Preview

Нефрология и диализ

Расширенный поиск

Применение мезенхимальных стволовых клеток способствует уменьшению степени ишемически-реперфузионного поражения различных органов в эксперименте: акцент на паракринные механизмы

Аннотация

Сегодня такие состояния, как острый инфаркт миокарда, ишемический инсульт, шоковое поражение органов являются ведущими причинами смерти в мире. Все данные состояния сопровождаются синдромом ишемически-реперфузионного повреждения - парадоксального процесса, при котором повреждение клеток ишемизированного органа продолжается после восстановления перфузии. Патогенез ишемически-реперфузионного повреждения весьма сложен и включает в себя сочетания таких процессов, как воспаление, метаболический дисбаланс, оксидативный стресс и т.д. Существующая сегодня терапия данных состояний является недостаточной, что дает основания искать альтернативные подходы в лечении ишемически-реперфузионного повреждения. Многие исследования демонстрируют эффективность использования мезенхимальных стволовых клеток как одного из методов терапии ишемически-реперфузионного повреждения. Особая роль в этом эффекте, по-видимому, принадлежит паракринным факторам. В данном обзоре мы рассматриваем множество работ по данной тематике и пытаемся обозначить основные патогенетические точки приложения мезенхимальных стволовых клеток при ишемически-реперфузионном повреждении.

Об авторах

М. Ш. Хубутия
НИИ Скорой Помощи им. Н.В. Склифосовского ДЗ, Москва
Россия


А. В. Вагабов
НИИ Скорой Помощи им. Н.В. Склифосовского ДЗ, Москва
Россия


А. А. Темнов
НИИ Скорой Помощи им. Н.В. Склифосовского ДЗ, Москва
Россия


В. Ю. Абрамов
НИИ Скорой Помощи им. Н.В. Склифосовского ДЗ, Москва
Россия


В. И. Новоселов
Институт Биофизики Клетки РАН, Пущино
Россия


А. Н. Склифас
Институт Биофизики Клетки РАН, Пущино
Россия


Н. И. Кукушкин
Институт Биофизики Клетки РАН, Пущино
Россия


Список литературы

1. Хубутия М.Ш., Темнов А.А., Вагабов А.В. и соавт. Низкомолекулярные пептидные препараты, полученные из культивированных стволовых клеток, при лечении острой почечной недостаточности // Трансплантология. 2011. №4. C. 20-25.

2. Angoulvant D, Ivanes F, Ferrera R, et al. Mesenchymal stem cell conditioned media attenuates in vitro and ex vivo myocardial reperfusion injury // The Journal of Heart and Lung Transplantation. 2011. Vol. 30(1). P. 95-102.

3. Armiñán A, Gandia C, Garcia-Verdugo JM, et al. Mesenchymal stem cells provide better results than hematopoietic precursors for the treatment of myocardial infarction // J Am Coll Cardiol. 2010. Vol. 55. P. 2244-2253.

4. Arslan F, de Kleijn DP, Timmers L, et al. Bridging innate immunity and myocardial ischemia/reperfusion injury: the search for therapeutic targets // Curr Pharm Des. 2008. Vol. 14. P. 205-1216.

5. Bi B, Schmitt R, Israilova M, et al. Stromal Cells Protect against Acute Tubular Injury via an Endocrine Effect // J Am Soc Nephrol. 2007. Vol. 18. P. 2486-2496.

6. Boyle AJ, McNiece IK, Hare JM. Mesenchymal stem cell therapy for cardiac repair // Methods Mol Biol. 2010. Vol. 660. P. 65-84.

7. Busuttil RW, Tanaka K. The utility of marginal donors in liver transplantation Liver Transplantation // 2003. Vol. 9(7). P. 651-663.

8. Chang E.L., Lee S.H., Mun K.C, et al. Effect of artificial cells on hepatic function after ischemia-reperfusion injury in liver // Transplant. Proc. 2004. Vol. 36(7). P. 1959-1961.

