Novel opportunities for C3 glomerulopathy treatment: what do we know to date
https://doi.org/10.28996/2618-9801-2024-4-469-479
Abstract
C3 glomerulopathy (С3G) is a group of ultra-rare diseases with the incidence about 13 cases per 1 million population per year. Major role in the C3G pathogenesis play disturbances of the complement activation, deposition and degradation, resulting in the glomerular deposition of C3, which, in turn, leads to glomerular damage and inflammation in the kidney tissue. C3G commonly associated with the progressive course, poor kidney outcomes and high rate of recurrence after kidney transplantation. Efficacy of the current conventional approaches to C3G treatment, including nephroprotective measures and glucocorticoids and mycophenolic acid analogues is insufficient; the usage of targeted anti-B-cell therapy with rituximab also did not provide sustainable effect. Unsatisfactory results of the current clinical practice and a rapid progress in the development of new targeted medications recently lead to the active investigation of a number of molecules, targeting several factors of the complement cascade, which may enrich therapeutic armamentarium for the treatment of C3G and other glomerular diseases, associated with the complement dysregulation. Several studies, aiming the evaluation of blockade of various complement system components – C5, C5a receptor, factor D, factor B, C3, and mannose-binding lectin-associated serine proteases type 1 and type 2 for С3G treatment are currently in progress. This review of literature presents available data from the current clinical trials and discusses new options of the targeted treatment of C3G.
About the Authors
E. V. ZakharovaRussian Federation
Elena V. Zakharova
5, 2nd Botkinsky drive, Moscow, 125284;
2/1, Barrikadnaya Str., Moscow, 123995
20, Delegatskaya Str., bld. 1, Moscow, 127473
A. S. Zykova
Russian Federation
Anastasia S. Zykova
5, 2nd Botkinsky drive, Moscow, 125284;
27/1, Lomonosovsky av., Moscow, 119991
References
1. Buchner H. Zur Nomenklatur der schutzenden Eiweisskorper. Centr Bakteriol Parasitenk. 1891;10:699-701 (in German)
2. Ehrlich P, Morgenroth J. Zur Theorie der Lysenwirkung. Berlin Klin Woch. 1899;36:6-9 (in German)
3. Nesargikar PN, Spiller B, Chavez R. The complement system: history, pathways, cascade and inhibitors. Eur J Microbiol Immunol (Bp). 2012;2(2):103-11. DOI: 10.1556/EuJMI.2.2012.2.2
4. Ferrata A. Die Unwirksamkeit der komplexen Hämolysine in salzfreien Lösungen und ihre UrsacheBerlin Klin Woch. 1907;44:366-369 (in German)
5. Whitehead HR, Gordon J, Wormall A. The "Third Component" or Heat-Stable Factor of Complement. Biochem J. 1925;19(4):618-625. DOI: 10.1042/BJ0190618
6. Gordon J, Whitehead HR, Wormall A. The Fourth Component of Complement and its Relation to Opsonin. Biochem J. 1926;20(5):1044-1045. DOI: 10.1042/bj0201044
7. Nilsson UR, Mueller-Eberhard HJ. Isolation of beta IFglobulin from human serum and its characterization as the fifth component of complement. J Exp Med. 1965;122:277-298. DOI: 10.1084/jem.122.2.277
8. Hadding U, Müller-Eberhard HJ. The ninth component of human complement: isolation, description and mode of action. Immunology. 1969;16(6):719-735
9. Pillemer L, Blum L, Lepow IH et al. The properdin system and immunity. I. Demonstration and isolation of a new serum protein, properdin, and its role in immune phenomena. Science. 1954;120(3112):279-285. DOI: 10.1126/science.120.3112.279
10. Pillemer L. The properdin system. Trans N Y Acad Sci. 1955;17(7):526-530
11. Xu Y, Ma M, Ippolito GC et al. Complement activation in factor D-deficient mice. Proc. Natl. Acad. Sci. USA. 2001;98:14577-14582. DOI: 10.1073/pnas.261428398
12. Carroll MC. The role of complement in B cell activation and tolerance. Adv. Immunol. 2000;74:61-88. DOI: 10.1016/s0065-2776(08)60908-6
13. Ehrnthaller C, Ignatius A, Gebhard F, Huber-Lang M. New insights of an old defense system: structure, function, and clinical relevance of the complement system. Mol Med. 2011;17(3-4):317-329. DOI: 10.2119/molmed.2010.00149
14. Gunn W.C. The variation in the amount of complement in the blood in some acute infectious diseases and its relation to the clinical features. MD thesis, University of Glasgow. 1912.
