Просмотр статьи

<< Вернуться к списку статей журнала

Том 15 №2 2013 год - Нефрология и диализ

Медиаторы воспаления при остром повреждении почек (Обзор литературы)


Хван М.А.

Аннотация: Острое повреждение почек (ОПП) является независимым фактором риска заболеваемости и летальности. По современным представлениям основную роль в патофизиологии ОПП играет воспаление. В различных моделях почечного повреждения (ишемических, септических, нефротоксических) продемонстрированы морфологические и/или функциональные изменения сосудистого эндотелия и/или канальцевого эпителия, сопровождающиеся привлечением в очаг повреждения лейкоцитов, включая нейтрофилы, макрофаги, натуральные киллеры и лимфоциты, с последующей инфильтрацией этими клетками ткани почки. Повреждающие факторы индуцируют синтез эндотелием и канальцевым эпителием воспалительных медиаторов, таких как цитокины и хемокины, что усиливает привлечение лейкоцитов в почечную ткань. Таким образом, воспаление является определяющим механизмом в инициации ОПП и обуславливает его длительность. В данном обзоре представлены современные сведения о медиаторах воспаления, участвующих в патогенезе ОПП.

Весь текст



Ключевые слова: острое повреждение почек, воспаление, цитокины, acute kidney injury, inflammation, cytokines

Список литературы:
  1. Абрамова Т.В. Нейтрофилы при гломерулонефрите // Нефрология. 2005. Т. 9. № 2. С. 30–41.
  2. Александрова И.В., Марченкова Л.В., Рей С.И. и др. Острое почечное повреждение у больных с синдромом позиционного сдавления мягких тканей // Нефрология и диализ. 2008. Т. 10. № 3–4.
  3. Баринов Э.Ф., Сулаева О.Н., Лам М.М. Метаболиты арахидоновой кислоты – детерминанты паренхиматозно-стромальных отношений в почках в норме и при патологии // Нефрология. 2006. Т. 10. № 3. С. 14–22.
  4. Бобкова И.Н., Козловская Л.В., Ли О.А. Матриксные металлопротеиназы в патогенезе острых и хронических заболеваний почек // Нефрология и диализ. 2008. Т. 10. № 2. С. 105–111.
  5. Котова Л.И., Совалкин В.И. Прогностические факторы исходов острой почечной недостаточности // Нефрология и диализ. 2003. Т. 5. № 4. С. 387–390.
  6. Смирнов А.В., Каюков И.Г., Дегтерева О.А. и др. Проблемы диагностики и стратификации тяжести острого повреждения почек // Нефрология. 2009. Т. 13. № 3. С. 9–18.
  7. Сократов Н.В. Состояние систем гемостаза, калликреина и комплемента при заболеваниях почек // Нефрология. 2004. Т. 8. № 2. С. 40–43.
  8. Albelda S.M., Smith C.W., Ward P.A. Adhesion molecules and inflammatory injury // FASEB Journal. 1994. Vol. 8 (8). P. 504–512.
  9. Arumugam T.V., Okun E., Tang S.-C. et al. Toll-like receptors in ischemia-reperfusion injury // Shock. 2009. Vol. 32 (1). P. 4–16.
  10. Awad A.S., Ye H., Huang L. et al. Selective sphingosine 1-phosphate 1 receptor activation reduces ischemia-reperfusion injury in mouse kidney // Am. J. Physiol. Renal. Physiol. 2006. Vol. 290. P. 1516–1524.
  11. Beck G.C., Ludwig F., Schulte J. et al. Fractalkine is not a major chemo-attractant for the migration of neutrophils across microvascular endothelium // Scandinavian J. of Immunol. 2003. Vol. 58 (2). P. 180–187.
  12. Bolisetty S., Agarwal A. Neutrophils in acute kidney injury: not neutral anymore // Kidney Int. 2009. Vol. 75 (7). P. 674–676.
  13. Bonvetre J.V. Ischemic acute renal failure / in: Textbook of Molecular Medicine. Jamison J.L. Cambridge, MA, Blackwell Science, 1996.
  14. Brodsky S.V., Yamamoto T., Tada T. et al. Endothelial dysfunction in ischemic acute renal failure: rescue by transplanted endothelial cells // Am. J. Physiol. Renal. Physiol. 2002. Vol. 282. P. 1140–1149.
