Preview

Нефрология и диализ

Расширенный поиск

Роль почек в поддержании кальциевого и магниевого гомеостаза и при его нарушениях (Часть II)

https://doi.org/10.28996/2618-9801-2018-2-170-188

Аннотация

В обзоре освещаются вопросы изменений гомеостаза кальция и магния, выражающиеся в развитии гипер- и гипокальциемии, а также гипомагниемии. Обсуждаются особенности первичного гиперпаратиреоза, злокачественной гиперкальциемии, интоксикации витамином D. Особое внимание с позиций современной молекулярной биологии уделяется этиологии и патогенезу синдромных и несиндромных форм наследственной гиперкальциемии, таких как множественная эндокринная неоплазия, семейная гипокальциурическая гиперкальциемия, неонатальный тяжелый первичный гиперпаратиреоз; проявления гипокальциемии в виде аутосомной доминантной гипокальциемии и синдрома Барттера V типа; а также такие наследственные проявления гипомагниемии как гипомагниемия со вторичной гипокальциурией, семейная гипомагниемия с гиперкальциурией и нефрокальцинозом, изолированная доминантная гипомагниемия с гипокальцийурией, синдром Гительмана. Обсуждаются современные принципы и методы коррекции гиперкальциемии и гипомагниемии.

Об авторах

Я. Ф. Зверев
ГБОУ ВПО "Алтайский государственный медицинский университет" Минздрава РФ
Россия


В. М. Брюханов
ГБОУ ВПО "Алтайский государственный медицинский университет" Минздрава РФ
Россия


А. Я. Рыкунова
КГБУЗ "Краевая клиническая больница" Минздрава РФ
Россия


Список литературы

1. Lietman S.A, Germain-Lee E.L, Levine M.A. Hypercalcemia in children and adolescents. Curr Opin Pediatr. 2010; 22 (4): 508-515.

2. Bushinsky D.A, Monk R.D. Electrolyte quinet: calcium. Lancet. 1998; 352: 306-311.

3. Carroll M.F, Schade D.S. A practical approach to hypercalcemia. Am. Fam. Physician. 2003; 67 (9): 1959-1966.

4. Portale A.A. Blood calcium, phosphorus, and magnesium. In: Favus MJ, ed. Primer on the metabolic bone diseases and disorders of mineral metabolism, 4th. Lippincott, Williams & Wilkins, Philadelphia, 1999; 116-119.

5. Strewler G.J. The physiology of parathyroid hormone-related protein. N. Engl. J. Med. 2000; 342: 177-185.

6. Shane E. Hypercalcemia: pathogenesis, clinical manifestations, differential diagnosis, and management. In: Favus MJ, ed. Primer on the metabolic bone diseases and disorders of mineral metabolism, 4th. Lippincott, Williams & Wilkins, Philadelphia, 1999; 83-187.

7. Nishiyama S. Hypercalcemia in children: an overview. Acta Paediatr. Jpn. 1997; 39 (4): 479-484.

8. Rodd C., Goodyer P. Hypercalcemia of the newborn: etiology, evaluation, and management. Pediatr. Nephrol. 1999; 13 (6): 542-547.

9. Solomon B.L., Schaaf M, Smallridge R.C. Psychologic symptoms before and after parathyroid surgery. Am. J. Med. 1994; 96: 101-106.

10. Iacobone M., Carnaille B., Palazzo F.F., Vriens M. Hereditary hyperparathyroidism - a consensus report of the European Society of Endocrine Surgeons (ESES). Langenbeck Arch. Surg. 2015; 400: 867-886.

11. Marini F., Cianferotti L., Giusti F., Brandi M.L. Molecular genetics in primary hyperparathyroidism: The role of genetic tests in differential diagnosis, disease prevention strategy, and therapeutic planning. A 2017 update. Clin. Cases Mineral Bone Metabol. 2017; 14 (1): 60-70.

12. Walker M.D., Silverberg S.J. Primary hyperparathyroidism. Endocrinology. 2017; Published online 8 Sep. 2017. doi: 10.1038/nrendo.2017.104.

13. Mizamtsidi M., Nastas C., Mastorakos G. et al. Diagnosis, management, histology and genetics of sporadic primary hyperparathyroidism: Old knowledge with new tricks. Endocrinol. Connect. 2018; 7 (2): R56-R68.

14. Loughead J.L., Mudhal Z., Mimouni F. et al. Spectrum and natural history of congenital hyperparathyroidism secondary to maternal hypocalcemia. Am. J. Perinatol. 1990; 7 (4): 350-355.

15. Kollars J., Zarroug A.E,. van Heerden J. et al. Primary hyperparathyroidism in pediatric patients. Pediartics 2005; 115 (4): 974-980.

16. Yeh M.W., Ituarte P.H., Zhou H.C. et al. Incidence and prevalence of primary hyperparathyroidism in a racially mixed population. J. Clin. Endocrinol. Metab. 2013; 98 (3): 1122-1129.

17. NH conference: diagnosis and management of asymptomatic primary hyperparathyroidism: consensus development conference statement. Ann. Intern. Med. 1991; 114: 593-597.

18. Ralston S.H., Gallacher S.J., Patel U. et al. Cancerassociated hypercalcemia: morbility and mortality. Clinical experience in 126 treated patients. Ann. Intern. Med. 1990; 112: 499-504.

