Российское диализное общество

Просмотр статьи

<< Вернуться к списку статей журнала

Том 23 №3 2021 год - Нефрология и диализ

Механизмы острого повреждения почек при Covid-19. Обзор


Мальцева Л.Д. Васалатий И.М. Исаакян Ю.А. Морозова О.Л.

DOI: 10.28996/2618-9801-2021-3-352-365

Аннотация: Важнейшая особенность острого повреждения почек (ОПП) при новой коронавирусной инфекции (COVID-19) - отсутствие единого ведущего звена патогенеза. Глубокое понимание механизмов и основных звеньев патогенеза заболевания позволит определить ранние маркёры ОПП, что будет способствовать ранней диагностике, прогнозированию, персонифицированной терапии и профилактике повреждения почек у пациентов с COVID-19. Цель обзора: обобщить данные клинических и научных исследований по известным механизмам ОПП при COVID-19. Определить маркёры раннего повреждения почек при COVID-19. Материалы и методы: в базах данных Web of Science, Scopus и РИНЦ отобрали 81 релевантный источник, содержавший актуальные данные клинических и научных исследований по теме данного обзора. Результаты: отмечены основные механизмы повреждения почек при COVID-19: внутриклеточная активность вируса, приводящая к клеточной гибели, избыточное высвобождение провоспалительных цитокинов и цитокиновый шторм, патология ренин-ангиотензин-альдостероновой системы (РААС), гиперергическое воспаление и иммунотромбоз. Определены основные эффекты ангиотензина II при нарушении регуляции РААС, а также спектр провоспалительных цитокинов и их функций в развитии цитокинового шторма. Рассмотрена возможность прямого цитопатического действия SARS-CoV-2 на почечный эпителий как самостоятельной причины ОПП при COVID-19. Представлена взаимосвязь между гиперергической воспалительной реакцией и процессом иммунотромбоза, которая опосредована действием множества защитных систем организма, в том числе нейтрофилами, тромбоцитами и белками системы комплемента. Оценен риск тромботических осложнений в почечных сосудах у пациентов с COVID-19. Также представлен анализ потенциальных ранних биомаркёров повреждения почек при COVID-19 и сравнили их с клиническими биомаркёрами ОПП. Заключение: ОПП - одно из наиболее частых осложнений у тяжелобольных пациентов с COVID-19, которое значительно ухудшает прогноз течения болезни. Изучение механизмов повреждения почек способствует открытию новых маркёров, необходимых для ранней диагностики, прогнозирования течения болезни и дальнейшего выбора оптимальной персонифицированной терапии.

Для цитирования: Мальцева Л.Д., Васалатий И.М., Исаакян Ю.А., Морозова О.Л. Механизмы острого повреждения почек при Covid-19. Обзор. Нефрология и диализ. 2021. 23(3):352-365. doi: 10.28996/2618-9801-2021-3-352-365


Весь текст



Ключевые слова: острое повреждение почек, COVID-19, иммунотромбоз, биомаркеры, цитокиновый шторм, acute kidney injury, COVID-19, immunothrombosis, biomarkers, cytokine storm

