Preview

Nephrology and Dialysis

Advanced search

Evaluation of protein related homocysteine transportation and metabolic disorders in patients treated with chronic hemodialysis

Abstract

Objective: The aim of the study was the evaluation of homocysteine transportation by plasma proteins and metabolic abnormalities associated with mitochondrial dysfunction in patients treated with chronic hemodialysis. Materials and Methods: Plasma samples from healthy donors and patients treated with chronic hemodialysis using two types of dialysis solution were studied: commonly used bicarbonate or one with succinate. Homocysteine and glutathione were quantified with HPLC. For evaluation of the filterability protein-bond aminothiols by ultrafiltration procedure we introduce filtering factor (F) that is the ratio of the aminothiol concentration in the ultrafiltrate to its overall concentration in the plasma. Results: In the group of healthy donors the value of 25th percentile of factor F for homocysteine was 0.44. Patients with moderate hyperhomocysteinemia showed the decreased filterability of homocysteine, but not glutathione. Low homocysteine filterability (F<0.44) shows the predominant binding of homocysteine to high molecular weight proteins or to protein aggregates, but not to the albumin fraction. Perhaps, the high value of F characterizes the “less dangerous” hyperhomocysteinemia. Conclusion: In this paper, we demonstrated the evaluation of decreased homocysteine transportation by plasma albumin in patients treated with chronic hemodialysis, and introduced the ultrafiltration procedure to estimate the homocysteine binding to macromolecular fraction of blood proteins. Application of succinate-containing dialysis solution was associated with the improvement in the homocysteine filterability of and with decreased level of the mitochondrial dysfunction markers compared to patients receiving bicarbonate hemodialysis.

About the Authors

A. A. Zhloba
Pavlov First Saint Petersburg State Medical University
Russian Federation


T. F. Subbotina
Pavlov First Saint Petersburg State Medical University
Russian Federation


E. S. Alekseevskaya
Pavlov First Saint Petersburg State Medical University
Russian Federation


R. V. Golubev
Pavlov First Saint Petersburg State Medical University
Russian Federation


References

1. Голубев Р.В., Блашко Э.Л., Добронравов В.А. и др. Повышение уровня гомоцистеина и глутатиона плазмы крови у больных с почечной недостаточностью. Биомедицинская химия. 2005. 51(5): 549-551.

2. Добронравов В.А., Жлоба А.А., Голубев Р.В. Гипергомоцистеинемия и сердечно-сосудистые заболевания у больных на хроническом диализе. Нефрология. 2003. 7(1): 13-19.

3. Жлоба А.А. Диагностика, патогенез и интерпретация лабораторного исследования при гипергомоцистеинемии. В кн.: Клиническая и экспериментальная кардиология / под ред. Е.В. Шляхто. СПб.: Академический медицинский центр, 2005. С. 198-208.

4. Жлоба А.А., Блашко Э.Л., Шляхто Е.В. Связывание гомоцистеина высокомолекулярными белками а2-макроглобулином в плазме крови у пациентов с гипергомоцистеинемией // Бюлл. научно-исслед. института кардиологии им. В.А. Алмазова. 2005. 1: 67.

5. Жлоба А.А., Иванова С.Ю. Изучение свойств и выявление экспрессии рецептора активированного а2-макроглобулина человека. Клиническая лабораторная диагностика. 2002. 4: 7-11.

6. Жлоба А.А., Никитина В.В. Выявление и лечение гипергомоцистеинемии: пособие для врачей. М.: Дружба народов, 2004. 40 с.

7. Жлоба А.А., Субботина Т.Ф. Оценка связывания гомоцистеина с фракцией белков плазмы, ассоциированных с ремоделированием сосудистой стенки. Артериальная гипертензия. 2013. 19(2): 184-188.

8. Смирнов А.В., Добронравов В.А., Голубев Р.В. и др. Распространенность гипергомоцистеинемии в зависимости от стадии хронической болезни почек. Нефрология. 2005. 9(2): 48-52.

9. Смирнов А.В., Добронравов В.А., Жлоба А.А. и др. Новый способ коррекции гипергомоцистеинемии у больных, получающих лечение хроническим гемодиализом. Нефрология. 2006. 10(3): 31-37.

10. Смирнов А.В., Нестерова О.Б., Суглобова Е.Д. и др. Клинико-лабораторная оценка эффективности лечения больных с терминальной стадией почечной недостаточности с использованием хронического гемодиализа и ацидосукцината. Тер. арх. 2013. 85(1): 69-75.