  15. Burne-Taney M.J., Ascon D.B., Daniels F. et al. B cell deficiency confers protection from renal ischemia reperfusion injury // J. Immunol. 2003. Vol. 171. P. 3210–3215.
  16. Burne-Taney M.J., Daniels F., El Ghandour A. et al. Identification of the CD4(+) T cell as a major pathogenic factor in ischemic acute renal failure // J. Clin. Invest. 2001. Vol. 108 P. 1283–1290.
  17. Burne-Taney M.J., Yokota-Ikeda N., Rabb H. Effects of combined T- and B-cell deficiency on murine ischemia reperfusion injury // Am. J. Transplant. 2005. Vol. 5. P. 1186–1193.
  18. Caramelo C., Espinosa G., Manzarbeitia F. et al. Role of endothelium-related mechanisms in the pathophysiology of renal ischemia/reperfusion in normal rabbits // Circulation Research. 1996. Vol. 79 (5). P. 1031–1038.
  19. Cerwenka A., Lanier L.L. Natural killer cells, viruses and cancer // Nature Reviews Immunol. 2001. Vol. 1 (1). P. 41–49.
  20. Chiao H., Kohda Y., McLeroy P. et al. ?-melanocyte-stimulating hormone protects against renal injury after ischemia in mice and rats // J. Clin. Invest. 1997. Vol. 99 (6). P. 1165–1172.
  21. Chiao H., Kohda Y., McLeroy P. et al. ?-melanocyte-stimulating hormone inhibits renal injury in the absence of neutrophils // Kidney Int. 1998. Vol. 54 (3). P. 765–774.
  22. Cockwell P., Chakravorty S.J., Girdlestone J. et al. Fractalkine expression in human renal inflammation // Journal of Pathology. 2002. Vol. 196 (1). P. 85–90.
  23. Cugini D., Azzollini N., Gagliardini E. et al. Inhibition of the chemokine receptor CXCR2 prevents kidney graft function deterioration due to ischemia/reperfusion // Kidney Int. 2005. Vol. 67 (5). P. 1753–1761.
  24. Cunningham P.N., Dyanov H.M., Park P. et al. Acute renal failure in endotoxemia is caused by TNF acting directly on TNF receptor-1 in kidney // J. Immunol. 2002. Vol. 168 (11). P. 5817 –5823.
  25. Cunningham P.N., Wang Y., Guo R. et al. Role of Toll-like receptor 4 in endotoxin-induced acute renal failure // J. Immunol. 2004. Vol. 172 (4). P. 2629–2635.
  26. Daha M.R., Van Kooten C. Is the proximal tubular cell a pro-inflammatory cell? // Nephrol. Dial. Transplant. 2000. Vol. 15 (Suppl 6). P. 41–43.
  27. Day Y.J., Huang L., Ye H. et al. Renal ischemia-reperfusion injury and adenosine 2a receptor-mediated tissue protection: role of macrophages // Am. J. Physiol. Renal. Physiol. 2005. Vol. 288. P. 722–731.
  28. Day Y.J., Huang L., Ye H. et al. Renal ischemia-reperfusion injury and adenosine 2a receptor-mediated tissue protection: the role of CD4+ T cells and IFN-gamma // J. Immunol. 2006. Vol. 176. P. 3108–3114.
  29. De Greef K.E., Ysebaert D.K., Dauwe S. et al. Anti-B7-1 blocks mononuclear cell adherence in vasa recta after ischemia // Kidney Int. 2001. Vol. 60 (4). P. 1415–1427.
  30. Deckers J.G., De Haij S., Van Der Woude F.J. et al. IL-4 and IL-13 augment cytokine- and CD40-induced RANTES production by human renal tubular epithelial cells in vitro // J. Am. Soc. Nephrol. 1998. Vol. 9. P. 1187–1193.
  31. Deng J., Kohda Y., Chiao H. et al. Interleukin-10 inhibits ischemic and cisplatin-induced acute renal injury // Kidney Int. 2001. Vol. 60 (6). P. 2118–2128.
  32. Devarajan P. Update on mechanisms of ischemic acute kidney injury // J. Am. Soc. Nephrol. 2006. Vol. 17 (6). P. 1503–1520.