19. Mundy G.R., Guise T.A. Hypercalcemia of malignancy. Am. J. Med. 1997; 103: 134-145.

20. Roodman G.D. Mechanisms of bone metastasis. N. Engl. J. Med. 2004; 350: 1655-1664.

21. Stewart A.F. Clinical practice. Hypercalcemia associated with cancer. N. Engl. J. Med. 2005; 352: 373-379.

22. Horwitz M.J., Stewart A.F. Hypercalcemia associated with malignancy. In: Favus MJ, ed. Primer on the metabolic bone diseases and disorders of mineral metabolism. American Society for Bone and Mineral Research, U S A, 2006; 195-199.

23. Stokes V.J., Nielsen M.F., Hannan F.M., Thakker R.V. Hypercalcemic disorders in children. JBMR. 2017; 32 (11): 2157-2170.

24. Hoekman K., Tjandra Y.I., Papapoulos S.E. The role of 1,25-dihydroxyvitamin D in the maintenance of hypercalcemia in a patient with an ovarian carcinoma producing parathyroid hormonerelated protein. Cancer. 1991; 68: 642-647.

25. Srirajaskanthan R., McStay M., Toumpanakis C. et al. Parathyroid hormone-related peptidesecreting pancreatic neuroendocrine tumours: Case series and literature review. Neuroendocrinology. 2008; 89: 48-55.

26. Mudde A.H., van den Berg H., Boshuis P.G. et al. Ectopic production of 1,25-hydroxyvitamin D by B-cell lymphoma as a cause of hypercalcemia. Cancer. 1987; 59: 1543-1546.

27. Seymour J.F., Gagel R.F., Hagemeister F.B. et al. Calcitriol production in hypercalcemic and normocalcemic patients with non-Hodgkin lymphoma. Ann. Intern. Med. 1994; 121: 633-640.

28. Evans K.N., Taylor H., Zehnder D. et al. Increased expression of 25-hydroxyvitamin D-1 alpha-hydroxylase in disgerminomas: a novel form of humoral hypercalcemia of malignancy. Am. J. Pathol. 2004; 165: 807-813.

29. Makras P., Papapoulos S.E. Medical treatment of hypercalcemia. Hormones. 2009; 8 (2): 83-95.

30. Mahoney E.J., Monchik J.M., Donatini G., DeLellis R. Life-threatening hypercalcemia from a hepatocellular carcinoma secreting intact parathyroid hormone: localization by sestamibi single-photon emission computed tomographic imaging. Endocr. Pract. 2006; 12 (3): 302-306.

31. DeLellis R.A., Mangray S. Heritable forms of primary hyperparathyroidism: A current perspective. Histopathology. 2018; 72: 117-132.

32. Hendy G.N., D’Souza-Li L., Yang B. et al. Mutations of the calcium-sensing receptor (CASR) in familial hypocalciuric hypercalcemia, neonatal severe hyperparathyroidism, and autosomal dominant hypocalcemia. Hum. Mutat. 2000; 16: 281-296.

33. Foley T.P. Jr, Harrison H.C., Arnaud C.D., Harrison H.E. Familial benign hypercalcemia. J. Pediatr. 1972; 81 (6): 1060-1067.

34. Hannan F.M., Thakker R.V. Calcium-sensing receptor (CaSR) mutations and disorders of calcium, electrolyte and water metabolism. Best Pract. Res. Clin. Endocrinol. Metab. 2013; 27: 359-371.

35. Nesbit M.A., Hannan F.M., Howles S.A. et al. Mutations affecting G-protein subunit alpha 11 in hypercalcemia and hypocalcemia. N. Engl. J. Med. 2013; 368: 2476-2486.

36. Nesbit M.A., Hannan F.M., Howles S.A. et al. Mutations in AP2S1 cause familial hypocalciuric hypercalcemia type 3. Nat. Genet. 2013; 45: 93-97.

37. Hannan F.M., Babinsky V.N., Thakker R.V. Disorders of the calcium-sensing receptor and partner proteins: Insights into the molecular basis of calcium homeostasis. J. Mol. Endocrinol. 2016; 57 (3): R127-R142.

38. Harris S.S., D’Ercole A.J. Neonatal hyperparathyroidism: The natural course in the absence of surgical intervention. Pediatrics. 1989; 83 (1): 53-56.

39. Pollak M.R., Chou Y.H., Marx S.J. et al. Familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism. Effects of mutant gene dosage on phenotype. J. Clin. Invest. 1994; 93: 1108-1112.

40. Damiani D., Aguiar C.H., Bueno V.S. et al. Primary hyperparathyroidism in children: patient report and review of the literature. J. Pediatr. Endocrinol. Metab. 1998; 11 (1): 83-86.

41. Hauache O.M. Extracellular calcium-sensing receptor: structural and functional features and association with diseases. Braz. J. Med. Biol. Res. 2001; 34: 577-584.

42. Murphy H., Patrick J., Baez-Irizarry E. et al. Neonatal severe hyperparathyroidism caused by homozygous mutation in CASR: A rare cause of life-threatening hypercalcemia. Eur. J. Med. Gen. 2016; 59: 227-231.

43. Kobayashi M., Tanaka H., Tsuzuki K. et al. Two novel missense mutations in calcium-sensing receptor gene associated with neonatal severe hyperparathyroidism. J. Clin. Endocrinol. Metab. 1997; 82: 2716-2719.

44. Pollak M.R., Brown E.M., Estep H.L. et al. Autosomal dominant hypocalcaemia causwd by a Ca2+-sensing receptor gene mutation. Nat. Genet. 1994; 8: 303-307.

45. Pearce S.H., Bai M., Quinn S.J. et al. Functional characterization of c.alcium-sensing receptor mutations expressed in human embryonic kidney cells. J. Clin. Invest. 1996; 98 (8): 1860-1866.