Список литературы:
  1. Farouk S.S., Fiaccadori E., Cravedi P., et al. COVID-19 and the kidney: what we think we know so far and what we don’t. Journal of Nephrology. 2020. DOI: 10.1007/s40620-020-00789-y.
  2. Chan L., Chaudhary K., Saha A., et al. Acute Kidney Injury in Hospitalized Patients with COVID-19. medRxiv: the preprint server for health sciences. 2020. DOI: 10.1101/2020.05.04.20090944.
  3. Hirsch J.S., Ng J.H., Ross D.W., et al. Acute kidney injury in patients hospitalized with COVID-19. Kidney International. 2020. DOI: 10.1016/j.kint.2020.05.006.
  4. Alberici F., Delbarba E., Manenti C., et al. A report from the Brescia Renal COVID Task Force on the clinical characteristics and short-term outcome of hemodialysis patients with SARS-CoV-2 infection. Kidney International. 2020. DOI: 10.1016/j.kint.2020.04.030.
  5. Malberti F., Pecchini P., Marchi G., et al. When a nephrology ward becomes a COVID-19 ward: the Cremona experience. Journal of Nephrology. 2020. DOI: 10.1007/s40620-020-00743-y.
  6. Akalin E., Azzi Y., Bartash R., et al. COVID-19 and Kidney Transplantation. New England Journal of Medicine. 2020. DOI: 10.1056/nejmc2011117.
  7. Fagerberg L., Hallstrom B.M., Oksvold P., et al. Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Molecular and Cellular Proteomics. 2014. Vol. 13, № 2. P. 397-406. DOI: 10.1074/mcp.M113.035600.
  8. Lelis D. de F., Freitas D.F. de, Machado A.S., et al. Angiotensin-(1-7), Adipokines and Inflammation. Metabolism: Clinical and Experimental. 2019. Vol. 95. P. 36-45. DOI: 10.1016/j.metabol.2019.03.006.
  9. McKinney C.A., Fattah C., Loughrey C.M., et al. Angiotensin-(1-7) and angiotensin-(1-9): Function in cardiac and vascular remodelling. Clinical Science. 2014. Vol. 126, № 12. P. 815-827. DOI: 10.1042/CS20130436.
  10. Vaarala M.H., Porvari K.S., Kellokumpu S., et al. Expression of transmembrane serine protease TMPRSS2 in mouse and human tissues. Journal of Pathology. 2001. Vol. 193, № 1. P. 134-140. DOI: 10.1002/1096-9896(2000)9999:9999<::AID-PATH743>3.0.CO;2-T.
  11. Hoffmann M., Kleine-Weber H., Schroeder S., et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020. Vol. 181, № 2. P. 271-280.e8. DOI: 10.1016/j.cell.2020.02.052.
  12. Su H., Yang M., Wan C., et al. Renal histopathological analysis of 26 postmortem findings of patients with COVID-19 in China. Kidney International. 2020. DOI: 10.1016/j.kint.2020.04.003.
  13. Gabarre P., Dumas G., Dupont T., et al. Acute kidney injury in critically ill patients with COVID-19. Intensive Care Medicine. Springer Berlin Heidelberg; 2020. Vol. 46, № 7. P. 1339-1348. DOI: 10.1007/s00134-020-06153-9.
  14. Rüster C., Wolf G. Renin-angiotensin-aldosterone system and progression of renal disease. Journal of the American Society of Nephrology. 2006. Vol. 17, № 11. P. 2985-2991. DOI: 10.1681/ASN.2006040356.
  15. Deshotels M.R., Xia H., Sriramula S., et al. Angiotensin II mediates angiotensin converting enzyme type 2 internalization and degradation through an Angiotensin II type I receptor-dependent mechanism. Hypertension. 2014. Vol. 64, № 6. P. 1368-1375. DOI: 10.1161/HYPERTENSIONAHA.114.03743.
  16. Huang Y., Wongamorntham S., Kasting J., et al. Renin increases mesangial cell transforming growth factor-β1 and matrix proteins through receptor-mediated, angiotensin II-independent mechanisms. Kidney International. 2006. Vol. 69, № 1. P. 105-113. DOI: 10.1038/sj.ki.5000011.