  33. Doi K., Hu X., Yuen P.S.T. et al. AP214, an analogue of ?-melanocyte-stimulating hormone, ameliorates sepsis induced acute kidney injury and mortality // Kidney Int. 2008. Vol. 73 (11), P. 1266–1274.
  34. Dong X., Swaminathan S., Bachman L.A. et al. Resident dendritic cells are the predominant TNF-secreting cell in early renal ischemia-reperfusion injury // Kidney Int. 2007. Vol. 71 (7). P. 619–628.
  35. Dragun D., Hoff U., Park J.K. et al. Ischemia-reperfusion injury in renal transplantation is independent of the immunologic background // Kidney Int. 2000. Vol. 58 (5). P. 2166–2177.
  36. Edelstein C.L., Hoke T.S., Somerset H. et al. Proximal tubules from caspase-1-deficient mice are protected against hypoxia-induced membrane injury // Nephr. Dial. Transpl. 2007. Vol. 22 (4). P. 1052–1061.
  37. El-Achkar T.M., Wu X.-R., Rauchman M. et al. Tamm–Horsfall protein protects the kidney from ischemic injury by decreasing inflammation and altering TLR4 expression // Am. J. Physiol. 2008. Vol. 295 (2). P. 534–544.
  38. Faubel S. Pulmonary complications after acute kidney injury // Adv. Chronic Kidney Dis. 2008. Vol. 15. P. 284–296.
  39. Faubel S., Lewis E.C., Reznikov L. et al. Cisplatin-induced acute renal failure is associated with an increase in the cytokines interleukin (IL)-1?, IL-18, IL-6, and neutrophil infiltration in the kidney // J. Pharm. Experim. Therap. 2007. Vol. 322 (1). P. 8–15.
  40. Faubel S., Ljubanovic D., Poole B. et al. Peripheral CD4 T-cell depletion is not sufficient to prevent ischemic acute renal failure // Transplantation. 2005. Vol. 80 (5). P. 643–649.
  41. Faubel S., Ljubanovic D., Reznikov L. et al. Caspase-1-deficient mice are protected against cisplatin-induced apoptosis and acute tubular necrosis // Kidney Int. 2004. Vol. 66 (6). P. 2202 –2213.
  42. Frangogiannis N.G. Chemokines in ischemia and reperfusion // Thrombosis and Haemostasis. 2007. Vol. 97 (5). P. 738–747.
  43. Friedewald J.J., Rabb H. Inflammatory cells in ischemic acute renal failure // Kidney Int. 2004. Vol. 66 (2). P. 486–491.
  44. Furuichi K., Gao J.L., Horuk R. et al. Chemokine receptor CCR1 regulates inflammatory cell infiltration after renal ischemia-reperfusion injury // J. of Immunol. 2008. Vol. 181 (12). P. 8670–8676.
  45. Furuichi K., Wada T., Iwata Y. et al. Gene therapy expressing amino-terminal truncated monocyte chemoattractant protein-1 prevents renal ischemia-reperfusion injury // J. Am. Soc. Nephr. 2003. Vol. 14 (4). P. 1066–1071.
  46. Goes N., Urmson J., Ramassar V. et al. Ischemic acute tubular necrosis induces an extensive local cytokine response: evidence for induction of interferon-?, transforming growth factor-? 1, granulocyte-macrophage colonystimulating factor, interleukin-2, and interleukin-10 // Transplantation. 1995. Vol. 59 (4). P. 565–572.
  47. Gold S.E., Day M., Jones S.S. et al. BMP-7 regulates chemokine, cytokine, and hemodynamic gene expression in proximal tubule cells // Kidney Int. 2002. Vol. 61. P. 51–60.
  48. Haq M., Norman J., Saba S.R. et al. Role of IL-1 in renal ischemic reperfusion injury // J. Am. Soc. Nephr. 1998. Vol. 9 (4). P. 614–619.
  49. Hayashi H., Imanishi N., Ohnishi M. et al. X and anti-P-selectin antibody attenuate lipopolysaccharide-induced acute renal failure in rabbits // Nephron. 2001. Vol. 87 (4). P. 352–360.
  50. He Z., Dursun B., Oh D.-J. et al. Macrophages are not the source of injurious interleukin-18 in ischemic acute kidney injury in mice // Am. J. Physiol. 2009. Vol. 296 (3). P. 535–542.