46. Bai M., Pearce S.H., Kifor O. et al. In vivo and in vitro characterization of neonatal hyperparathyroidism resulting from a de novo, heterozygous mutation in the Ca2+-sensing receptor gene: Normal maternal calcium homeostasis as a cause of secondary hyperparathyroidism in familial benign hypocalciuric hypercalcemia. J. Clin. Invest. 1997; 99 (1): 88-96.

47. Pearce S.H., Trump D., Wooding C. et al. Calcium-sensing receptor mutations in familial benign hypercalcemia and neonatal hyperparathyroidism. J. Clin. Invest. 1995; 96: 2683-2692.

48. Ho C., Conner D.A., Pollak M.R. et al. A mouse model of human familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism. Nat. Genet. 1995; 11: 389-394.

49. Wilhelm-Bals A., Parvex P., Magdelaine C., Girardin E. Successful use of bisphosphonate and calcimimetic in neonatal severe primary hyperparathyroidism. Pediatrics. 2012; 129: e812-e816.

50. Glass E.J., Barr D.G. Transient neonatal hyperparathyroidism secondary to maternal pseudohypoparathyroidism. Arch. Dis. Child. 1981; 56 (7): 565-568.

51. Kelly A., Levine M.A. Disorders of calcium, phosphate, parathyroid hormone and vitamin D. In: Kappy M.S., Allen D.B., Geffner M.E., eds. Pediatric practice: endocrinology. Charles C Thomas Publisher, LTD, Springfield, 2009; 191-256.

52. Finne P.H., Sanderud J., Aksnes L. et al. Hypercalcemia with increased and upregulated 1,25-dihydroxyvitamin D production in a neonate with subcutaneous fat necrosis. J. Pediatr. 1988; 112 (5): 792-794.

53. Hicks M.J., Levy M.L., Alexander J., Flaitz C.M. Subcutaneous fat necrosis of the newborn and hypercalcemia: case report and review of the literature. Pediatr. Dermatol. 1993; 10 (3): 271-276.

54. Burden A.D., Ktafchik B.R. Subcutaneous fat necrosis of the newborn: A review of 11 cases. Pediatr. Dermatol. 1999; 16 (5): 384-387.

55. Kifor O., Moore F.D. Jr, Delaney M. et al. A syndrome of hypocalciuric hypercalcemia caused by autoantibodies directed at the calcium-sensing receptor. J. Clin. Endocrinol. Metab. 2003; 88: 60-72.

56. Pallais J.C., Kifor O., Chen Y.B. et al. Acquired hypocalciuric hypercalcemia due to autoantibodies against the calcium-sensing receptor. N. Engl. J. Med. 2004; 351: 362-369.

57. Makita N., Sato J., Manaka K. et al. An acquired hypocalciuric hypercalcemia autoantibody induces allosteric transition among active human Ca-sensing receptor conformations. Proc. Natl. Acad. Sci. U S A. 2007; 104: 5443-5448.

58. Riccardi D., Brown E.M. Physiology and pathophysiology of the calcium-sensing receptor in the kidney. Am. J. Physiol. Renal Physiol. 2010; 298 (3): F485-F499.

59. Bosch X. Hypercalcemia due to endogenous overproduction of active vitamin D in identical twins with cat-scratch disease. JAMA. 1998; 279 (7): 532-534.

60. Monkawa T., Yoshida T., Hayashi M., Saruta T. Identification of 25-hydroxyvitamin D3 1alpha-hydroxylase gene expression in macrophages. Kidney Int. 2000; 58 (2): 559-568.

61. Stewart A.F., Adler M., Beyers C.M. et al. Calcium homeostasis in immobilization: an example of resorptive hypercalciuria. N. Engl. J. Med. 1982; 306 (19): 1136-1140.

62. Orwoll E.S. The milk-alkali syndrome: current concepts. Ann. Intern. Med. 1982; 97: 242-248.

63. Mallette L.E., Eichhorn E. Effects of lithium carbonate on human calcium metabolism. Arch. Intern. Med. 1986; 146: 770-776.

64. Bilezikian J.P., Potts J.T. Jr, Fulelhan G. et al. Summary statement from a workshop on asymptomatic primary hyperparathyroidism: a perspective for the 21st century. J. Clin. Endocrinol. Metab. 2002; 87: 5353-5362.

65. Bilezikian J.P., Khan A.A., Potts J.T. Jr. Third international workshop on the management of asymptomatic primary hyperparathyroidism. Guidelines for management of asymptomatic primary hyperparathyroidism: summary statement from the third international workshop. J. Clin. Endocrinol. Metab. 2009; 94: 335-339.

66. Bilezikian J.P., Silverberg S.J. Primary hyperparathyroidism. In: Favus M.J, ed. Primer on the metabolic bone diseases and disorders of mineral metabolism. American Society for Bone and Mineral Research, U S A, 2006; 181-185.

67. Farford B., Presutti R.J., Moraghan T.J. Nonsurgical management of primary hyperparathyroidism. Mayo Clin. Proc. 2007; 82: 351-355.

68. Hamdy N.A., Gray R.E., McCloskey E. et al. Clodronate in the medical management of hyperparathyroidism. Bone. 1987; 8 (Suppl 1): S69-S77.

69. Rossini M., Gatti D., Isaia G. et al. Effects of oral alendronate in elderly patients with osteoporosis and mild primary hyperparathyroidism. J. Bone Miner. Res. 2001; 16: 113-119.

70. Parker C.R., Blackwell P.J., Fairbairn K.J., Hosking D.J. Alendronate in the treatment of primary hyperparathyroid-related osteoporosis: a 2-year study. J. Clin. Endocrinol. Metab. 2002; 87: 4482-4489.