  17. Nishiyama A., Abe Y. Molecular mechanisms and therapeutic strategies of chronic renal injury: Renoprotective effects of aldosterone blockade. Journal of Pharmacological Sciences. 2006. Vol. 100, № 1. P. 9-16. DOI: 10.1254/jphs.FMJ05003X3.
  18. Mori Y., Masuda T., Kosugi T., et al. The clinical relevance of plasma CD147/basigin in biopsy-proven kidney diseases. Clinical and Experimental Nephrology. Springer Japan; 2018. Vol. 22, № 4. P. 815-824. DOI: 10.1007/s10157-017-1518-2.
  19. Nistala R., Savin V. Diabetes, hypertension, and chronic kidney disease progression: Role of DPP4. American Journal of Physiology - Renal Physiology. 2017. Vol. 312, № 4. P. F661-F670. DOI: 10.1152/ajprenal.00316.2016.
  20. Radzikowska U., Ding M., Tan G., et al. Distribution of ACE2, CD147, CD26, and other SARS-CoV-2 associated molecules in tissues and immune cells in health and in asthma, COPD, obesity, hypertension, and COVID-19 risk factors. Allergy: European Journal of Allergy and Clinical Immunology. 2020. 0-3 p. DOI: 10.1111/all.14429.
  21. Rabaan A.A., Al-Ahmed S.H., Haque S., et al. SARS-CoV-2, SARS-CoV, and MERS-CoV: A comparative overview. Infezioni in Medicina. 2020. Vol. 28, № 2. P. 174-184.
  22. Napolitano G., Ballabio A. TFEB at a glance. Journal of Cell Science. 2016. Vol. 129, № 13. P. 2475-2481. DOI: 10.1242/jcs.146365.
  23. Yue Y., Nabar N.R., Shi C.S., et al. SARS-Coronavirus Open Reading Frame-3a drives multimodal necrotic cell death. Cell Death and Disease. Springer US; 2018. Vol. 9, № 9. DOI: 10.1038/s41419-018-0917-y.
  24. Kelley N., Jeltema D., Duan Y., et al. The NLRP3 inflammasome: An overview of mechanisms of activation and regulation. International Journal of Molecular Sciences. 2019. Vol. 20, № 13. P. 1-24. DOI: 10.3390/ijms20133328.
  25. Shi C.-S., Qi H.-Y., Boularan C., et al. SARS-Coronavirus Open Reading Frame-9b Suppresses Innate Immunity by Targeting Mitochondria and the MAVS/TRAF3/TRAF6 Signalosome. The Journal of Immunology. 2014. Vol. 193, № 6. P. 3080-3089. DOI: 10.4049/jimmunol.1303196.
  26. Food U.S. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. 2020. Vol. 583, № March. DOI: 10.1038/s41586-020-2286-9.
  27. Shenoy S. Coronavirus (Covid-19) sepsis: revisiting mitochondrial dysfunction in pathogenesis, aging, inflammation, and mortality. Inflammation Research. Springer International Publishing; 2020. № 0123456789. DOI: 10.1007/s00011-020-01389-z.
  28. McGonagle D., Sharif K., O’Regan A., et al. The Role of Cytokines including Interleukin-6 in COVID-19 induced Pneumonia and Macrophage Activation Syndrome-Like Disease. Autoimmunity Reviews. Elsevier; 2020. Vol. 19, № 6. P. 102537. DOI: 10.1016/j.autrev.2020.102537.
  29. Akira S., Uematsu S., Takeuchi O. Pathogen recognition and innate immunity. Cell. 2006. Vol. 124, № 4. P. 783-801. DOI: 10.1016/j.cell.2006.02.015.
  30. Kumar H., Kawai T., Akira S. Pathogen recognition by the innate immune system. International Reviews of Immunology. 2011. Vol. 30, № 1. P. 16-34. DOI: 10.3109/08830185. 2010.529976.
  31. Ragab D., Salah Eldin H., Taeimah M., et al. The COVID-19 Cytokine Storm; What We Know So Far. Frontiers in Immunology. 2020. Vol. 11, № June. P. 1-4. DOI: 10.3389/fimmu.2020.01446.