  51. He Z., Lu L., Altmann C. et al. Interleukin-18 binding protein transgenic mice are protected against ischemic acute kidney injury // Am. J. Physiol. 2008. Vol. 295 (5). P. 1414–1421.
  52. Heinzelmann M., Mercer-Jones M.A., Passmore J.C. Neutrophils and renal failure // Am. J. Kidney Dis. 1999. Vol. 34 (2). P. 384–399.
  53. Hoste E.A., Schurgers M. Epidemiology of acute kidney injury: how big is the problem? // Crit. Care Med. 2008. Vol. 36. P. 145–151.
  54. Jayle C., Milinkevitch S., Favreau F. et al. Protective role of selectin ligand inhibition in a large animal model of kidney ischemia-reperfusion injury // Kidney Int. 2006. Vol. 69 (10). P. 1749–1755.
  55. Jo S.-K., Sung S.-A., Cho W.-Y. et al. Macrophages contribute to the initiation of ischaemic acute renal failure in rats // Nephr. Dial. Transpl. 2006. Vol. 21 (5). P. 1231–1239.
  56. Joon H.S., Humes H.D. Renal Cell Therapy and Beyond // Semin. Dial. 2009. Vol. 22 (6). P. 603–609.
  57. Kanai T., Watanabe M., Okazawa A. et al. Interleukin-18 and Crohn’s disease // Digestion. 2001. Vol. 63 (suppl. 1), P. 37–42.
  58. Kapper S., Beck G., Riedel S. et al. Modulation of chemokine production and expression of adhesion molecules in renal tubular epithelial and endothelial cells by catecholamines // Transplantation. 2002. Vol. 74. P. 253–260.
  59. Kato N., Yuzawa Y., Kosugi T. et al. The E-selectin ligand basigin/CD147 is responsible for neutrophil recruitment in renal ischemia/reperfusion // J. Am. Soc. Nephr. 2009. Vol. 20 (7). P. 1565–1576.
  60. Kelly K.J., Williams Jr. W.W., Colvin R.B. et al. Antibody to intercellular adhesion molecule 1 protects the kidney against ischemic injury // Proceedings of the National Academy of Sciences of the United States of America. 1994. Vol. 91 (2), P. 812–816.
  61. Kelly K.J., Williams Jr. W.W., Colvin R.B. et al. Intracellular adhesion molecule-1 deficient mice are protected against ischemic renal injury // J. Clin. Invest. 1996. Vol. 97. P. 1056–1063.
  62. Kielar M.R., John R., Bennett M. et al. Maladaptive role of IL-6 in ischemic acute renal failure // J. Am. Soc. Nephr. 2005. Vol. 16 (11). P. 3315–3325.
  63. Kinsey G.R., Li L., Okusa M.D. Inflammation in acute kidney injury // Nephron. Exp. Nephrol. 2008. Vol. 109 (4) P. 102–107.
  64. Klausner J.M., Paterson I.S., Goldman G. et al. Post-ischemic renal injury is mediated by neutrophils and leukotrienes // Am. J. Physiol. 1989. Vol. 256 (5). P. 794–802.
  65. Klein C.L., Hoke T.S., Fang W.-F. et al. Interleukin-6 mediates lung injury following ischemic acute kidney injury or bilateral nephrectomy // Kidney Int. 2008. Vol. 74 (7). P. 901– 909.
  66. Knotek M., Rogachev B., Wang W. et al. Endotoxemic renal failure in mice: role of tumor necrosis factor independent of inducible nitric oxide synthase // Kidney Int. 2001. Vol. 59 (6). P. 2243–2249.
  67. Kruger T., Benke D., Eitner F. et al. Identification and functional characterization of dendritic cells in the healthy murine kidney and in experimental glomerulonephritis // J. Am. Soc. Nephr. 2004. Vol. 15 (3). P. 613–621.
  68. Kurts C. Dendritic cells: not just another cell type in thekidney, but a complex immune sentinel network // Kidney Int. 2006. Vol. 70 (3). P. 412–414.
  69. Lameire N., Van Biesen W., Vanholder R. Acute renal failure // Lancet. 2005. Vol. 365. P. 417–430.
  70. Lee H.T., Kim M., Kim M. et al. Isoflurane protects against renal ischemia and reperfusion injury and modulates leukocyte infiltration in mice // Am. J. Physiol. 2007. Vol. 293 (3). P. 713–722.