71. Chow C.C., Chen W.B., Li J.K. et al. Oral alendronate increases bone mineral density in post-menopausal women with primary hyperparathyroidism. J. Clin. Endocrinol. Metab. 2003; 88: 581-587.

72. Khan A.A., Bilezikian J.P., Kung A.W. et al. Alendronate in primary hyperparathyroidism: A double-blind, randomized, placebo-controlled trial. J. Clin. Endocrinol. Metab. 2004; 89: 3319-332.

73. Orr-Walker B.J., Evans M.C., Clearwater J.M. et al. Effects of hormone replacement therapy on bone mineral density in postmenopausal women with primary hyperparathyroidism: Four-year follow-up and comparison with healthy postmenopausal women. Arch. Intern. Med. 2000; 160: 2161-2166.

74. Rubin M.R., Lee K.H., McMahon D.J., Silverberg S.J. Raloxifene lowers serum calcium and markers of bone turnover in postmenopausal women with primary hyperparathyroidism. J. Clin. Endocrinol. Metab. 2003; 88: 1174-1178.

75. Nemeth E.F., Goodman W.G. Calcimimetic and calcilitic drugs: Feats, flops, and futures. Calcif. Tissue Int. 2016; 98: 341-358.

76. Marx S.J. Calcimimetic use in familial hypocalciuric hypercalcemia - A perspective in endocrinology. J. Clin. Endocrinol. Metab. 2017; Copyright 2017, 5 pages. Doi: 10.1210/jc.2017-01606.

77. Nagano N., Nemeth E.F. Functional proteins involved in regulation of intracellular Ca(2+) for drug development: The extracellular calcium receptor and an innovative medical approach to control secondary hyperparathyroidism by calcimimetics. J. Pharmacol. Sci. 2005; 97 (3): 355-360.

78. Волгина Г.В., Балкарова О.В., Штандель В.С., Ловчинский Е.В. Кальцимиметики - новый этап в лечении гиперпаратиреоза. Лечащий врач. 2011; 3: 79-82.

79. Block G.A., Martin K.J., de Francisco A.L. et al. Cinacalcet for secondary hyperparathyroidism in patients receiving hemodialysis. N. Engl. J. Med. 2004; 350 (15): 1516-1525.

80. Platt C., Inward C., McGraw M. et al. Middle-term use of Cinacalcet in paediatric dialysis pa-tients. Pediatr. Nephrol. 2010; 25 (1): 143-148.

81. Стецюк Е.А., Синюхин В.Н. Новая парадигма в лечении вторичного гиперпаратиреоидизма. Гемодиализ для специалистов (Электронный журнал). URL: www.hd13.ru/article/1280 (дата публикации 21.01.2009).

82. Peacock M., Bilezikian J.P., Klassen P.S. et al. Cinacalcet hydrochloride maintains long-term normocalcemia in patients with primary hyperparathyroidism. J. Clin. Endocrinol. Metab. 2005; 90: 135-141.

83. Shoback D.M., Bilezikian J.P., Turner S.A. et al. The calcimimetic cinacalcet normalizes serum calcium in subjects with primary hyperparathyroidism. J. Clin. Endocrinol. Metab. 2003; 88: 5644-5649.

84. Nemeth E.F., Heaton W.H., Miller M. et al. Pharmacodynamics of the type II calcimimetic compound cinacalcet HCl. J. Pharmacol. Exp. Ther. 2004; 308: 627-635.

85. Peacock M., Scumpia S., Bolognese M.A. et al. Long-term control of primary hyperparathyroidism with cinacalcet HL (AMG 073). J. Bone Miner. Res. 2003; 18 (Suppl): 17.

86. Kruse A.E., Eisenberger U., Frey F.J., Mohaupt M.G. The calcimimetic cinacalcet normalizes serum calcium in renal transplant patients with persistent hyperparathyroidism. Nephrol. Dial. Transplant. 2005; 20: 1311-1314.

87. Sloand J.A., Shelly M.A. Normalization of lithium-induced hypercalcemia and hyperparathyroidism with cinacalcet hydrochloride. Am. J. Kidney Dis. 2006; 48 (5): 832-837.

88. Vahe C., Benomar K., Espiard S. et al. Diseases associated with calcium-sensing receptor. Orph. J. Rare Dis. 2017; 12: 19. doi: 10.1186/s13023-017-0570-z.

89. Makras P., Papapoulos S.E. Medical treatment of hypercalcemia. Hormones. 2009; 8 (2): 83-95.

90. Mayr B., Schnabel D., Dörr H-G., Schöfl C. Gain and loss of function mutations of the calcium-sensing receptor and associated proteins: Current treatment concepts. Eur. J. Endocrinol. 2016; 174 (5): R189-R208.

91. Howles S.A., Hannan F.M., Babinsky V.N. et al. Cinacalcet for symptomatic hypercalcemia caused by AP2S1 mutations. N. Engl. J. Med. 2016; 374: 1396-1398.

92. Ziegler R. Hypercalcemic crisis. J. Am. Soc. Nephrol. 2001; 12 (Suppl 17): S3-S9.

93. Hamdy N.A., Papapoulos S.E. Management of malignancy-associated hypercalcaemia. Clin. Rev. Bone Mineral. Metab. 2002; 1: 65-76.

94. Papapoulos S.E. Bisphosphonates: how do they work? Best Pract. Res. Clin. Endocrinol. Metab. 2008; 22: 831-847.

95. Very A., D’Andrea M.R., Bonginelli P., Gasparini G. Clinical usefulness of bisphosphonates in oncology: Treatment of bone metastases, antitumoral activity and effect on bone resorption markers. Int. J. Biol. Markers. 2007; 22: 24-33.

