Preview

Nephrology and Dialysis

Advanced search

Deficiency of glucose-6-phosphate dehydrogenase activity in the development of contrast-induced acute kidney injury

https://doi.org/10.28996/2618-9801-2022-2-339-348

Abstract

Glucose-6-phosphate dehydrogenase is a key enzyme of the pentose phosphate pathway and the main source of the reduced form of nicotinamide adenine dinucleotide phosphate (NADPH). NADPH is a leading cellular reducing agent that plays a central role in cell survival. In a study conducted on 200 white mongrel male rats, the dynamics of changes in the concentration of reduced glutathione, malondialdehyde, as well as the activity of antioxidant defense enzymes (glucose-6-phosphate dehydrogenase, glutathione peroxidase, glutathione reductase, and catalase) in kidney tissues and erythrocytes of laboratory animals under the conditions of intoxication with an X-ray contrast preparation were determined. It was found that the use of the nonionic radiopaque drug omnipak-350 (yogexol) in an average lethal dose leads to a deficiency of glucose-6-phosphate dehydrogenase activity, a decrease in NADPH level, and damage to kidney tissue and endothelial cells. NADPH deficiency, in turn, can affect glutathione reductase activity since this enzyme uses NADPH to convert oxidized glutathione into reduced. The relative insufficiency of reduced glutathione, which is the main low-molecular-weight free radical scavenger and substrate of the glutathione peroxidase reaction, leads to an imbalance in pro-oxidant processes. In the erythrocytes and kidney tissues of rats, against the background of the introduction of the radiopaque drug, activation of oxidative stress was noted in the form of a decrease in the concentration of reduced glutathione and the activity of antiradical protection enzymes, as well as an increase in the content of lipid peroxidation products. These shifts in the activity of antioxidant defense enzymes (catalase, glutathione peroxidase, and glutathione reductase) in animal kidney tissues against the background of the use of radiopaque preparation should be considered as characteristic signs of depletion of adaptive reserves of the cell. The tendency to increase the content of creatinine and urea in the blood plasma of poisoned animals, indicating a decrease in the functional activity of nephrons, and morphological examination of kidney tissues, which revealed signs of activation of apoptosis in renal tissue, served as confirmation of the adequacy of the selected experimental model on animals to study the mechanisms of development of contrast-induced acute kidney injury. The results obtained allow us to conclude that a decrease in the activity of G-6-FDG can serve as a trigger factor for the activation of free radical processes that play an important role in the development of contrast-induced acute kidney injury.

About the Authors

S. N. Zheregelya
St. Petersburg State Pediatric Medical University
Russian Federation


S. I. Glushkov
St. Petersburg State Pediatric Medical University
Russian Federation


A. I. Karpishchenko
I.P. Pavlov First State Medical University
Russian Federation


References

1. Pattharanitima P., Tasanarong A. Pharmacological Strategies to Prevent Contrast-Induced Acute Kidney Injury. BioMed Research International. 2014; 2014: 1-21. doi: 10.1155/2014/236930.

2. Work Group Membership. Kidney Int Suppl (2011). 2012; 2(1): 2. doi: 10.1038/kisup.2012.2.

3. Vandenberghe W., De Corte W., Hoste E. Contrast-associated AKI in the critically ill. Curr Opin Crit Care. 2014; 20(6): 596-605. doi: 10.1097/mcc.0000000000000156.

4. Munro A., Girvan H., McLean K. Cytochrome P450-redox partner fusion enzymes. Biochimica et Biophysica Acta (BBA) - General Subjects. 2007; 1770(3): 345-359. doi: 10.1016/j.bbagen.2006.08.018.

5. Kitagawa A., Kizub I., Jacob C. et al. CRISPR-Mediated Single Nucleotide Polymorphism Modeling in Rats Reveals Insight Into Reduced Cardiovascular Risk Associated With Mediterranean G6PD Variant. Hypertension. 2020; 76(2): 523-532. doi: 10.1161/hypertensionaha.120.14772.

6. Leopold J., Zhang Y., Scribner A. et al. Glucose-6-Phosphate Dehydrogenase Overexpression Decreases Endothelial Cell Oxidant Stress and Increases Bioavailable Nitric Oxide. Arterioscler Thromb Vasc Biol. 2003; 23(3): 411-417. doi: 10.1161/01.atv.0000056744.26901.ba.