  71. Lee S., Kim W., Moon S.-O. et al. Rosiglitazone ameliorates cisplatin-induced renal injury in mice // Nephr. Dial. Transpl. 2006. Vol. 21 (8). P. 2096–2105.
  72. Leemans J.C., Stokman G., Claessen N. et al. Renal-associated TLR2 mediates ischemia/reperfusion injury in the kidney // J. Clin. Invest. 2005. Vol. 115. P. 2894–2903.
  73. Li H., Nord E.P. CD40 ligation stimulates MCP-1 and IL-8 production, TRAF6 recruitment, and MAPK activation in proximal tubule cells // Am. J. Physiol. Renal. Physiol. 2002. Vol. 282. F1020–F1033.
  74. Li L., Huang L., Sung S.S. et al. NKT cell activation mediates neutrophil IFN-gamma production and renal ischemia-reperfusion injury // J. Immunol. 2007. Vol. 178. P. 5899–5911.
  75. Liew F.Y., McInnes I.B. Role of interleukin 15 and interleukin 18 in inflammatory response // Annals of the Rheum. Dis. 2002. Vol. 61 (suppl. 2), P. 100–102.
  76. Linas S., Whittenburg D., Repine J.E. Nitric oxide prevents neutrophil-mediated acute renal failure // Am. J. Physiol. 1997. Vol. 272 (1). P. 48–54.
  77. Liu M., Chien C.-C., Burne-Taney M. et al. A pathophysiologic role for T lymphocytes in murine acute cisplatin nephrotoxicity // J. Am. Soc. Nephr. 2006. Vol. 17 (3). P. 765–774.
  78. Lu L.H., Oh D.-J., Dursun B. et al. Increased macrophage infiltration and fractalkine expression in cisplatin-induced acute renal failure in mice // J. Pharmacol. Experim. Therap. 2007. Vol. 324 (1). P. 111–117.
  79. Melnikov V.Y., Ecder T., Fantuzzi G. et al. Impaired IL-18 processing protects caspase-1-deficient mice from ischemic acute renal failure // J. Clin. Invest. 2001. Vol. 107 (9). P. 1145 –1152.
  80. Melnikov V.Y., Faubel S., Siegmund B. et al. Neutrophil-independent mechanisms of caspase-1- and IL-18-mediated ischemic acute tubular necrosis in mice // J. Clin. Invest. 2002. Vol. 110 (8). P. 1083–1091.
  81. Miura M., Fu X., Zhang Q.-W. et al. Neutralization of Gro? and macrophage inflammatory protein-2 attenuates renal ischemia/reperfusion injury // Am. J. Pathol. 2001. Vol. 159 (6). P. 2137–2145.
  82. Mizutani A., Okajima K., Uchiba M. et al. Activated protein C reduces ischemia/reperfusion-induced renal injury in rats by inhibiting leukocyte activation // Blood. 2000. Vol. 95 (12). P. 3781 –3787.
  83. Moretta A. Natural killer cells and dendritic cells: rendezvous in abused tissues // Nature Reviews Immunology. 2002. Vol. 2 (12). P. 957–964.
  84. Nechemia-Arbely Y., Barkan D., Pizov G. et al. IL-6/IL-6R axis plays a critical role in acute kidney injury // J. Am. Soc. Nephr. 2008. Vol. 19 (6). P. 1106–1115.
  85. Nemoto T., Burne M.J., Daniels F. et al. Small molecule selectin ligand inhibition improves outcome in ischemic acute renal failure // Kidney Int. 2001. Vol. 60 (6). P. 2205–2214.
  86. Nikolic-Paterson D.J., Atkins R.C. The role of macrophages in glomerulonephritis // Nephr. Dial. Transpl. 2001. Vol. 16 (suppl. 5). P. 3–7.
  87. Oh D.-J., Dursun B., He Z. et al. Fractalkine receptor (CX3CR1) inhibition is protective against ischemic acute renal failure in mice // Am. J. Physiol. 2008. Vol. 294 (1). P. 264–271.
  88. Paller M.S. Effect of neutrophil depletion on ischemic renal injury in the rat // J. Laboratory and Clin. Med. 1989. Vol. 113 (3). P. 379–386.
  89. Park P., Haas M., Cunningham P.N. et al. Injury in renal ischemia-reperfusion is independent from immunoglobulins and T lymphocytes // Am. J. Physiol. Renal. Physiol. 2002. Vol. 282. P. 352–357.