96. Attard T.M., Dhawan A., Kaufman S.S. et al. Use of disodium pamidronate in children with hypercalcemia awaiting liver transplantation. Pediatr. Transplant. 1998; 2 (2): 157-159.

97. Shoemaker L.R. Expanding role of bisphosphonate therapy in children. J. Pediatr. 1999; 134 (3): 264-267.

98. Srivastava T., Alon U.S. Bisphosphonares: from grandparents to grandchildren. Clin. Pediatr (Phila). 1999; 38 (12): 687-702.

99. Vahtsevanos K., Kyrgidis A., Verrou E. et al. Longitudinal cohort study of risk factors in cancer patients of bisphosphonate-related osteonecrosis of the jaw. J. Clin. Oncol. 2009; 27 (32): 5356-5362.

100. Gannon A.W., Monk H.M., Levine M.A. Cinacalcet monotherapy in neonatal severe hyperparathyroidism: A case study and review. J. Clin. Endocrinol. Metab. 2014; 99 (1): 7-11.

101. Fitzpatrick L.A., Bilezikian J.P. Acute primary hyperparathyroidism. Am. J. Med. 1987; 82: 275-282.

102. Roszko K.L., Bi R.D., Mannstadt M. Autosomal dominant hypocalcemia (Hypoparathyroidism) types 1 and 2. Front. Physiol. 2016; 7: 458.

103. Finegold D.N., Armitage M.M., Galiani M. et al. Preliminary localization of a gene for autosomal dominant hypoparathyroidism to chromosome 3q13. Pediatr. Res. 1994; 36 (3): 414-417.

104. Egbuna O.I., Brown E.M. Hypercalcemic and hypocalcemic conditions due to calcium-sensing receptor mutations. Best Pract. Res. Clin. Rheumatol. 2008; 22 (1): 129-148.

105. Hirai H., Nakajima S., Miyauchi A. et al. A novel activating mutation (C129S) in the calcium-sensing receptor gene in a Japanese family with autosomal dominant hypocalcemia. J. Hum. Genet. 2001; 46: 41-44.

106. Mannstadt M., Harris M., Bravenboer B. et al. Germine mutations affecting Galpha11 in hypoparathyroidism. N. Engl. J. Med. 2013; 368: 2532-2534.

107. Nesbit M.A., Hannan F.M., Howles S.A. et al. Mutations affecting G-protein subunit alpha 11 in hypercalcemia and hypocalcemia. N. Engl. J. Med. 2013; 368: 2476-2486.

108. Li D., Opas E.E., Tuluc F. et al. Autosomal dominant hypoparathyroidism caused by germline mutation in GNA11: Phenotypic and molecular characterization. J. Clin. Endocrinol. Metab. 2014; 99: E1774-E1783.

109. Piret S.E., Gorvin C.M., Pagnamenta A.T. et al. Identification of a G-protein subunit-α11 gain-of-function mutation, Val340Met, in a family with autosomal dominant hypocalcemia type 2 (ADH2). J. Bone Miner. Res. 2016; 31: 1207-1214.

110. Tenhola S., Voutilainen R., Reyes M. et al. Impaired growth and intracranial calcification in autosomal dominant hypocalcemia caused by a GNA11 mutation. Eur. J. Endocrinol. 2016; 175: 211-218.

111. Sato K., Hasegawa Y., Nakae J. et al. Hydrochlorothiazide effectively reduces urinary calcium excretion in two Japanese patients with gain-of-function mutations of the calcium-sensing recep-tor gene. J. Clin. Endocrinol. Metab. 2002; 87 (7): 3068-3073.

112. Mayr B., Glaudo M., Schöfl C. Activating calcium-sensing receptor mutations: Prospects for future treatment with calcilytics. TEM. 2016; 1154: Pages 10. doi: 10.1016/j.tem.2016.05.005.

113. Mittelman S.D., Hendy G.N., Fefferman R.A. et al. A hypocalcemic child with a novel activating mutation of the calcium-sensing receptor gene: Successful treatment with recombinant human parathyroid hormone. J. Clin. Endocrinol. Metab. 2006; 91 (7): 2474-2479.

114. Зверев Я.Ф., Брюханов В.М., Лампатов В.В. Заболевания и синдромы, обусловленные генетическими нарушениями почечного транспорта электролитов. Нефрология. 2004; 8 (4): 11-24.

115. Кисина А.А., Рысс Е.С., Яковенко А.А. и др. Синдромы Барттера и Гительмана в практике "взрослого" нефролога. Нефрология. 2006. 10 (1): 93-98.

116. Каюков И.Г., Смирнов А.В., Шабунин М.А. и др. Редкие заболевания в практике "взрослого" нефролога: состояния, ассоциированные с гипокалиемией. Сообщение III. Синдромы Барттера и Гительмана. Нефрология. 2009; 13 (4): 86-102.

117. Левиашвили Ж.Г., Савенкова Н.Д. Барттер синдром у детей. Нефрология. 2012; 16 (3): 25-33.

118. Laghmani K., Beck B.B., Yang S.S. et al. Polyhydramnios, transient Bartter’s syndrome, and MAGED2 mutations. N. Engl. J. Med. 2016; 374: 1853-1863.

119. Vargas-Poussou R., Huang C., Hulin P. et al. Functional characterization of a calcium-sensing receptor mutation in severe autosomal dominant hypocalcemia with a Bartter-like syndrome. J. Am. Soc. Nephrol. 2002; 13 (9): 2259-2266.