  32. Paces J., Strizova Z., Smrz D., et al. COVID-19 and the Immune System. 2020. Vol. 9973. P. 379-388.
  33. Song P., Li W., Xie J., et al. Cytokine storm induced by SARS-CoV-2. Clinica Chimica Acta. Elsevier; 2020. Vol. 509, № April. P. 280-287. DOI: 10.1016/j.cca.2020.06.017.
  34. Huang C., Wang Y., Li X., et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet. 2020. DOI: 10.1016/S0140-6736(20)30183-5.
  35. Holtmann H., Resch K. Natur wissenschaften aktuell. Naturwissenschaften. 1996. Vol. 83, № 7. P. 336-338. DOI: 10.1007/bf01152220.
  36. Grebe A., Hoss F., Latz E. NLRP3 inflammasome and the IL-1 pathway in atherosclerosis. Circulation Research. 2018. Vol. 122, № 12. P. 1722-1740. DOI: 10.1161/CIRCRESAHA.118.311362.
  37. Yazdi A.S., Ghoreschi K. The Interleukin-1 Family. 2016. Vol. 1. DOI: 10.1007/978-94-024-0921-5.
  38. Bent R., Moll L., Grabbe S., et al. Interleukin-1 beta-A friend or foe in malignancies? International Journal of Molecular Sciences. 2018. Vol. 19, № 8. DOI: 10.3390/ijms19082155.
  39. Anders H.J. Of Inflammasomes and alarmins: IL-1β and IL-1α in kidney disease. Journal of the American Society of Nephrology. 2016. Vol. 27, № 9. P. 2564-2575. DOI: 10.1681/ASN.2016020177.
  40. Durlacher-Betzer K., Hassan A., Levi R., et al. Interleukin-6 contributes to the increase in fibroblast growth factor 23 expression in acute and chronic kidney disease. Kidney International. Elsevier Inc; 2018. Vol. 94, № 2. P. 315-325. DOI: 10.1016/j.kint.2018.02.026.
  41. Rose-John S. Interleukin-6 family cytokines. Cold Spring Harbor Perspectives in Biology. 2018. Vol. 10, № 2. P. 1-18. DOI: 10.1101/cshperspect.a028415.
  42. Liu B., Li M., Zhou Z., et al. Can we use interleukin-6 (IL-6) blockade for coronavirus disease 2019 (COVID-19)-induced cytokine release syndrome (CRS)? Journal of Autoimmunity. Elsevier; 2020. Vol. 111, № March. P. 102452. DOI: 10.1016/j.jaut.2020.102452.
  43. Kohidai L., Csaba G. Chemotaxis and chemotactic selection induced with cytokines (IL-8, RANTES and TNF-α) in the unicellular Tetrahymena pyriformis. Cytokine. 1998. Vol. 10, № 7. P. 481-486. DOI: 10.1006/cyto.1997.0328.
  44. Vignali D.A.A., Kuchroo V.K. IL-12 family cytokines: immunological playmakers. Nature Immunology. 2012. Vol. 13, № 8. P. 722-728. DOI: 10.1038/ni.2366.
  45. Schroder K., Hertzog P.J., Ravasi T., et al. Interferon-γ: an overview of signals, mechanisms and functions. Journal of Leukocyte Biology. 2004. Vol. 75, № 2. P. 163-189. DOI: 10.1189/jlb.0603252.
  46. Costela-Ruiz V.J., Illescas-Montes R., Puerta-Puerta J.M., et al. SARS-CoV-2 infection: The role of cytokines in COVID-19 disease. Cytokine and Growth Factor Reviews. Elsevier; 2020. Vol. 54, № May. P. 62-75. DOI: 10.1016/j.cytogfr.2020.06.001.
  47. Engelmann B., Massberg S. Thrombosis as an intravascular effector of innate immunity. Nature Reviews Immunology. 2013. DOI: 10.1038/nri3345.
  48. Endres P., Rosovsky R., Zhao S., et al. Filter clotting with continuous renal replacement therapy in COVID-19. Journal of Thrombosis and Thrombolysis. Springer US; 2020. № 0123456789. P. 4-8. DOI: 10.1007/s11239-020-02301-6.
  49. Philipponnet C., Aniort J., Chabrot P., et al. Renal artery thrombosis induced by COVID-19. Clinical Kidney Journal. 2020. DOI: 10.1093/ckj/sfaa141.
  50. Adachi T., Chong J., Nakajima N., et al. Clinicopathologic and Immunohistochemical Findings from Autopsy of Patient. 2020. Vol. 26, № 9.