  90. Pino C.J., Yevzlin A.S., Lee K. et al. Cell-based approaches for the treatment of systemic inflammation // Nephrol. Dial. Transplant. 2012. Advance Access published November 9. From http://ndt.oxfordjournals.org.
  91. Pulskens W.P., Teske G.J., Butter L.M. et al. Toll-like receptor-4 coordinates the innate immune response of the kidney to renal ischemia/reperfusion injury // PLoS ONE. 2008. Vol. 3 (10). Article e3596.
  92. Rabb H. Pathophysiological role of T lymphocytes in renal ischemia-reperfusion injury in mice // Am. J. Physiol. Renal. Physiol. 2000. Vol. 279 (3). P. 525–531.
  93. Ramesh G., Reeves W.B. TNFR2-mediated apoptosis and necrosis in cisplatin-induced acute renal failure // Am. J. Physiol. 2003. Vol. 285 (4). P. 610–618.
  94. Ramesh G., Reeves W.B. TNF-? mediates chemokine and cytokine expression and renal injury in cisplatin nephrotoxicity // J. Clin. Invest. 2002. Vol. 110 (6). P. 835–842.
  95. Rice J.C., Spence J.S., Yetman D.L. et al. Monocyte chemoattractant protein-1 expression correlates with monocyte infiltration in the post-ischemic kidney // Renal Failure. 2002. Vol. 24 (6). P. 703–723.
  96. Rouschop K.M.A., Roelofs J.J.T.H., Claessen N. et al. Protection against Renal ischemia reperfusion injury by CD44 disruption // J. Am. Soc. Nephr. 2005. Vol. 16 (7). P. 2034–2043.
  97. Safirstein R., Megyesi J., Saggi S.J. et al. Expression of cytokine-like genes JE and KC is increased during renal ischemia // Am. J. Physiol. 1991. Vol. 261 (6). P. 1095–1101.
  98. Segerer S., Nelson P.J., Schlondorff D. Chemokines, chemokine receptors, and renal disease: from basic science to pathophysiologic and therapeutic studies // J. Am. Soc. Nephr. 2000. Vol. 11 (1). P. 152–176.
  99. Shigeoka A.A., Holscher T.D., King A.J. et al. TLR2 is constitutively expressed within the kidney and participates in ischemic renal injury through both MyD88-dependent and -independent pathways // J. Immunol. 2007. Vol. 178 (10). P. 6252–6258.
  100. Shimoda N., Fukazawa N., Nonomura K. et al. Cathepsin G is required for sustained inflammation and tissue injury after reperfusion of ischemic kidneys // Am. J. Pathol. 2007. Vol. 170 (3). P. 930–940.
  101. Sigal L.H. Basic science for the clinician 33: interleukins of current clinical relevance – part I // J. Clin. Rheumatol. 2004. Vol. 10 (6). P. 353–359.
  102. Singbartl K., Forlow S.B., Ley K. Platelet, but not endothelial, P-selectin is critical for neutrophil-mediated acute postischemic renal failure // FASEB Journal. 2001. Vol. 15 (13). P. 2337–2344.
  103. Singbartl K., Green S.A., Ley K. Blocking P-selectin protects from ischemia/reperfusion-induced acute renal failure // FASEB Journal. 2000. Vol. 14 (1). P. 48–54.
  104. Sodhi A., Pai K., Singh R.K. et al. Activation of human NK cells and monocytes with cisplatin in vitro // Int. J. Immunopharm. 1990. Vol. 12 (8). P. 893–898.
  105. Sutton T.A., Mang H.E., Campos S.B. et al. Injury of the renal microvascular endothelium alters barrier function after ischemia // Am. J. Physiol. Renal Physiol. 2003. Vol. 285. P. 191–198.
  106. Thadhani R., Pascual M., Bonventre JV. Acute renal failure // N. Engl. J. Med. 1996. Vol. 334. P. 1448–1460.
  107. Thurman J.M., Lenderink A.M., Royer P.A. et al. C3a is required for the production of CXC chemokines by tubular epithelial cells after renal ishemia/reperfusion // Journal of Immunology. 2007. Vol. 178 (3). P. 1819–1828.