120. Watanabe S , Fukumoto S., Chang H et al. Association between activating mutations of calcium-sensing receptor and Bartter’s syndrome. Lancet. 2002; 360 (9334): 692-694.

121. Zhao X M , Hauache O , Goldsmith P K et al. A missense mutation in the seventh transmembrane domain constitutively activates the human Ca2+ receptor. FEBS Lett. 1999; 448 (1): 180-184.

122. Koulouridis E., Koulouridis I. Molecular pathophysiology of Bartter’s and Gitelman’s syndromes. World J. Pediatr. 2015; 11 (2): 113-125.

123. Ahonen P., Myllarniemi S., Sipila I., Perheentupa J. Clinical variation of autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) in a series of 68 patients. N. Engl. J. Med. 1990; 322 (26): 1829-1836.

124. Agus Z.S. Mechanisms and causes of hypomagnesemia. Curr. Opin. Nephrol. Hypertens. 2016; 25 (4): 301-307.

125. Brasier A.R., Nussbaum S.R. Hungry bone syndrome: clinical and biochemical predictors of its occurrence after parathyroid surgery. Am. J. Med. 1988; 84: 654-660.

126. Shah G.M., Kirschenbaum M.A. Renal magnesium wasting associated with therapeutic agents. Miner. Electrolyte Metab. 1991; 17: 58-64.

127. Konrad M., Weber S. Recent advances in molecular genetics of hereditary magnesium-losing disorders. J. Am. Soc. Nephrol. 2003; 14 (1): 249-260.

128. Konrad M., Schlingmann K.P., Gudermann T. Insights into molecular nature of magnesium homeostasis. Am. J. Physiol. Renal Physiol. 2004; 286: F599-F605.

129. Foster J.E., Harpur E.S., Garland H.O. An investigation of the acute effect of gentamicin on the renal handling of electrolytes in the rat. J. Pharmacol. Exp. Ther 1992; 261: 38-43.

130. Ettinger L.J., Gaynon P.S., Kralio M.D. et al. A phase II study of carboplatin in children with recurrent or progressive solid tumors. Cancer. 1994; 73: 1297-1301.

131. Nijenhuis T., Hoenderop J.G., Bindels R.J. Down regulation of Ca(2+) and Mg(2+) transport proteins in the kidney explains tacrolimus (FK506)-induced hypercalciuria and hypomagnesemia. J Am Soc Nephrol. 2004; 15: 549-557.

132. Epstein M , McGrath S , Low F. Proton-pump inhibitors and hypomagnesemic hypoparathyroidism. N. Engl. J. Med. 2006; 355: 1834-1836.

133. de Baaij J.H., Hoenderop J.G., Bindels R.J. Magnesium in man: Implications for health and dis-ease. Physiol. Rev. 2015; 95: 1-46.

134. Assadi F. Hypomagnesemia. An evidence-based approach to clinical cases. IJKD. 2010; 4: 13-19.

135. Спасов А А. Магний в медицинской практике. Отрок, Волгоград, 2000; 272 c.

136. Vallee B., Wacker W.E., Ulmer D.D. The magnesium deficiency tetany syndrome in man. N. Engl. J. Med. 1960; 262: 155-161.

137. Dyckner T. Serum magnesium in acute myocardial infarction. Relation to arrhythmias. Acta Med Scand 1980; 207: 59-66.

138. Augus Z.S. Hypomagnesemia. J. Am. Soc. Nephrol. 1999; 10: 1616-1622.

139. Paunier L., Radde I.C., Kooh S.W. et al. Primary hypomagnesemia with secondary hypocalcemia in an infant. Pediatrics. 1968; 41: 385-402.

140. Schlingmann K.P., Weber S., Peters M. et al. Hypomagnesemia with secondary hypocalcemia is caused by mutations in TRPM6, a new member of the TRPM gene family. Nat. Genet. 2002; 31 (2): 166-170.

141. Walder R.Y., Landau D., Meyer P. et al. Mutation of TRPM6 causes familial hypomagnesemia with secondary hypocalcemia. Nat. Genet. 2002; 31 (2): 171-174.

142. Anast C.S., Mohs J.M., Kaplan S.L., Burns T.W. Evidence for parathyroid failure in magnesium deficiency. Science. 1972; 177: 606-608.

143. Milla P.J., Aggett P.J., Wolff O.H., Harries J.T. Studies in primary hypomagnesemia: Evidence for defective carrier-mediated small intestinal transport of magnesium. Gut. 1979; 20: 1028-1033.

144. Walder R.Y., Shalev H., Brennan T.M. et al. Familial hypomagnesemia maps to chromosome 9q, not to the X chromosome: Genetic linkage mapping and analysis of a balanced translocation breakpoint. Hum. Mol. Genet. 1997; 6: 1491-1497.

145. Walder R Y , Borochowitz Z , Shalev H et al. Hypomagnesemia with secondary hypocalcemia (HSH): Narrowing the disease region on chromosome 9. Am. J. Hum. Genet [Abstract]. 1999; 65: A451.

146. Komiya Y., Runnels L.W. TRPM channels and magnesium in early embryonic development. Int. J. Dev. Biol. 2015; 59 (0): 281-288.

147. Chubanov V., Gudermann T., Schlingmann K.P. Essential role for TRPM6 in epithelial magnesium transport and body magnesium homeostasis. Pflugers Arch. 2005; 451 (1): 228-234.

148. Schlingmann K.P., Waldegger S., Konrad M. et al. TRPM6 and TRPM7 - Gatekeepers of hu-man magnesium metabolism. Biochim. Biophys. Acta. 2007; 1772 (8): 813-821.