11. Catanescu C.O., Barbato J.C., DiBello P.M. et al. Molecular targeting of alfa-2-macroglobulin by homocysteine: stoichiometry and possible implications in inflammatory diseases. FASEB J. 2007. 21 (Meeting Abstract Supplement): 641-8.

12. Catanescu C.O., Willard B.B., Kinter M.T. et al. Structural modifications of homocysteinylated-alpha-2-macroglobulin. FASEB J. 2008. 22 (Meeting Abstract Supplement): 1057-3.

13. Eleftheriadis T., Pissas G., Antoniadi G. et al. Damage-associated molecular patterns derived from mitochondria may contribute to the hemodialysis-associated inflammation. Int. Urol. Nephrol. 2014. 46(1): 107-112.

14. Fridman O., Fuchs A.G., Porcile R. et al. Paraoxonase: its multiple functions and pharmacological regulation. Arch. Cardiol. Mex. 2011. 81(3): 251-260.

15. Glushchenko A.V., Jacobsen D.W. Molecular Targeting of Proteins by l-Homocysteine: Mechanistic Implications for Vascular Disease. Antioxid. Redox. Signal. 2007. 9(11): 1883-1898.

16. Jakubowski H., Głowacki R. Chemical biology of homocysteine thiolactone and related metabolites. Adv. Clin. Chem. 2011. 55: 81-103.

17. Kazmeirczak S.C. Pyruvic acid. In: Clinical chemistry: theory, analysis, and correlation, 3rd ed / eds. L.A. Kaplan, A.J. Pesce. St. Louis (MO): Mosby-Year Book Inc, 1996. P. 482-483.

18. Luoma J., Hiltunen T., Särkioja T. et al. Expression of alpha 2-macroglobulin receptor/low density lipoprotein receptor-related protein and scavenger receptor in human atherosclerotic lesions. J. Clin. Invest. 1994. 93(5): 2014-2021.

19. Nesterova O.B., Suglobova E.D., Golubev R.V. et al. The first experience of hemodialysis with succinate-containing dialysis fluid: a cross-over study. Nephrol. Dial. Transplant. 2012. 27(2): ii213.

20. Raj D.S., Boivin M.A., Dominic E.A. et al. Haemodialysis induces mitochondrial dysfunction and apoptosis. Eur. J. Clin. Invest. 2007. 37(12): 971-977.

21. Rodenburg R.J.T. Biochemical diagnosis of mitochondrial disorders. J. Inherit. Metab. Dis. 2011. 34(2): 283-292.

22. Schulz S., Birkenmeier G., Schagdarsurengin U. et al. Role of LDL receptor-related protein (LRP) in coronary atherosclerosis. Int. J. Cardiol. 2003. 92(2-3): 137-144.

23. Sengupta S., Chen H., Togawa T. et al. Albumin thiolate anion is an intermediate in the formation of albumin-S-S-homocysteine. J. Biol. Chem. 2001. 27(6): 30111-30117.

24. Ueland P.M., Mansoor M.A., Guttormsen A.B. et al. Reduced, oxidized and protein-bound forms of homocysteine and other aminothiols in plasma comprise the redox thiol status - A possible element of the extracellular antioxidant defense system. J. Nutr. 1996. 126(4): 1281S-1284S.

25. Zhloba A.A., Blashko E.L. Liquid chromatographic determination of total homocysteine in blood plasma with photometric detection. Journal of Chromatography B. 2004. 800(1-2): 275-280.

26. Zhloba A.A., Subbotina T.F. Homocysteinylation score of high-molecular weight plasma proteins. Amino Acids. 2014.46(4): 893-899.

27. Zinellu A., Loriga G., Scanu B. et al. Increased Low-Density Lipoprotein S-Homocysteinylation in Chronic Kidney Disease. Am. J. Nephrol. 2010. 32(3): 242-248.

28. Zinellu A., Zinellu E., Sotgia S. et al. Factors affecting S-homocysteinylation of LDL apoprotein B. Clin. Chem. 2006. 52(11): 2054-2059.


Review

For citations:


Zhloba A.A., Subbotina T.F., Alekseevskaya E.S., Golubev R.V. Evaluation of protein related homocysteine transportation and metabolic disorders in patients treated with chronic hemodialysis. Nephrology and Dialysis. 2015;17(2):193-200. (In Russ.)

Views: 41


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1680-4422 (Print)
ISSN 2618-9801 (Online)