9. Chen S, Chen L, Wu X, et al. Ischemia postconditioning and mesenchymal stem cells engraftment synergistically attenuate ischemia reperfusion-induced lung injury in rats // Journal of Surgical Research. 2012. Vol. 178(1). P. 81-91.

10. Davani, S., Marandin, A., Mersin, N., et al. Mesenchymal progenitor cells differentiate into an endothelial phenotype, enhance vascular density, and improve heart function in a rat cellular cardiomyoplasty model // Circulation. 2003. Vol. 108. Suppl. 1. II253-II258.

11. Dharmasaroja P. Bone marrow-derived mesenchymal stem cells for the treatment of ischemic stroke // Journal of Clinical Neuroscience. 2009. Vol. 16. P. 12-20.

12. Eliopoulos N, Zhao J, Bouchentouf M, et al. Human marrow-derived mesenchymal stromal cells decrease cisplatin renotoxicity in vitro and in vivo and enhance survival of mice post-intraperitoneal injection // AJP - Renal Physiol. 2010. Vol. 299(6). F1288-F1298.

13. Engler RL, Dahlgren MD, Peterson MA, et al. Accumulation of polymorphonuclear leukocytes during 3-h experimental myocardial ischemia // Am J Physiol. 1986. Vol. 251. H93-H100.

14. Feng Z, Ting J, Alfonso Z, et al. Fresh and cryopreserved, uncultured adipose tissue-derived stem and regenerative cells ameliorate ischemia-reperfusion-induced acute kidney injury // Nephrol Dial Transplant. 2010. Vol. 25. P. 3874 - 3884.

15. Gao X, Zhang H, Belmadani S et al. Role of TNF-alpha-induced reactive oxygen species in endothelial dysfunction during reperfusion injury // Am J Physiol Heart Circ Physiol. 2008. Vol. 295. H2242-H2249.

16. Girn HR, Ahilathirunayagam S, Mavor AI et al. Reperfusion syndrome: cellular mechanisms of microvascular dysfunction and potential therapeutic strategies // Vasc Endovascular Surg. 2007. Vol. 41(4). P. 277-93.

17. Gnecchi M, He H, Liang OD, et al. Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells // Nat Med. 2005. Vol. 11. P. 367-368.

18. Gnecchi M, He H, Noiseux N, et al. Evidence supporting paracrine hypothesis for Aktmodified mesenchymal stem cell-mediated cardiac protection and functional improvement // The FASEB Journal. 2006. Vol. 20. P. 661-669.

19. Haider H, Ashraf M. Bone marrow stem cell transplantation for cardiac repair // Am J Physiol Heart Circ Physiol. 2005. Vol. 288. H2557-2567.

20. Jaeschke H. Mechanisms of reperfusion injury after warm ischemia of the liver // Journal of Hepatobiliary & Pancreatic Surgery. 1998. Vol. 5(4). P. 402-408.

21. Jaeschke H. Molecular mechanisms of hepatic ischemia-reperfusion injury and preconditioning // American Journal of Physiology, Gastrointestinal and Liver Physiology. 2003. Vol. 284(1). G15-G26.

22. Jiang H, Qu L, Li Y, et al. Bone Marrow Mesenchymal Stem Cells Reduce Intestinal Ischemia/Reperfusion Injuries in Rats // J Surg Res. 2009. Vol. 168(1). P. 127-134.

23. Junxi Wu, Jun Li, Nannan Zhang, et al. Stem cell-based therapies in ischemic heart diseases: a focus on aspects of microcirculation and inflammation // Basic Research in Cardiology. 2011. Vol. 106(3). P. 317-324.

24. Kanazawa H, Fujimoto Y, Teratani T, et al. Bone Marrow-Derived Mesenchymal Stem Cells Ameliorate Hepatic Ischemia Reperfusion Injury in a Rat Model // PLoS One. 2011. Vol. 6(4). e19195.

25. Kudo M, Wang Y, Wani MA, et al. Implantation of bone marrow stem cells reduces the infarction and fibrosis in ischemic mouse heart // J Mol Cell Cardiol. 2003. Vol. 35. P. 1113-1119.