7. Кулинский В.И., Колесниченко Л.С. Структура, свойства, биологическая роль и регуляция глутатионпероксидазы. Успехи совр. биол. 1993. 113(1): 107- 122.

8. Muller G., Morawietz H. NAD(P)H Oxidase and Endothelial Dysfunction. Hormone and Metabolic Research. 2008; 41(02): 152-158. doi: 10.1055/s-0028-1086023.

9. Thomas J., Kang S., Wyatt C. et al. Glucose-6-Phosphate Dehydrogenase Deficiency is Associated with Cardiovascular Disease in U.S. Military Centers. Tex Heart Inst J. 2018; 45(3): 144-150. doi: 10.14503/thij-16-6052.

10. Longo L. Maternally transmitted severe glucose 6-phosphate dehydrogenase deficiency is an embryonic lethal. EMBO J. 2002; 21(16): 4229-v4239. doi: 10.1093/emboj/cdf426.

11. Nicol C.J., Zielenski J., Tsui L.C., Wells P.G. An embryoprotective role for glucose-6-phosphate dehydrogenase in developmental oxidative stress and chemical teratogenesis. The FASEB Journal. 2000; 14(1): 111-127. doi: 10.1096/fasebj.14.1.111.

12. Pandolfi P., Sonati F., Rivi R. et al. Targeted disruption of the housekeeping gene encoding glucose 6-phosphate dehydrogenase (G6PD): G6PD is dispensable for pentose synthesis but essential for defense against oxidative stress. EMBO J. 1995; 14(21): 5209-5215. doi: 10.1002/j.1460-2075.1995.tb00205.x.

13. Pes G., Parodi G., Dore M. Glucose-6-phosphate dehydrogenase deficiency and risk of cardiovascular disease: A propensity score-matched study. Atherosclerosis. 2019; 282: 148-153. doi: 10.1016/j.atherosclerosis.2019.01.027.

14. Ho H., Cheng M., Lu F. et al. Enhanced oxidative stress and accelerated cellular senescence in glucose-6-phosphate dehydrogenase (G6PD)-deficient human fibroblasts. Free Radical Biology and Medicine. 2000; 29(2): 156-169. doi: 10.1016/s0891-5849(00)00331-2.

15. Ou Z., Chen Y., Li J. et al. Glucose-6-phosphate dehydrogenase deficiency and stroke outcomes. Neurology. 2020; 95(11): 1471-1478. doi: 10.1212/wnl.0000000000010245.

16. Stincone A., Prigione A., Cramer T. et al. The return of metabolism: biochemistry and physiology of the pentose phosphate pathway. Biological Reviews. 2014; 90(3): 927-963. doi: 10.1111/brv.12140.

17. Tian W., Braunstein L., Apse K. et al. Importance of glucose-6-phosphate dehydrogenase activity in cell death. American Journal of Physiology-Cell Physiology. 1999; 276(5): C1121-C1131. doi: 10.1152/ajpcell.1999.276.5.c1121.

18. Tian W., Braunstein L., Pang J. et al. Importance of Glucose-6-phosphate Dehydrogenase Activity for Cell Growth. Journal of Biological Chemistry. 1998; 273(17): 10609-10617. doi: 10.1074/jbc.273.17.10609.

19. Lee C., Chasalow F., Lee S. et al. A null mutation of cytoplasmic malic enzyme in mice. Mol Cell Biochem. 1980; 30(3). doi: 10.1007/bf00230167.

20. Медицинские лабораторные технологии: Руководство по клинической лабораторной диагностике: в 2-х т. Под ред. А.И. Карпищенко. - 3-е изд., перераб. и доп. - М. ГЭОТАР-Медиа, 2012. 1. 792 с.

21. Kornberg A., Horecker B.L., Smyrniot P.Z. Glucose-6-phosphate dehydrogenase - 6-phosphogluconic dehydrogenase. Meth. Enzymol. 1955; 1: 323-327.

22. Глушков С.И. Нарушения системы глутатиона и их роль в патогенезе острых интоксикаций ксенобиотиками с различными механизмами токсического действия: Дис. на соискание уч. степени д-ра. мед. наук. 2006. Воен.-мед. акад. СПб. 451 с.