15. Thurman JM, Holers VM. The central role of the alternative complement pathway in human disease. J Immunol. 2006;176(3):1305-1310. DOI: 10.4049/jimmunol.176.3.1305
16. Thurman JM. Complement and the kidney: an overview. Adv Chronic Kidney Dis. 2020;27:86-94. DOI: 10.1053/j.ackd.2019.10.003
17. Vivarelli M, Barratt J, Beck LH Jr et al. The role of complement in kidney disease: conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference. Kidney Int. 2024;106(3):369-391. DOI: 10.1016/j.kint.2024.05.015
18. Goodship TH, Cook HT, Fakhouri F et al. Atypical hemolytic uremic syndrome and C3 glomerulopathy: conclusions from a "Kidney Disease: Improving Global Outcomes" (KDIGO) Controversies Conference. Kidney Int. 2017;91:539-551. DOI: 10.1016/j.kint.2016.10.005
19. Sethi S, Fervenza FC. Membranoproliferative glomerulonephritis: pathogenetic heterogeneity and proposal for a new classification. Semin Nephrol. 2011;31(4):341-348. DOI: 10.1016/j.semnephrol.2011.06.005
20. Pickering MC, D'Agati VD, Nester CM et al. C3 glomerulopathy: Consensus report. Kidney Int. 2013;84:1079-1089. DOI: 10.1038/ki.2013.377
21. Sethi S, Haas M, Markowitz GS et al. Mayo Clinic/Renal Pathology Society Consensus Report on Pathologic Classification, Diagnosis, and Reporting of GN. J Am Soc Nephrol. 2016;27(5):1278-1287. DOI: 10.1681/ASN.2015060612
22. Koopman JJE, de Vries APJ, Bajema IM. C3 glomerulopathy. Nephrol Dial Transplant. 2021;36(4):594-596. DOI: 10.1093/ndt/gfz201
23. Smith RJH, Appel GB, Blom AM et al. C3 glomerulopathy - understanding a rare complement-driven renal disease. Nat Rev Nephrol. 2019;15(3):129-143. DOI: 10.1038/s41581-018-0107-2
24. Marinozzi MC, Roumenina LT, Chauvet S et al. Anti-Factor B and Anti-C3b Autoantibodies in C3 Glomerulopathy and Ig-Associated Membranoproliferative GN. J Am Soc Nephrol. 2017;28(5):1603-1613. DOI: 10.1681/ASN.2016030343
25. Chauvet S, Roumenina LT, Aucouturier P et al. Both monoclonal and polyclonal immunoglobulin contingents mediate complement activation in monoclonal gammopathy associatedC3 glomerulopathy. Front Immunol. 2018;9:1–1. DOI: 10.3389/fimmu.2018.02260
26. Caravaca-Fontán F, Lucientes L, Serra N et al. C3 glomerulopathy associated with monoclonal gammopathy: impact of chronic histologic lesions and beneficial effects of clone-targeted therapies Nephrol Dial Transplant. 2022;37(11):2128-2137. DOI: 10.1093/ndt/gfab302
27. Ravindran A, Fervenza FC, Smith RJH et al. C3 glomerulopathy: Ten years' experience at Mayo clinic. Mayo Clin Proc. 2018;93(8):991-1008. DOI: 10.1016/j.mayocp.2018.05.019
28. Iatropoulos P, Daina E, Curreri M et al. Registry of Membranoproliferative Glomerulonephritis/C3 Glomerulopathy; Nastasi. Cluster Analysis Identifies Distinct Pathogenetic Patterns in C3 Glomerulopathies/Immune Complex-Mediated Membranoproliferative GN. J Am Soc Nephrol. 2018;29(1):283-294. DOI: 10.1681/ASN.2017030258