26. Li Q, Yao D, Ma J, et al. Transplantation of MSCs in Combination with Netrin-1 Improves Neoangiogenesis in a Rat Model of Hind Limb Ischemia // Journal of Surgical Research. 2011. Vol. 166(1). P. 162-169.

27. Liu H, Liu S, Li Y, et al. The Role of SDF-1-CXCR4/CXCR7 Axis in the Therapeutic Effects of Hypoxia-Preconditioned Mesenchymal Stem Cells for Renal Ischemia/Reperfusion Injury // PLoS One. 2012. Vol. 7(4). e34608.

28. Manning E, Pham S, Li S, et al. Interleukin-10 delivery via mesenchymal stem cells: a novel gene therapy approach to prevent lung ischemia-reperfusion injury // Human Gene Therapy. 2010. Vol. 21(6). P. 713-727.

29. Matthew MJ. , Han X., Murthy SN., et al. Capturing the Stem Cell Paracrine Effect Using Heparin-Presenting Nanofibers to Treat Cardiovascular Diseases // J Tissue Eng Regen Med. 2010. Vol. 4 (8). P. 600-610.

30. Montzka K, Führmann T, Müller-Ehmsen J, et al. Grow factor and cytokine expression of human mesenchymal stromal cells is not altered in an vitro model of tissue damage // Cytotherapy. 2010. Vol. 12(7). 870-880.

31. Morigi M, Introna M, Imberti B, et al. Human Bone Marrow Mesenchymal Stem Cells Accelerate Recovery of Acute Renal Injury and Prolong Survival in Mice // STEM CELLS. 2008. Vol. 26(8). P. 2075-2082.

32. Morigi M., Rota C., Montemurro T., et al. Life-Sparing Effect of Human Cord Blood-Mesenchymal Stem Cells in Experimental Acute Kidney Injury // STEM CELLS. 2010. Vol. 28(3). P. 513-522.

33. Orlic D, Kajstura J, Chimenti S, et al. Bone marrow cells regenerate infarcted myocardium // Nature. 2001. Vol. 410 (6829). P. 701-705.

34. Orlic D, Kajstura J, Chimenti S, et al. Mobilized bone marrow cells repair the infarcted heart, improving function and survival // Proc Natl Acad Sci U S A. 2001. Vol. 98(18). P. 10344-9.

35. Orlic D, Kajstura J, Chimenti S, et al. Transplanted adult bone marrow cells repair myocardial infarcts in mice // Ann N Y Acad Sci. 2001. Vol. 938. P. 221-229.

36. Park SS, Caballero S, Bauer G, et al. Long-Term Effects of Intravitreal Injection of GMP-Grade Bone-Marrow-Derived CD34+ Cells inNOD-SCID Mice with Acute Ischemia-Reperfusion Injury // IOVS. 2012. Vol. 53(2). P. 986-994.

37. Pevsner-Fischer M, Morad V, Cohen-Sfady M, et al. Toll-like receptors and their ligands control mesenchymal stem cell functions. Blood. 2007. Vol. 109. P. 1422-1432.

38. Pittenger, MF, Martin BJ. Mesenchymal stem cells and their potential as cardiac therapeutics // Circ. Res. 2004. Vol. 95. P. 9-20.

39. Ploeg RJ, D’Alessandro AM, Knechtle SJ, et al. Risk factors for primary dysfunction after liver transplantation - a multivariate analysis // Transplantation. 1993. Vol. 55(4). P. 807-813.

40. Rolls A, Shechter R, London A, et al. Toll-like receptors modulate adult hippocampal neurogenesis // Nat Cell Biol. 2007. Vol. 9. P. 1081-1088.

41. Sachse A, Wolf G. Angiotensin II-induced reactive oxygen species and the kidney // J Am Soc Nephrol. 2007. Vol. 18. P. 2439-2446.

42. Shake JG, Gruber PJ, Baumgartner WA, et al. Mesenchymal stem cell implantation in a swine myocardial infarct model: engraftment and functional effects // Ann Thorac Surg. 2002. Vol. 73(6). P. 1919-1925.