149. Shalev H., Phillip M., Galil A. et al. Clinical presentation and outcome in primary familial hypomagnesaemia. Arch. Dis. Child. 1998; 78: 127-130.

150. Cole D.E., Kooh S.W., Vieth R. Primary infantile hypomagnesemia: Outcome after 21 years and treatment with continuous nocturnal nasogastric magnesium infusion. Eur. J. Pediatr. 2000; 159: 38-43.

151. Michelis M.F., Drash A.L., Linarelli L.G. et al. Decreased bicarbonate threshold and renal magnesium wasting in a sibship with distal renal tubular acidosis (Evaluation of the pathophysiological role of parathyroid hormone). Metabolism. 1972; 21: 905-920

152. Nicholson J.C., Jones C.L., Powell H.R. et al. Familial hypomagnesaemia-hypercalciuria leading to end-stage renal failure. Pediatr. Nephrol. 1995; 9: 74-76.

153. Praga M., Vara J., Gonzalez-Parra E. et al. Familial hypomagnesemia with hypercalciuria and nephrocalcinosis. Kidney Int. 1995; 47: 1419-1425.

154. Btnigno V., Canonica C.S., Bettinelli A. et al. Hypomagnesemia-hypercalciuria-nephrolithiasis: A report of nine cases and a review. Nephrol Dial Transplant. 2000; 15: 605-610.

155. Kari J.A., Farouq M., Alshaya H.O. Familial hypomagnesemia with hypercalciuria and nephrocalcinosis. Pediatr. Nephrol. 2003; 18: 506-510.

156. Weber S., Schneider L., Peters M. et al. Novel paracellin-1 mutations in 25 families with familial hypomagnesemia with hypercalciuria and nephrocalcinosis. J. Am. Soc. Nephrol. 2001; 12: 1872-1881.

157. Rodriguez-soriano J., Vallo A., Garcia-Fuentes M. Hypomagnesaemia of hereditary renal origin. Pediatr. Nephrol. 1987; 1: 465-472.

158. Simon D.B., Lu Y., Choate K.A. et al. Paracellin-1, a renal tight junction protein required for paracellular Mg2+ resorption. Science. 1999; 285: 103-106.

159. Konrad M., Schaller A., Seelow D. et al. Mutations in the tight-junction gene claudin 19 (CLDN 19) are associated with renal magnesium wasting, renal failure, and severe ocular in-volvement. Am. J. Hum. Genet. 2006; 79: 949-957.

160. Hou J., Renigunta A., Konrad M. et al. Claudin-16 and claudin-19 interact and form a cation-selective tight junction complex. J. Clin. Invest. 2008; 118: 619-628.

161. Blanchard A., Jeunemaitre X., Coudol P. et al. Paracellin-1 is critical for magnesium and calcium reabsorption in the human thick ascending limb of Henle. Kidney Int. 2001; 59: 2206-2215.

162. Kuwertz-Broking E., Frund S., Bulla M. et al. Familial hypomagnesemia-hypercalciuria in 2 siblings. Clin. Nephrol. 2001; 56: 155-161.

163. Geven W.B., Monnens L.A., Willems H.L. et al. Renal magnesium wasting in two families with autosomal dominant inheritance. Kidney Int. 1987; 31: 1140-1144.

164. Meij I., Illy K.E., Monnens L. Severe hypomagnesemia in a neonate with isolated renal magnesium loss. Nephron. 2000; 84: 198.

165. Meij I.C., Saar K., van den Heuvel L.P. et al. Hereditary isolated renal magnesium loss maps to chromosome 11q23. Am. J. Hum. Genet. 1999; 64: 180-188.

166. Meij I.C., Koenderink J.B., van Bokhoven H. et al. Dominant isolated renal magnesium loss is caused by misrouting of the Na(+),K(+)-ATPase gamma-subunit. Nat. Genet. 2000; 26: 265-266.

167. Meij I.C., Koenderink J.B., De Jong J.C. et al. Dominant isolated renal magnesium loss is caused by misrouting of the Na+,K+-ATPase gamma-subunit. Ann. N. Y. Acad. Sci. 2003; 986: 437-443.

168. Pu H.X., Scanzano R., Blostein R. Distinct regulatory effects of the Na,K-ATPase gamma subunit. J. Biol. Chem. 2002; 277: 20270-20276.

169. Glaudemans B., Knoers N.V., Hoenderop J.G., Bindels R.J. New molecular players facilitating Mg(2+) reabsorption in the distal convoluted tubules. Kidney Int. 2010; 77 (1): 17-22.

170. Gitelman H.J., Graham J.B., Welt L.G. A new familial disorder characterized by hypokalemia and hypomagnesemia. Trans. Assoc. Am. Physicians. 1966; 79: 221-235.

171. Knoers N.V., Levtchenko E.N. Gitelman syndrome. Orphanet J. Rare Dis. 2008; 3: 22. Pub-lished online 2008 July 30. URL: 10. 1186/1750-1172-3-22.

172. Fogila P.E.G., Bettinelli A., Tosetto C. et al. Cardiac work up in primary hypokalemia-hypomagnesemia (Gitelman syndrome). Nephrol. Dial. Transplant. 2004; 19: 1398-1402.

173. Riveira-Munoz E., Chang Q., Godefroid N. et al. Transcriptional and functional analyses of SLC12A3 mutations: new clues for the pathogenesis of Gitelman syndrome. J. Am. Soc. Nephrol. 2007; 18 (4): 1271-1283.

