Preview

Нефрология и диализ

Расширенный поиск

Механизмы острого повреждения почек при Covid-19. Обзор

https://doi.org/10.28996/2618-9801-2021-3-352-365

Аннотация

Важнейшая особенность острого повреждения почек (ОПП) при новой коронавирусной инфекции (COVID-19) - отсутствие единого ведущего звена патогенеза. Глубокое понимание механизмов и основных звеньев патогенеза заболевания позволит определить ранние маркёры ОПП, что будет способствовать ранней диагностике, прогнозированию, персонифицированной терапии и профилактике повреждения почек у пациентов с COVID-19. Цель обзора: обобщить данные клинических и научных исследований по известным механизмам ОПП при COVID-19. Определить маркёры раннего повреждения почек при COVID-19. Материалы и методы: в базах данных Web of Science, Scopus и РИНЦ отобрали 81 релевантный источник, содержавший актуальные данные клинических и научных исследований по теме данного обзора. Результаты: отмечены основные механизмы повреждения почек при COVID-19: внутриклеточная активность вируса, приводящая к клеточной гибели, избыточное высвобождение провоспалительных цитокинов и цитокиновый шторм, патология ренин-ангиотензин-альдостероновой системы (РААС), гиперергическое воспаление и иммунотромбоз. Определены основные эффекты ангиотензина II при нарушении регуляции РААС, а также спектр провоспалительных цитокинов и их функций в развитии цитокинового шторма. Рассмотрена возможность прямого цитопатического действия SARS-CoV-2 на почечный эпителий как самостоятельной причины ОПП при COVID-19. Представлена взаимосвязь между гиперергической воспалительной реакцией и процессом иммунотромбоза, которая опосредована действием множества защитных систем организма, в том числе нейтрофилами, тромбоцитами и белками системы комплемента. Оценен риск тромботических осложнений в почечных сосудах у пациентов с COVID-19. Также представлен анализ потенциальных ранних биомаркёров повреждения почек при COVID-19 и сравнили их с клиническими биомаркёрами ОПП. Заключение: ОПП - одно из наиболее частых осложнений у тяжелобольных пациентов с COVID-19, которое значительно ухудшает прогноз течения болезни. Изучение механизмов повреждения почек способствует открытию новых маркёров, необходимых для ранней диагностики, прогнозирования течения болезни и дальнейшего выбора оптимальной персонифицированной терапии.

Об авторах

Л. Д. Мальцева
ФГАОУ ВО «Первый МГМУ им. И.М. Сеченова» Минздрава России
Россия


И. М. Васалатий
ФГАОУ ВО «Первый МГМУ им. И.М. Сеченова» Минздрава России
Россия


Ю. А. Исаакян
ФГАОУ ВО «Первый МГМУ им. И.М. Сеченова» Минздрава России
Россия


О. Л. Морозова
ФГАОУ ВО «Первый МГМУ им. И.М. Сеченова» Минздрава России
Россия


Список литературы

1. Farouk S.S., Fiaccadori E., Cravedi P., et al. COVID-19 and the kidney: what we think we know so far and what we don’t. Journal of Nephrology. 2020. DOI: 10.1007/s40620-020-00789-y.

2. Chan L., Chaudhary K., Saha A., et al. Acute Kidney Injury in Hospitalized Patients with COVID-19. medRxiv: the preprint server for health sciences. 2020. DOI: 10.1101/2020.05.04.20090944.

3. Hirsch J.S., Ng J.H., Ross D.W., et al. Acute kidney injury in patients hospitalized with COVID-19. Kidney International. 2020. DOI: 10.1016/j.kint.2020.05.006.

4. Alberici F., Delbarba E., Manenti C., et al. A report from the Brescia Renal COVID Task Force on the clinical characteristics and short-term outcome of hemodialysis patients with SARS-CoV-2 infection. Kidney International. 2020. DOI: 10.1016/j.kint.2020.04.030.

5. Malberti F., Pecchini P., Marchi G., et al. When a nephrology ward becomes a COVID-19 ward: the Cremona experience. Journal of Nephrology. 2020. DOI: 10.1007/s40620-020-00743-y.