29. Zahir Z, Wani AS, Gupta A et al. Pediatric C3 glomerulopathy: a 12-year single-center experience. Pediatr Nephrol. 2021;36(3):601-610. DOI: 10.1007/s00467-020-04768-0
30. Caravaca-Fontán F, Díaz-Encarnación M, Cabello V et al. Longitudinal change in proteinuria and kidney outcomes in C3 glomerulopathy. Nephrol Dial Transplant. 2022;37(7):1270-1280. DOI: 10.1093/ndt/gfab075
31. Masoud S, Downward L, Wong K et al. Clinical characteristics and outcomes of C3 glomerulopathy and immune complex MPGN from the UK National Registry of Rare Kidney Diseases (RaDaR). Nephrol Dial Transplant. 2024;39(Issue Supplement_1). gfae069–0403–1011. DOI: 10.1093/ndt/gfae069.403
32. Bomback AS, Santoriello D, Avasare RS et al. C3 glomerulonephritis and dense deposit disease share a similar disease course in a large United States cohort of patients with C3 glomerulopathy. Kidney Int. 2018;93(4):977–985. DOI: 10.1016/j.kint.2017.10.022
33. Hauer JJ, MArinozzi MC, Vieira-Martins P et al. Complement biomarkers as predictors of disease outcome in C3 glomerulopathy. Mol Immunol. 2018;102:160-160. DOI: 10.1016/j.molimm.2018.06.090
34. Caravaca-Fontán F, Díaz-Encarnación MM, Lucientes L et al. Spanish Group for the Study of Glomerular Diseases GLOSEN. Mycophenolate Mofetil in C3 Glomerulopathy and Pathogenic Drivers of the Disease. Clin J Am Soc Nephrol. 2020;15(9):1287-1298. DOI: 10.2215/CJN.15241219
35. Rudnicki M. Rituximab for Treatment of Membranoproliferative Glomerulonephritis and C3 Glomerulopathies. BioMed Res Int.2017;5:1-7. DOI: 10.1155/2017/2180508
36. Estebanez BT, Bomback AS. C3 Glomerulopathy: Novel Treatment Paradigms. Kidney Int Rep. 2023. 9(3):569-579. DOI: 10.1016/j.ekir.2023.12.007
37. Nester C, Decker DA, Meier M et al. Developing Therapies for C3 Glomerulopathy: Report of the Kidney Health Initiative C3 Glomerulopathy Trial Endpoints Work Group. Clin J Am Soc Nephrol. 2024;19(9):1201–1208. DOI: 10.2215/CJN.0000000000000505
38. Elsner J, Oppermann M, Czech W, Kapp A. C3a Activates the Respiratory Burst in Human Polymorphonuclear Neutrophilic Leukocytes via Pertussis Toxin-Sensitive G-Proteins. Blood. 1994;83:3324-3331. DOI: 10.1182/blood.v83.11.3324.3324
39. Elsner J, Oppermann M, Czech W et al. C3a activates reactive oxygen radical species production and intracellular calcium transients in human eosinophils. Eur J Immunol. 1994;24(3):518-522. DOI: 10.1002/eji.1830240304
40. Xie CB, Jane-Wit D, Pober JS. Complement Membrane Attack Complex: New Roles, Mechanisms of Action, and Therapeutic Targets. Am J Pathol. 2020;190(6):1138-1150. DOI: 10.1016/j.ajpath.2020.02.006
41. Государственный реестр лекарственных средств – https://grls.rosminzdrav.ru
42. Koopman JJE, Teng YKO, Boon CJF et al. Diagnosis and treatment of C3 glomerulopathy in a center of expertise. Neth J Med. 2019;77(1):10-18.
43. Koopman JJE, van Essen MF, Rennke HG et al. Deposition of the Membrane Attack Complex in Healthy and Diseased Human Kidneys. Front Immunol. 2021;11:599974. DOI: 10.3389/fimmu.2020.599974.