43. Sologub T.V., Romantsov M.G., Kremen N.V, et al. Free radical processes and inflammation (pathogenic, clinical and therapeutic aspects). Manual for physicians. Moscow: Akademiya Estestvoznaniya, 2008. ISBN 978-5-98654-030-6.

44. Sun CK, Yen CH, Lin YC, et al. Autologous Transplantation of Adipose-Derived Mesenchymal Stem Cells Markedly Reduced Acute Ischemia-Reperfusion Lung Injury in a Rodent Model // Journal of Translational Medicine. 2011. Vol. 9. P. 118.

45. Teoh NC, Farrell GC. Hepatic ischemia reperfusion injury: pathogenic mechanisms and basis for hepatoprotection // Journal of Gastroenterology and Hepatology. 2003. Vol. (8). P. 891-902.

46. Togel F, Hu Z, Weiss K, et al. Administered mesenchymal stem cells protect against ischemic acute renal failure through differentiation-independent mechanisms // Am J Physiol Renal Physiol. 2005. Vol. 289. F31-42.

47. Toma C, Pittenger MF, Cahill KS, et al. Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart // Circulation. 2002. Vol. 105(1). P. 93-98.

48. Tomita S, Mickle DA, Weisel RD, et al. Improved heart function with myogenesis and angiogenesis after autologous porcine bone marrow stromal cell transplantation // J. Thorac. Cardiovasc. Surg. 2002. Vol. 123. P. 1132-1140.

49. Wang JS, Shum-Tim D, Chedrawy E, et al. The coronary delivery of marrow stromal cells for myocardial regeneration: pathophysiologic and therapeutic implications // J. Thorac. Cardiovasc. Surg. 2001. Vol. 122. P. 699-705.

50. Wang Y, Abarbanell AM, Herrmann JL, et al. TLR4 Inhibits Mesenchymal Stem Cell (MSC) STAT3Activation and Thereby Exerts Deleterious Effects on MSC-Mediated Cardioprotection // PLoS One. 2010. Vol. 5(12). e14206.

51. Webber MJ, Han X, Murthy SN, et al. Capturing the Stem Cell Paracrine Effect Using Heparin-Presenting Nanofibers to Treat Cardiovascular Diseases // J Tissue Eng Regen Med. 2010. Vol. 4(8). P. 600-610.

52. Yagi H, Soto-Gutierrez A, Kitagawa Y, et al. Bone Marrow Mesenchymal Stromal Cells Attenuate Organ Injury Induced by LPS and Burn // Cell Transplant. 2010. Vol. 19(6). P. 823 - 830.

53. Yen-Ta Chen, Cheuk-Kwan Sun, Yu-Chun Lin, et al. Adipose-Derived Mesenchymal Stem Cell Protects Kidneys against Ischemia-Reperfusion Injury through Suppressing Oxidative Stress and Inflammatory Reaction // Journal of Translational Medicine. 2011. Vol. 9.P. 51.

54. Zhang C, Wu J, Xu X, et al. Direct relationship between levels of TNF-alpha expression and endothelial dysfunction in reperfusion injury // Basic Res Cardiol. 2010. Vol. 105. P. 453-464.


Рецензия

Для цитирования:


Хубутия М.Ш., Вагабов А.В., Темнов А.А., Абрамов В.Ю., Новоселов В.И., Склифас А.Н., Кукушкин Н.И. Применение мезенхимальных стволовых клеток способствует уменьшению степени ишемически-реперфузионного поражения различных органов в эксперименте: акцент на паракринные механизмы. Нефрология и диализ. 2014;16(4):418-425.

For citation:


Khubutiya M.Sh., Vagabov A.V., Temnov A.A., Abramov V.Yu., Novoselov V.I., Sklifas A.N., Kukushkin N.I. Using of mesenchymal stem cells reduces the level of ischemia-reperfusion injury of various organs in experiments: focus on paracrine mechanisms. Nephrology and Dialysis. 2014;16(4):418-425. (In Russ.)

Просмотров: 45


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1680-4422 (Print)
ISSN 2618-9801 (Online)