6. Akalin E., Azzi Y., Bartash R., et al. COVID-19 and Kidney Transplantation. New England Journal of Medicine. 2020. DOI: 10.1056/nejmc2011117.

7. Fagerberg L., Hallstrom B.M., Oksvold P., et al. Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Molecular and Cellular Proteomics. 2014. Vol. 13, № 2. P. 397-406. DOI: 10.1074/mcp.M113.035600.

8. Lelis D. de F., Freitas D.F. de, Machado A.S., et al. Angiotensin-(1-7), Adipokines and Inflammation. Metabolism: Clinical and Experimental. 2019. Vol. 95. P. 36-45. DOI: 10.1016/j.metabol.2019.03.006.

9. McKinney C.A., Fattah C., Loughrey C.M., et al. Angiotensin-(1-7) and angiotensin-(1-9): Function in cardiac and vascular remodelling. Clinical Science. 2014. Vol. 126, № 12. P. 815-827. DOI: 10.1042/CS20130436.

10. Vaarala M.H., Porvari K.S., Kellokumpu S., et al. Expression of transmembrane serine protease TMPRSS2 in mouse and human tissues. Journal of Pathology. 2001. Vol. 193, № 1. P. 134-140. DOI: 10.1002/1096-9896(2000)9999:9999<::AID-PATH743>3.0.CO;2-T.

11. Hoffmann M., Kleine-Weber H., Schroeder S., et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020. Vol. 181, № 2. P. 271-280.e8. DOI: 10.1016/j.cell.2020.02.052.

12. Su H., Yang M., Wan C., et al. Renal histopathological analysis of 26 postmortem findings of patients with COVID-19 in China. Kidney International. 2020. DOI: 10.1016/j.kint.2020.04.003.

13. Gabarre P., Dumas G., Dupont T., et al. Acute kidney injury in critically ill patients with COVID-19. Intensive Care Medicine. Springer Berlin Heidelberg; 2020. Vol. 46, № 7. P. 1339-1348. DOI: 10.1007/s00134-020-06153-9.

14. Rüster C., Wolf G. Renin-angiotensin-aldosterone system and progression of renal disease. Journal of the American Society of Nephrology. 2006. Vol. 17, № 11. P. 2985-2991. DOI: 10.1681/ASN.2006040356.

15. Deshotels M.R., Xia H., Sriramula S., et al. Angiotensin II mediates angiotensin converting enzyme type 2 internalization and degradation through an Angiotensin II type I receptor-dependent mechanism. Hypertension. 2014. Vol. 64, № 6. P. 1368-1375. DOI: 10.1161/HYPERTENSIONAHA.114.03743.

16. Huang Y., Wongamorntham S., Kasting J., et al. Renin increases mesangial cell transforming growth factor-β1 and matrix proteins through receptor-mediated, angiotensin II-independent mechanisms. Kidney International. 2006. Vol. 69, № 1. P. 105-113. DOI: 10.1038/sj.ki.5000011.

17. Nishiyama A., Abe Y. Molecular mechanisms and therapeutic strategies of chronic renal injury: Renoprotective effects of aldosterone blockade. Journal of Pharmacological Sciences. 2006. Vol. 100, № 1. P. 9-16. DOI: 10.1254/jphs.FMJ05003X3.

18. Mori Y., Masuda T., Kosugi T., et al. The clinical relevance of plasma CD147/basigin in biopsy-proven kidney diseases. Clinical and Experimental Nephrology. Springer Japan; 2018. Vol. 22, № 4. P. 815-824. DOI: 10.1007/s10157-017-1518-2.

19. Nistala R., Savin V. Diabetes, hypertension, and chronic kidney disease progression: Role of DPP4. American Journal of Physiology - Renal Physiology. 2017. Vol. 312, № 4. P. F661-F670. DOI: 10.1152/ajprenal.00316.2016.