23. Медицинские лабораторные технологии: руководство по клинической лабораторной диагностике: в 2-х т. Под ред. А.И. Карпищенко. - 3-е изд., перераб. и доп. - М. ГЭОТАР-Медиа, 2013. 2. 472 с.

24. Peterson G. A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal Biochem. 1977; 83(2): 346-356. doi:10.1016/0003-2697(77)90043-4.

25. WHO Handbook for reporting results of cancer treatment // WHO Offset Publication NO. Geneva, 1985. 48 р.

26. Тиунов Л.А. Механизмы естественной детоксикации и антиоксидантной защиты. Вестник РАМН. 1995; 3: 9-13.

27. Тиунов Л.А., Иванова В.А. Роль глутатиона в процессах детоксикации. Вест. АМН СССР. 1988; 1: 62-69.

28. Corbucci G.G. The role of reduced glutathione during the course of acute haemolysis in glucose-6-phosphate dehydrogenase deficient patients: clinical and pharmacodynamic aspects. Int. J. Clin. Pharmacol. Res. 1990; 10(5): 305-310.

29. Fico A., Paglialunga F., Cigliano L. et al. Glucose-6-phosphate dehydrogenase plays a crucial role in protection from redox-stress-induced apoptosis. Cell Death & Differentiation. 2004; 11(8): 823-831. doi:10.1038/sj.cdd.4401420.

30. Жерегеля С.Н. Обмен глутатиона в патогенезе развития рентгеноконтрастных нефропатий. Дис. на соискание уч. степени. канд. мед. наук. Воен.-мед. акад. СПб, 2010. 197 с.

31. Rahangdale S. Therapeutic interventions and oxidative stress in diabetes. Frontiers in Bioscience. 2009; 14:192. doi: 10.2741/3240.

32. Touyz R. Reactive Oxygen Species, Vascular Oxidative Stress, and Redox Signaling in Hypertension. Hypertension. 2004; 44(3): 248-252. doi: 10.1161/01.hyp.0000138070.47616.9d.

33. Zhao J., Zhang X., Guan T. et al. The association between glucose-6-phosphate dehydrogenase deficiency and abnormal blood pressure among prepregnant reproductive-age Chinese females. Hypertension Research. 2018; 42(1): 75-84. doi: 10.1038/s41440-018-0118-1.

34. Horton J. Sterol regulatory element-binding proteins: transcriptional activators of lipid synthesis. Biochem Soc Trans. 2002; 30(6): 1091-1095. doi: 10.1042/bst0301091.

35. Rosenstraus M., Chasin L. Isolation of mammalian cell mutants deficient in glucose-6-phosphate dehydrogenase activity: linkage to hypoxanthine phosphoribosyl transferase. Proceedings of the National Academy of Sciences. 1975; 72(2): 493-497. doi: 10.1073/pnas.72.2.493.

36. Nóbrega-Pereira S., Fernandez-Marcos P., Brioche T. et al. G6PD protects from oxidative damage and improves healthspan in mice. Nat Commun. 2016; 7(1): doi: 10.1038/ncomms10894.

37. Cachofeiro V., Goicochea M., de Vinuesa S. et al. Oxidative stress and inflammation, a link between chronic kidney disease and cardiovascular disease. Kidney Int. 2008; 74: 4-9. doi: 10.1038/ki.2008.516.

38. Еропкин М.Ю., Еропкина Е.М. Культуры клеток как модельная система исследования токсичности и скрининга цитопротекторных препаратов. СПб. МОРСАР АВ, 2003. 239 с.

39. Kehrer J., Lund L. Cellular reducing equivalents and oxidative stress. Free Radical Biology and Medicine. 1994; 17(1): 65-75. doi: 10.1016/0891-5849(94)90008-6.

40. Majumder P., Blacker T., Nolan L. et al. Multiphoton NAD(P)H FLIM reveals metabolic changes in individual cell types of the intact cochlea upon sensorineural hearing loss. Sci Rep. 2019; 9(1). doi:10.1038/s41598-019-55329-x.


Review

For citations:


Zheregelya S.N., Glushkov S.I., Karpishchenko A.I. Deficiency of glucose-6-phosphate dehydrogenase activity in the development of contrast-induced acute kidney injury. Nephrology and Dialysis. 2022;24(2):339-348. (In Russ.) https://doi.org/10.28996/2618-9801-2022-2-339-348

Views: 88


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1680-4422 (Print)
ISSN 2618-9801 (Online)