44. Bomback AS, Smith RJ, Barile GR et al. Eculizumab for dense deposit disease and C3 glomerulonephritis. Clin J Am Soc Nephrol. 2012; 7:748–756. DOI: 10.2215/CJN.12901211
45. Ruggenenti P, Daina E, Gennarini A et al. C5 convertase blockade in membranoproliferative glomerulonephritis: a single-arm clinical trial. Am J Kidney Dis. 2019;74:224–238. DOI: 10.1053/j.ajkd.2018.12.046
46. Le Quintrec M, Lapeyraque AL, Lionet A et al. Patterns of clinical response to eculizumab in patients with C3 glomerulopathy. Am J Kidney Dis. 2018;72:84–92. DOI: 10.1053/j.ajkd.2017.11.019
47. Welte T, Arnold F, Westermann L et al. Eculizumab as a treatment for C3 glomerulopathy: a single-center retrospective study. BMC Nephrol. 2023;24:1–9. DOI: 10.1186/s12882-023-03058-9
48. FDA Approvals and Databases. https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/214487s000lbl.pdf
49. Bomback AS, Herlitz LC, Kedia PP et al. Safety and Efficacy of Avacopan in Patients with C3 Glomerulopathy: Randomized, Double-Blind Clinical Trial. J Am Soc Nephrol. 2024; Oct 11. DOI: 10.1681/ASN.0000000526. Epub ahead of print.
50. Dixon BP, Greenbaum LA, Huang L et al. Clinical Safety and Efficacy of Pegcetacoplan in a Phase 2 Study of Patients with C3 Glomerulopathy and Other Complement-Mediated Glomerular Diseases. Kidney Int Rep. 2023;8(11):2284-2293. DOI: 10.1016/j.ekir.2023.08.033
51. Podos SD, Trachtman H, Appel GB et al. Baseline clinical characteristics and complement biomarkers of patients with C3 glomerulopathy enrolled in two Phase 2 studies in-vestigating the factor D inhibitor danicopan. Am J Nephrol. 2022;53(10):675-686. DOI: 10.1159/000527166
52. Nester C, Appel GB, Bomback AS et al. Clinical Outcomes of Patients with C3G or IC-MPGN Treated with the Factor D Inhibitor Danicopan: Final Results from Two Phase 2 Studies. Am J Nephrol. 2022;53(10):687-700. DOI: 10.1159/000527167
53. FDA Approvals and Databases. https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=BasicSearch.process
54. Wong E, Nester C, Cavero T et al. Efficacy and Safety of Iptacopan in Patients With C3 Glomerulopathy. Kidney Int Rep. 2023;8(12):2754-2764. DOI: 10.1016/j.ekir.2023.09.017
55. Nester С, Eisenberger U, Karras A et al. Update to the long-term safety and efficacy of iptacopan in C3G: 33-month extension study data from patients enrolled in a phase 2 study. Nephrol Dial Transplant. 2024;39(Issue Supplement_1). gfae069–0140–277. DOI: 10.1093/ndt/gfae069.140
56. Bomback AS, Kavanagh D, Vivarelli M et al. Alternative Complement Pathway Inhibition With Iptacopan for the Treatment of C3 Glomerulopathy-Study Design of the APPEAR-C3G Trial. Kidney Int Rep. 2022;7(10):2150-2159. DOI: 10.1016/j.ekir.2022.07.004
57. Nester C, Smith RJ, Kavanagh D et al. Efficacy and Safety of Iptacopan in Patients with C3 Glomerulopathy: 12-Month Results from the Phase 3 APPEAR-C3G Study. 2024, San Diego, USA; Abstract Supplement. P.86. Available at: https://www.asnonline.org/abstracts/. Accessed October 11, 2024
58. Arrowheadpharma.com [Internet]. Arrowhead announces interim results from ongoing phase 1/2 study of ARO-C3 for treatment of complement mediated diseases. https://arrowheadpharma.com/news-press/arrowhead-announces-interimresults-from-ongoing-phase-1-2-study-of-aro-c3-for-treatmentof-complement-mediated-diseases/ Accessed October 11, 2024
59. Lafayette RA, Rovin BH, Reich HN et al. Safety, Tolerability and Efficacy of Narsoplimab, a Novel MASP-2 Inhibitor for the Treatment of IgA Nephropathy. Kidney Int. Rep. 2020;5(11):2032-2041. DOI: 10.1016/j.ekir.2020.08.003.
Review
For citations:
Zakharova E.V., Zykova A.S. Novel opportunities for C3 glomerulopathy treatment: what do we know to date. Nephrology and Dialysis. 2024;26(4):469-479. (In Russ.) https://doi.org/10.28996/2618-9801-2024-4-469-479