tovar A., Torres N. et al. Proinflammatory gene expression and renal lipogenesis are modulated by dietary protein content in obese Zucker fa/fa rats. Am J PhysiolRenal Physiol. 2011. 300:F263-71. doi:10.1152/ajprenal.00171.2010.
172. Lew Q., Jafar T., Koh H. et al. Meat intake and risk of ESRD. J Am Soc Nephrol. 2017. 28:304-12. doi:10.1681/ASN.2016030248.
173. Kamper A., Strandgaard S. Long-term effects of highprotein diets on renal function. Annu Rev Nutr. 2017. 37:347-69. doi:10.1146/annurev-nutr-071714-034426.
174. Hostetter T., Meyer T., Rennke H. et al. Chronic effects of dietary protein in the rat with intact and reduced renal mass. Kidney Int. 1986. 30:509-17. doi:10.1038/ki.1986.215.
175. Sakaguchi Y., Kaimori J., Isaka Y. Plant-dominant low protein diet: a potential alternative dietary practice for patients with chronic kidney disease. Nutrients. 2023. 15:1002. doi:10.3390/nu15041002.
176. Marques F., Nelson E., Chu P. et al. High-fiber diet and acetate supplementation change the gut microbiota and prevent the development of hypertension and heart failure in hypertensive mice. Circulation. 2017. 135:964-77. doi:10.1161/CIRCULATIONAHA.116.024545.
177. van Nood E., Vrieze A., Nieuwdorp M. et al. Duodenal infusion of donor feces for recurrent clostridium difficile. N Engl J Med. 2013. 368(407):415. doi:10.1056/NEJMoa1205037.
178. Gulati A., Nicholson M., Khoruts A. et al. Fecal microbiota transplantation across the lifespan balancing efficacy safety and innovation official journal of the American College of gastroenterology ACG. Am J Gastroenterol. 2023. 118(3):435-439. doi:10.14309/ajg.0000000000002167
179. Wang S., Xu M., Wang W. et al. Systematic review: adverse events of fecal microbiota transplantation. PLoS ONE. 2016. 11:e0161174. doi:10.1371/journal.pone.0161174.
180. Important safety alert regarding use of fecal microbiota for transplantation and risk of serious adverse reactions due to transmission of multidrug resistant organisms https://www.fda.gov/vaccines-blood-biologics/safety-availability-biologics/important-safety-alert-regarding-use-fecal-microbiota-transplantation-and-risk
Рецензия
Для цитирования:
Шутов Е.В., Большаков С.А., Макарова Т.А., Федосеева И.А., Теплюк Д.А., Павлов Ч.С., Сороколетов С.М. Микробиота кишечника и заболевания почек. Обзор литературы. Нефрология и диализ. 2024;26(3):283-302. https://doi.org/10.28996/2618-9801-2024-3-283-302
For citation:
Shutov E.V., Bolshakov S.A., Makarova T.A., Fedoseeva I.A., Teplyuk D.A., Pavlov C.S., Sorokoletov S.M. Gut microbiota and kidney diseases. Literature review. Nephrology and Dialysis. 2024;26(3):283-302. (In Russ.) https://doi.org/10.28996/2618-9801-2024-3-283-302