  108. Thurman J.M., Ljubanovic D., Edelstein C.L. et al. Lack of a functional alternative complement pathway ameliorates ischemic acute renal failure in mice // J. Immunol. 2003. Vol. 170 (3). P. 1517–1523.
  109. Thurman J.M., Ljubanovic D., Royer P.A. et al. Altered renal tubular expression of the complement inhibitor crry permits complement activation after ischemia/reperfusion // J. Clin. Invest. 2006. Vol. 116. P. 357–368.
  110. Thurman J.M., Lucia M.S., Ljubanovic D., Holers V.M. Acute tubular necrosis is characterized by activation of the alternative pathway of complement // Kidney Int. 2005. Vol. 67 (2). P. 524–530.
  111. Thurman J.M., Royer P.A., Ljubanovic D. et al. Treatment with an inhibitory monoclonal antibody to mouse factor B protects mice from induction of apoptosis and renal ischemia/reperfusion injury // J. Am. Soc. Nephr. 2006. Vol. 17 (3). P. 707–715.
  112. Uchino S., Kellum J.A., Bellomo R. et al. For the Beginning and Ending Supportive Therapy for the Kidney (BEST Kidney) Investigators: Acute renal failure in critically ill patients: A multinational, multicenter study // J. A. M. A. 2005. Vol. 294. P. 813–818.
  113. Umehara H., Goda S., Imai T. et al. Fractalkine, a CX3C-chemokine, functions predominantly as an adhesion molecule in monocytic cell line THP-1 // Immunology and Cell Biology. 2001. Vol. 79 (3). P. 298–302.
  114. Waikar S.S., Bonventre J.V. Biomarkers for the diagnosis of acute kidney injury // Curr. Opin. Nephrol. Hypertens. 2007. Vol. 16. P. 557–564.
  115. Walzer T., Dalod M., Robbins S.H. et al. Natural-killer cells and dendritic cells: “l’union fait la force” // Blood. 2005. Vol. 106 (7). P. 2252–2258.
  116. Wang W., Faubel S., Ljubanovic D. et al. Endotoxemic acute renal failure is attenuated in caspase-1-deficient mice // Am. J. Physiol. 2005. Vol. 288 (5) P. 997–1004.
  117. Wang W., Jittikanont S., Falk S.A. et al. Interaction among nitric oxide, reactive oxygen species, and antioxidants during endotoxemia-related acute renal failure // Am. J. Physiol. 2003. Vol. 284 (3). P. 532–537.
  118. Wu H., Chen G., Wyburn K.R. et al. TLR4 activation mediates kidney ischemia/reperfusion injury // J. Clin. Invest. 2007. Vol. 117. P. 2847–2859.
  119. Wu H., Craft M.L., Wang P. et al. IL-18 contributes to renal damage after ischemia-reperfusion // J. Am. Soc. Nephr. 2008. Vol. 19 (12). P. 2331–2341.
  120. Yasuda H., Leelahavanichkul A., Tsunoda S. et al. Chloroquine and inhibition of Toll-like receptor 9 protect from sepsis-induced acute kidney injury // Am. J. Physiol. 2008. Vol. 294 (5). P. 1050–1058.
  121. Ysebaert D.K., De Greef K.E., Vercauteren S.R. et al. Identification and kinetics of leukocytes after severe ischaemia/reperfusion renal injury // Nephr. Dial. Transpl. 2000. Vol. 15 (10). P. 1562–1574.
  122. Ysebaert D.K. T cells as mediators in renal ischemia/reperfusion injury // Kidney Int. 2004. Vol. 66 (2). P. 491–496.
  123. Zaldivar F. Jr., Nugent D.J., Imfeld K. et al. Identification of a novel regulatory element in the human interleukin 1 alpha (IL-1?) gene promoter // Cytokine. 2002. Vol. 20 (3). P. 130–135.
  124. Zhang Z.-X, Wang S., Huang X. et al. NK cells induce apoptosis in tubular epithelial cells and contribute to renal ischemia-reperfusion injury // J. Immunol. 2008. Vol. 181 (11). P. 7489–7498.
  125. Zhou H., Hewitt S.M., Yuen P.S. et al. Acute kidney injury biomarkers – needs, present status, and future promise // Nephrol. S. A. P. 2006. Vol. 5. P. 63–71.

Другие статьи по теме


Навигация по статьям
Разделы журнала
Наиболее читаемые статьи