20. Radzikowska U., Ding M., Tan G., et al. Distribution of ACE2, CD147, CD26, and other SARS-CoV-2 associated molecules in tissues and immune cells in health and in asthma, COPD, obesity, hypertension, and COVID-19 risk factors. Allergy: European Journal of Allergy and Clinical Immunology. 2020. 0-3 p. DOI: 10.1111/all.14429.

21. Rabaan A.A., Al-Ahmed S.H., Haque S., et al. SARS-CoV-2, SARS-CoV, and MERS-CoV: A comparative overview. Infezioni in Medicina. 2020. Vol. 28, № 2. P. 174-184.

22. Napolitano G., Ballabio A. TFEB at a glance. Journal of Cell Science. 2016. Vol. 129, № 13. P. 2475-2481. DOI: 10.1242/jcs.146365.

23. Yue Y., Nabar N.R., Shi C.S., et al. SARS-Coronavirus Open Reading Frame-3a drives multimodal necrotic cell death. Cell Death and Disease. Springer US; 2018. Vol. 9, № 9. DOI: 10.1038/s41419-018-0917-y.

24. Kelley N., Jeltema D., Duan Y., et al. The NLRP3 inflammasome: An overview of mechanisms of activation and regulation. International Journal of Molecular Sciences. 2019. Vol. 20, № 13. P. 1-24. DOI: 10.3390/ijms20133328.

25. Shi C.-S., Qi H.-Y., Boularan C., et al. SARS-Coronavirus Open Reading Frame-9b Suppresses Innate Immunity by Targeting Mitochondria and the MAVS/TRAF3/TRAF6 Signalosome. The Journal of Immunology. 2014. Vol. 193, № 6. P. 3080-3089. DOI: 10.4049/jimmunol.1303196.

26. Food U.S. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. 2020. Vol. 583, № March. DOI: 10.1038/s41586-020-2286-9.

27. Shenoy S. Coronavirus (Covid-19) sepsis: revisiting mitochondrial dysfunction in pathogenesis, aging, inflammation, and mortality. Inflammation Research. Springer International Publishing; 2020. № 0123456789. DOI: 10.1007/s00011-020-01389-z.

28. McGonagle D., Sharif K., O’Regan A., et al. The Role of Cytokines including Interleukin-6 in COVID-19 induced Pneumonia and Macrophage Activation Syndrome-Like Disease. Autoimmunity Reviews. Elsevier; 2020. Vol. 19, № 6. P. 102537. DOI: 10.1016/j.autrev.2020.102537.

29. Akira S., Uematsu S., Takeuchi O. Pathogen recognition and innate immunity. Cell. 2006. Vol. 124, № 4. P. 783-801. DOI: 10.1016/j.cell.2006.02.015.

30. Kumar H., Kawai T., Akira S. Pathogen recognition by the innate immune system. International Reviews of Immunology. 2011. Vol. 30, № 1. P. 16-34. DOI: 10.3109/08830185. 2010.529976.

31. Ragab D., Salah Eldin H., Taeimah M., et al. The COVID-19 Cytokine Storm; What We Know So Far. Frontiers in Immunology. 2020. Vol. 11, № June. P. 1-4. DOI: 10.3389/fimmu.2020.01446.

32. Paces J., Strizova Z., Smrz D., et al. COVID-19 and the Immune System. 2020. Vol. 9973. P. 379-388.

33. Song P., Li W., Xie J., et al. Cytokine storm induced by SARS-CoV-2. Clinica Chimica Acta. Elsevier; 2020. Vol. 509, № April. P. 280-287. DOI: 10.1016/j.cca.2020.06.017.

34. Huang C., Wang Y., Li X., et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet. 2020. DOI: 10.1016/S0140-6736(20)30183-5.

35. Holtmann H., Resch K. Natur wissenschaften aktuell. Naturwissenschaften. 1996. Vol. 83, № 7. P. 336-338. DOI: 10.1007/bf01152220.

36. Grebe A., Hoss F., Latz E. NLRP3 inflammasome and the IL-1 pathway in atherosclerosis. Circulation Research. 2018. Vol. 122, № 12. P. 1722-1740. DOI: 10.1161/CIRCRESAHA.118.311362.