174. Scognamiglio R., Negut C., Calò L.A. Aborted sudden cardiac death in two patients with Bart-ter’s/Gitelman’s syndromes. Clin. Nephrol. 2007; 67: 193-197.

175. Fava C., Montagnana M., Rosberg L. et al. Subjects heterozygous for genetic loss of function of the thiazide-sensitive cotransporter have reduced blood pressure. Hum. Mol. Genet. 2008; 17: 413-418.

176. Ji W., Foo J.N., O’Roak B.J. et al. Rare independent mutations in renal salt handling genes contribute to blood pressure variation. Nat. Genet. 2008; 40: 592-599.

177. Брюханов В.М., Зверев Я.Ф. Побочные эффекты современных диуретиков. Метаболические и токсико-аллергические аспекты. ЦЭРИС, Новосибирск, 2003; 224 c.

178. Knoers N.V.A.M., Starremans P.G.J.F., Monnens L.A.H. Hypokalemic tubular disorders. In: Davidson AM, Cameron JS, Grunfeld J-P, Ponticelli C, Ritz E, Winearis CG, van Ypersele C, eds. Textbook in Clinical Nephrology. Third. Oxford University Press, Oxford, 2005; 995-1004.

179. Брюханов В.М., Зверев Я.Ф., Лампатов В.В. Альдостерон. Физиология, патофизиология, клиническое применение антагонистов. Феникс, Ростов-на-Дону, 2007; 396 с.

180. Graziani G., Fedeli C., Moroni L. et al. Gitelman syndrome: pathophysiological and clinical aspects. QJM. 2010; 103 (10): 741-748.

181. Nijenhuis T., Vallon V., van der Kemp A.W. et al. Enhanced passive Ca2+ reabsorption and re-duced Mg2+ channel abundance explains thiazide-induced hypocalciuria and hypomagnesemia. J. Clin. Invest. 2005; 115: 1651-1658.

182. Chhokar V.S., Sun Y., Bhattacharya S.K. et al. Loss of bone minerals and strength in rats with aldosteronism. Am. J. Physiol. Heart Circ. Physiol. 2004; 287: H2023-H2026.

183. Sontia B., Montezano A.C., Paravicini T. et al. Downregulation of renal TRPM7 and increased inflammation and fibrosis in aldosterone-infused mice: effects of magnesium. Hypertension. 2008; 51: 915-921.

184. Chhokar V.S., Sun Y., Bhattacharya S.K. et al. Hyperparathyroidism and the calcium paradox of aldosteronism. Circulation. 2005; 111: 871-878.

185. Horton R., Biglieri E.G. Effect of aldosterone on the metabolism of magnesium. J. Clin. Endocrinol. Metab. 1962; 22: 1187-1192.

186. Ellison D.H. Divalent cation transport by the distal nephron: insights from Bartter’s and Gitelman’s syndromes. Am. J. Physiol. Renal Physiol. 2000; 279 (4): F616-F625.

187. Colussi G., Rombola G., De Ferrari M.E. et al. Correction of hypokalemia with antialdosterone therapy in Gitelman’s syndrome. Am. J. Nephrol. 1994; 14: 127-135.

188. Dimke H., Hoenderpo J.G., Bindels R.J. Hereditary tubular transport disorders: implications for renal handling of Ca2+ and Mg2+. Clin. Sci. 2010; 118: 1-18.

189. Friedman P.A. Codependence of renal calcium and sodium transport. Annu. Rev. Physiol. 1998; 60: 179-197.

190. Loffing J., Vallon V., Loffing-Cueni D. et al. Altered renal distal tubule structure and renal Na+ and Ca2+ handling in a mouse model for Gitelman’s syndrome. J. Am. Soc. Nephrol. 2004; 15: 2276-2288.

191. Loffing J., Loffing-Cueni D., Hegyi I. et al. Thiazide treatment of rats provokes apoptosis in distal tubule cells. Kidney Int. 1996; 50 (4): 1180-1190.

192. Nijenhuis T., Hoenderop J.G.J., Loffing J. et al. Thiazide-induced hypocalciuria is accompanied by a decreased expression of Ca2+ transport proteins in kidney. Kidney Int. 2003; 64: 555-564.

193. Seyberth H.W., Weber S., Kömhoff B. Bartter's and Gitelman's syndrome. Curr. Opin. Pediatr. 2017; 29 (2): 179-186.

194. Augus Z.S. Hypomagnesemia. J. Am. Soc. Nephrol. 1999; 10: 1616-1622.

195. Shaer A. Inherited primary renal tubular hypokalemic alkalosis: a review of Gitelman and Bart-ter syndrome. Am. J. Med. Sci. 2001; 322: 316-322.

196. Cruz D.N., Shaer A.J., Bia M.J. et al. Gitelman’s syndrome revisited: An evaluation of symptoms and health-related quality of life. Kidney Int. 2001; 59: 710-717.


Рецензия

Для цитирования:


Зверев Я.Ф., Брюханов В.М., Рыкунова А.Я. Роль почек в поддержании кальциевого и магниевого гомеостаза и при его нарушениях (Часть II). Нефрология и диализ. 2018;20(2):170-188. https://doi.org/10.28996/2618-9801-2018-2-170-188

For citation:


Zverev J.F., Bryukhanov V.M., Rykunova A.Ya. Role of kidney in maintaining calcium and magnesium homeostasis and its disorders (Part II). Nephrology and Dialysis. 2018;20(2):170-188. (In Russ.) https://doi.org/10.28996/2618-9801-2018-2-170-188

Просмотров: 81


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1680-4422 (Print)
ISSN 2618-9801 (Online)