  51. Varga Z., Flammer A.J., Steiger P., et al. Endothelial cell infection and endotheliitis in COVID-19. The Lancet. Elsevier Ltd; 2020. Vol. 395, № 10234. P. 1417-1418. DOI: 10.1016/S0140-6736(20)30937-5.
  52. Zhang J., Tecson K.M., McCullough P.A. Endothelial dysfunction contributes to COVID-19-associated vascular inflammation and coagulopathy. Reviews in Cardiovascular Medicine. 2020. Vol. 21, № 3. P. 315-319. DOI: 10.31083/j.rcm.2020.03.126.
  53. Ahmed S., Zimba O., Gasparyan A.Y. Thrombosis in Coronavirus disease 2019 (COVID-19) through the prism of Virchow’s triad. Clinical Rheumatology. 2020. DOI: 10.1007/s10067-020-05275-1.
  54. Tomar B., Anders H.J., Desai J., et al. Neutrophils and Neutrophil Extracellular Traps Drive Necroinflammation in COVID-19. Cells. 2020. DOI: 10.3390/cells9061383.
  55. Sodhi C.P., Wohlford-Lenane C., Yamaguchi Y., et al. Attenuation of pulmonary ACE2 activity impairs inactivation of des-arg9 bradykinin/BKB1R axis and facilitates LPS-induced neutrophil infiltration. American Journal of Physiology - Lung Cellular and Molecular Physiology. 2018. DOI: 10.1152/ajplung.00498.2016.
  56. Cicco S., Cicco G., Racanelli V., et al. Neutrophil Extracellular Traps (NETs) and Damage-Associated Molecular Patterns (DAMPs): Two Potential Targets for COVID19 Treatment. 2020. Vol. 2020.
  57. Zuo Y., Yalavarthi S., Shi H., et al. Neutrophil extracellular traps in COVID-19. JCI Insight. 2020. DOI: 10.1172/jci.insight.138999.
  58. Jansen M.P.B., Emal D., Teske G.J.D., et al. Release of extracellular DNA influences renal ischemia reperfusion injury by platelet activation and formation of neutrophil extracellular traps. Kidney International. 2017. DOI: 10.1016/j.kint.2016.08.006.
  59. Nakazawa D., Kumar S. V, Marschner J., et al. Histones and Neutrophil Extracellular Traps Enhance Tubular Necrosis and Remote Organ Injury in Ischemic AKI. 2017. P. 1753-1768.
  60. Schurink B., Roos E., Radonic T., et al. Viral presence and immunopathology in patients with lethal COVID-19: a prospective autopsy cohort study. The Lancet Microbe. 2020. DOI: 10.1016/s2666-5247(20)30144-0.
  61. Leppkes M., Knopf J., Naschberger E., et al. Vascular occlusion by neutrophil extracellular traps in COVID-19. EBioMedicine. 2020. DOI: 10.1016/j.ebiom.2020.102925.
  62. Middleton E.A., He X.Y., Denorme F., et al. Neutrophil extracellular traps contribute to immunothrombosis in COVID-19 acute respiratory distress syndrome. Blood. 2020. DOI: 10.1182/blood.2020007008.
  63. Veras F.P., Pontelli M.C., Silva C.M., et al. SARS-CoV-2-triggered neutrophil extracellular traps mediate COVID-19 pathology. Journal of Experimental Medicine. 2020. DOI: 10.1084/jem.20201129.
  64. Barnes B.J., Adrover J.M., Baxter-Stoltzfus A., et al. Targeting potential drivers of COVID-19: Neutrophil extracellular traps. Journal of Experimental Medicine. 2020. DOI: 10.1084/jem.20200652.
  65. Jayarangaiah A., Kariyanna P.T., Chen X., et al. COVID-19-Associated Coagulopathy: An Exacerbated Immunothrombosis Response. Clinical and Applied Thrombosis/Hemostasis. 2020. DOI: 10.1177/1076029620943293.
  66. Henry B.M., Vikse J., Benoit S., et al. Hyperinflammation and derangement of renin-angiotensin-aldosterone system in COVID-19: A novel hypothesis for clinically suspected hypercoagulopathy and microvascular immunothrombosis. Clinica Chimica Acta. 2020. DOI: 10.1016/j.cca.2020.04.027.