37. Yazdi A.S., Ghoreschi K. The Interleukin-1 Family. 2016. Vol. 1. DOI: 10.1007/978-94-024-0921-5.

38. Bent R., Moll L., Grabbe S., et al. Interleukin-1 beta-A friend or foe in malignancies? International Journal of Molecular Sciences. 2018. Vol. 19, № 8. DOI: 10.3390/ijms19082155.

39. Anders H.J. Of Inflammasomes and alarmins: IL-1β and IL-1α in kidney disease. Journal of the American Society of Nephrology. 2016. Vol. 27, № 9. P. 2564-2575. DOI: 10.1681/ASN.2016020177.

40. Durlacher-Betzer K., Hassan A., Levi R., et al. Interleukin-6 contributes to the increase in fibroblast growth factor 23 expression in acute and chronic kidney disease. Kidney International. Elsevier Inc; 2018. Vol. 94, № 2. P. 315-325. DOI: 10.1016/j.kint.2018.02.026.

41. Rose-John S. Interleukin-6 family cytokines. Cold Spring Harbor Perspectives in Biology. 2018. Vol. 10, № 2. P. 1-18. DOI: 10.1101/cshperspect.a028415.

42. Liu B., Li M., Zhou Z., et al. Can we use interleukin-6 (IL-6) blockade for coronavirus disease 2019 (COVID-19)-induced cytokine release syndrome (CRS)? Journal of Autoimmunity. Elsevier; 2020. Vol. 111, № March. P. 102452. DOI: 10.1016/j.jaut.2020.102452.

43. Kohidai L., Csaba G. Chemotaxis and chemotactic selection induced with cytokines (IL-8, RANTES and TNF-α) in the unicellular Tetrahymena pyriformis. Cytokine. 1998. Vol. 10, № 7. P. 481-486. DOI: 10.1006/cyto.1997.0328.

44. Vignali D.A.A., Kuchroo V.K. IL-12 family cytokines: immunological playmakers. Nature Immunology. 2012. Vol. 13, № 8. P. 722-728. DOI: 10.1038/ni.2366.

45. Schroder K., Hertzog P.J., Ravasi T., et al. Interferon-γ: an overview of signals, mechanisms and functions. Journal of Leukocyte Biology. 2004. Vol. 75, № 2. P. 163-189. DOI: 10.1189/jlb.0603252.

46. Costela-Ruiz V.J., Illescas-Montes R., Puerta-Puerta J.M., et al. SARS-CoV-2 infection: The role of cytokines in COVID-19 disease. Cytokine and Growth Factor Reviews. Elsevier; 2020. Vol. 54, № May. P. 62-75. DOI: 10.1016/j.cytogfr.2020.06.001.

47. Engelmann B., Massberg S. Thrombosis as an intravascular effector of innate immunity. Nature Reviews Immunology. 2013. DOI: 10.1038/nri3345.

48. Endres P., Rosovsky R., Zhao S., et al. Filter clotting with continuous renal replacement therapy in COVID-19. Journal of Thrombosis and Thrombolysis. Springer US; 2020. № 0123456789. P. 4-8. DOI: 10.1007/s11239-020-02301-6.

49. Philipponnet C., Aniort J., Chabrot P., et al. Renal artery thrombosis induced by COVID-19. Clinical Kidney Journal. 2020. DOI: 10.1093/ckj/sfaa141.

50. Adachi T., Chong J., Nakajima N., et al. Clinicopathologic and Immunohistochemical Findings from Autopsy of Patient. 2020. Vol. 26, № 9.

51. Varga Z., Flammer A.J., Steiger P., et al. Endothelial cell infection and endotheliitis in COVID-19. The Lancet. Elsevier Ltd; 2020. Vol. 395, № 10234. P. 1417-1418. DOI: 10.1016/S0140-6736(20)30937-5.

52. Zhang J., Tecson K.M., McCullough P.A. Endothelial dysfunction contributes to COVID-19-associated vascular inflammation and coagulopathy. Reviews in Cardiovascular Medicine. 2020. Vol. 21, № 3. P. 315-319. DOI: 10.31083/j.rcm.2020.03.126.

53. Ahmed S., Zimba O., Gasparyan A.Y. Thrombosis in Coronavirus disease 2019 (COVID-19) through the prism of Virchow’s triad. Clinical Rheumatology. 2020. DOI: 10.1007/s10067-020-05275-1.

54. Tomar B., Anders H.J., Desai J., et al. Neutrophils and Neutrophil Extracellular Traps Drive Necroinflammation in COVID-19. Cells. 2020. DOI: 10.3390/cells9061383.

55. Sodhi C.P., Wohlford-Lenane C., Yamaguchi Y., et al. Attenuation of pulmonary ACE2 activity impairs inactivation of des-arg9 bradykinin/BKB1R axis and facilitates LPS-induced neutrophil infiltration. American Journal of Physiology - Lung Cellular and Molecular Physiology. 2018. DOI: 10.1152/ajplung.00498.2016.

56. Cicco S., Cicco G., Racanelli V., et al. Neutrophil Extracellular Traps (NETs) and Damage-Associated Molecular Patterns (DAMPs): Two Potential Targets for COVID19 Treatment. 2020. Vol. 2020.

57. Zuo Y., Yalavarthi S., Shi H., et al. Neutrophil extracellular traps in COVID-19. JCI Insight. 2020. DOI: 10.1172/jci.insight.138999.

58. Jansen M.P.B., Emal D., Teske G.J.D., et al. Release of extracellular DNA influences renal ischemia reperfusion injury by platelet activation and formation of neutrophil extracellular traps. Kidney International. 2017. DOI: 10.1016/j.kint.2016.08.006.

59. Nakazawa D., Kumar S. V, Marschner J., et al. Histones and Neutrophil Extracellular Traps Enhance Tubular Necrosis and Remote Organ Injury in Ischemic AKI. 2017. P. 1753-1768.

60. Schurink B., Roos E., Radonic T., et al. Viral presence and immunopathology in patients with lethal COVID-19: a prospective autopsy cohort study. The Lancet Microbe. 2020. DOI: 10.1016/s2666-5247(20)30144-0.

61. Leppkes M., Knopf J., Naschberger E., et al. Vascular occlusion by neutrophil extracellular traps in COVID-19. EBioMedicine. 2020. DOI: 10.1016/j.ebiom.2020.102925.

62. Middleton E.A., He X.Y., Denorme F., et al. Neutrophil extracellular traps contribute to immunothrombosis in COVID-19 acute respiratory distress syndrome. Blood. 2020. DOI: 10.1182/blood.2020007008.

63. Veras F.P., Pontelli M.C., Silva C.M., et al. SARS-CoV-2-triggered neutrophil extracellular traps mediate COVID-19 pathology. Journal of Experimental Medicine. 2020. DOI: 10.1084/jem.20201129.

64. Barnes B.J., Adrover J.M., Baxter-Stoltzfus A., et al. Targeting potential drivers of COVID-19: Neutrophil extracellular traps. Journal of Experimental Medicine. 2020. DOI: 10.1084/jem.20200652.

65. Jayarangaiah A., Kariyanna P.T., Chen X., et al. COVID-19-Associated Coagulopathy: An Exacerbated Immunothrombosis Response. Clinical and Applied Thrombosis/Hemostasis. 2020. DOI: 10.1177/1076029620943293.

66. Henry B.M., Vikse J., Benoit S., et al. Hyperinflammation and derangement of renin-angiotensin-aldosterone system in COVID-19: A novel hypothesis for clinically suspected hypercoagulopathy and microvascular immunothrombosis. Clinica Chimica Acta. 2020. DOI: 10.1016/j.cca.2020.04.027.

67. Wang L., He W.B., Yu X.M., et al. Prolonged prothrombin time at admission predicts poor clinical outcome in COVID-19 patients. World Journal of Clinical Cases. 2020. DOI: 10.12998/wjcc.v8.i19.4370.