  67. Wang L., He W.B., Yu X.M., et al. Prolonged prothrombin time at admission predicts poor clinical outcome in COVID-19 patients. World Journal of Clinical Cases. 2020. DOI: 10.12998/wjcc.v8.i19.4370.
  68. Manne B.K., Denorme F., Middleton E.A., et al. Platelet gene expression and function in patients with COVID-19. Blood. 2020. DOI: 10.1182/blood.2020007214.
  69. Hottz E.D., Azevedo-Quintanilha I.G., Palhinha L., et al. Platelet activation and platelet-monocyte aggregate formation trigger tissue factor expression in patients with severe COVID-19. Blood. 2020. DOI: 10.1182/blood.2020007252.
  70. Diao B., Wang C., Wang R., et al. Human Kidney is a Target for Novel Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infection. 2020. Vol. 2. DOI: 10.1101/2020.03.04.20031120.
  71. Noris M., Benigni A., Remuzzi G. The case of complement activation in COVID-19 multiorgan impact. Kidney International. 2020. DOI: 10.1016/j.kint.2020.05.013.
  72. Vinayagam S., Sattu K. SARS-CoV-2 and coagulation disorders in different organs. Life Sciences. 2020. DOI: 10.1016/j.lfs.2020.118431.
  73. Li Y., Wang Y., Liu H., et al. Urine Proteome of COVID-19 Patients. 2020. DOI: 10.1101/2020.05.02.20088666.
  74. Husain-Syed F., Wilhelm J., Kassoumeh S., et al. Acute kidney injury and urinary biomarkers in hospitalized patients with coronavirus disease-2019. Nephrology, dialysis, transplantation: official publication of the European Dialysis and Transplant Association - European Renal Association. 2020. DOI: 10.1093/ndt/gfaa162.
  75. Luther T., Anders S.B., Lipcsey M., et al. COVID-19 patients in intensive care develop predominantly oliguric acute kidney injury. 2020. № November. P. 1-9. DOI: 10.1111/aas.13746.
  76. Katagiri D., Ishikane M., Asai Y., et al. Evaluation of Coronavirus Disease 2019 Severity Using Urine Biomarkers. Critical Care Explorations. 2020. DOI: 10.1097/cce.0000000000000170.
  77. Comentale G., Manzo R., Pilato E. Sars-Cov-2 interference in HEME production: is it the time for an early predictive biomarker? Journal of Molecular Medicine. 2020. DOI: 10.1007/s00109-020-01945-4.
  78. Gomes B.C., Silva Júnior J.M., Tuon F.F. Evaluation of Urinary NGAL as a Diagnostic Tool for Acute Kidney Injury in Critically Ill Patients With Infection: An Original Study. Canadian Journal of Kidney Health and Disease. 2020. DOI: 10.1177/2054358120934215.
  79. Wendt R., Kalbitz S., Lübbert C., et al. Urinary Peptides Significantly Associate with COVID-19 Severity: Pilot Proof-of-Principle Data and Design of a Multicentric Diagnostic Study. Proteomics. 2020. DOI: 10.1002/pmic.202000202.
  80. Henry B.M., De Oliveira M.H.S., Benoit S., et al. Hematologic, biochemical and immune biomarker abnormalities associated with severe illness and mortality in coronavirus disease 2019 (COVID-19): A meta-analysis. Clinical Chemistry and Laboratory Medicine. 2020. Vol. 58, № 7. P. 1021-1028. DOI: 10.1515/cclm-2020-0369.
  81. Yang X., Jin Y., Li R., et al. Prevalence and impact of acute renal impairment on COVID-19: A systematic review and meta-analysis. Critical Care. 2020. DOI: 10.1186/s13054-020-03065-4.

Другие статьи по теме


Навигация по статьям
Разделы журнала
Наиболее читаемые статьи
Журнал "Нефрология и диализ"