68. Manne B.K., Denorme F., Middleton E.A., et al. Platelet gene expression and function in patients with COVID-19. Blood. 2020. DOI: 10.1182/blood.2020007214.

69. Hottz E.D., Azevedo-Quintanilha I.G., Palhinha L., et al. Platelet activation and platelet-monocyte aggregate formation trigger tissue factor expression in patients with severe COVID-19. Blood. 2020. DOI: 10.1182/blood.2020007252.

70. Diao B., Wang C., Wang R., et al. Human Kidney is a Target for Novel Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infection. 2020. Vol. 2. DOI: 10.1101/2020.03.04.20031120.

71. Noris M., Benigni A., Remuzzi G. The case of complement activation in COVID-19 multiorgan impact. Kidney International. 2020. DOI: 10.1016/j.kint.2020.05.013.

72. Vinayagam S., Sattu K. SARS-CoV-2 and coagulation disorders in different organs. Life Sciences. 2020. DOI: 10.1016/j.lfs.2020.118431.

73. Li Y., Wang Y., Liu H., et al. Urine Proteome of COVID-19 Patients. 2020. DOI: 10.1101/2020.05.02.20088666.

74. Husain-Syed F., Wilhelm J., Kassoumeh S., et al. Acute kidney injury and urinary biomarkers in hospitalized patients with coronavirus disease-2019. Nephrology, dialysis, transplantation: official publication of the European Dialysis and Transplant Association - European Renal Association. 2020. DOI: 10.1093/ndt/gfaa162.

75. Luther T., Anders S.B., Lipcsey M., et al. COVID-19 patients in intensive care develop predominantly oliguric acute kidney injury. 2020. № November. P. 1-9. DOI: 10.1111/aas.13746.

76. Katagiri D., Ishikane M., Asai Y., et al. Evaluation of Coronavirus Disease 2019 Severity Using Urine Biomarkers. Critical Care Explorations. 2020. DOI: 10.1097/cce.0000000000000170.

77. Comentale G., Manzo R., Pilato E. Sars-Cov-2 interference in HEME production: is it the time for an early predictive biomarker? Journal of Molecular Medicine. 2020. DOI: 10.1007/s00109-020-01945-4.

78. Gomes B.C., Silva Júnior J.M., Tuon F.F. Evaluation of Urinary NGAL as a Diagnostic Tool for Acute Kidney Injury in Critically Ill Patients With Infection: An Original Study. Canadian Journal of Kidney Health and Disease. 2020. DOI: 10.1177/2054358120934215.

79. Wendt R., Kalbitz S., Lübbert C., et al. Urinary Peptides Significantly Associate with COVID-19 Severity: Pilot Proof-of-Principle Data and Design of a Multicentric Diagnostic Study. Proteomics. 2020. DOI: 10.1002/pmic.202000202.

80. Henry B.M., De Oliveira M.H.S., Benoit S., et al. Hematologic, biochemical and immune biomarker abnormalities associated with severe illness and mortality in coronavirus disease 2019 (COVID-19): A meta-analysis. Clinical Chemistry and Laboratory Medicine. 2020. Vol. 58, № 7. P. 1021-1028. DOI: 10.1515/cclm-2020-0369.

81. Yang X., Jin Y., Li R., et al. Prevalence and impact of acute renal impairment on COVID-19: A systematic review and meta-analysis. Critical Care. 2020. DOI: 10.1186/s13054-020-03065-4.


Рецензия

Для цитирования:


Мальцева Л.Д., Васалатий И.М., Исаакян Ю.А., Морозова О.Л. Механизмы острого повреждения почек при Covid-19. Обзор. Нефрология и диализ. 2021;23(3):352-365. https://doi.org/10.28996/2618-9801-2021-3-352-365

For citation:


Maltseva L.D., Vasalatii I.M., Isaakyan Y.A., Morozova O.L. Mechanisms of acute kidney injury in Covid-19. Review. Nephrology and Dialysis. 2021;23(3):352-365. (In Russ.) https://doi.org/10.28996/2618-9801-2021-3-352-365

Просмотров: 86


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1680-4422 (Print)
ISSN 2618-9801 (Online)